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Preface

Plant variability and uncertainty are formidable adversaries. An anecdote which
serves as a reminder of this fact can be found in Harold Black’s retrospective on
his invention of the feedback amplifier [30]. At one point, he describes the operat-
ing procedure for his newly invented feedforward amplifier: “. . . every hour on the
hour—twenty four hours a day—somebody had to adjust the filament current to its
correct value. In doing this, they were permitted plus or minus 0.5 to 1 dB variation
in the amplifier gain, whereas, for my purpose the gain had to be absolutely per-
fect. In addition, every six hours it became necessary to adjust the battery voltage,
because the amplifier gain would be out of hand. There were other complications
too. . . ”. Despite his subsequent discovery of the feedback principle and the tireless
efforts of many researchers, the problem of plant variability and uncertainty is still
with us.

Systems that can tolerate plant variability and uncertainty are called robust—
Black’s original feedforward amplifier was not robust. The aim of this book is to
present a theory of feedback system analysis, design and synthesis that is able to
optimize the performance and robustness of control systems. We contrast this with
traditional optimal control methods, such as the Linear Quadratic Gaussian (LQG)
theory, which optimizes performance but not robustness.

In determining the scope of this endeavour, we see two considerations as being
paramount:

1. The theory should offer a quantitative measure of performance and robustness
that leads directly to an optimization problem for which a synthesis procedure
is available. Once the design objectives are specified, the synthesis theory
should determine whether or not they can be achieved. If they can, the theory
should synthesize a controller that meets them.

2. The theory must be accessible to engineers. We believe there is little point
in offering a theory that, because of its complexity, is unlikely to find its way
into engineering practice.

Over the last fifteen years singular values have been developed as a tool for
analyzing the robustness and performance of feedback systems. We shall argue

xi
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that they form the core of an accessible yet advanced optimal control theory, be-
cause they facilitate a natural generalization of many classical single-loop feedback
analysis ideas. In general terms, the controller should be chosen so that the closed-
loop transfer function matrix has certain characteristics that are derived from the
specifications. An optimal design minimizes the maximum singular value of the
discrepancy between the closed-loop transfer function matrix and the desired loop
shape, subject to a closed-loop stability constraint. This is an H∞ optimization
problem, for which considerable mathematical theory is available.

The mathematical prerequisites for studying the book are modest, because for
the most part we deal with finite dimensional linear systems. The background as-
sumed of any reader is: (a) linear algebra and matrix theory; (b) linear differential
equations; (c) a course in classical control theory that covers transfer functions,
frequency responses, Bode plots and the Nyquist stability theorem; (d) linear sys-
tems theory, including a treatment of state-space system descriptions. The notions
of controllability and observability are used without explanation. We recommend
that students have some exposure to linear systems and optimal control at a gradu-
ate level before tackling the synthesis theory chapters of this book. Chapters 1 and
2 only require a modest background and could be included in senior undergraduate
or Masters level courses.

A good idea of the scope of the book may be obtained from a perusal of the list
of contents. Chapter 1 introduces the idea of H∞ optimization by considering a
number of simple scalar examples which are solved using Nevanlinna-Pick-Schur in-
terpolation theory. In this way the reader knows what H∞ optimal control is about
after reading only a few pages. Chapter 2 deals with the use of singular values in
multivariable control system design. A multivariable generalization of the Nyquist
stability theorem and the interpretation of the minimum singular value of a matrix
as a measure of the distance to a singular matrix are used to establish robustness
results for linear time-invariant systems. The interpretation of the maximum sin-
gular value as the maximum gain is then used to show how performance issues may
be addressed. Chapter 3 reviews background material on signals and systems and
introduces the small gain theorem and the bounded real lemma. The small gain
theorem states that stable systems can be connected to form a stable closed-loop if
the loop gain product is less than unity; it is the basis for the general robust sta-
bility results. The bounded real lemma gives a condition for a linear time-invariant
system to have less than unity gain. Chapter 4 discusses linear fractional transfor-
mations and their role in control systems. It is argued that various closed-loop and
open-loop design problems can be posed in terms of a linear fractional transforma-
tion involving a fixed system known as the generalized plant and a to-be-designed
system known as the controller. Linear fractional transformations therefore provide
a general framework for controller synthesis theory and for computational software.
The synthesis problem we consider is to find a controller that achieves a specified
norm bound on a linear fractional transformation involving the controller and the
generalized plant. Because the established theory and sign conventions of linear
fractional transformations induce a positive sign convention on feedback problems,
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we use a positive feedback sign convention throughout the book.
Chapters 5 to 8 develop the control system synthesis theory. We begin with a

brief treatment of the Linear Quadratic Guassian problem in Chapter 5. Chapters 6,
7 and 8 are the core of the book and concentrate on the synthesis of controllers that
meet H∞-norm objectives. The main result is that a controller that satisfies the
objectives exists if and only if two Riccati equations have appropriate solutions.
In this case, all controllers that satisfy the objectives can be given in terms of
a linear fractional transformation involving a stable, norm bounded, but otherwise
unconstrained, parameter. The development of the LQG and H∞ synthesis theories
is split into two parts. In the first, we analyze a finite-horizon version of the problem.
For this part the plant may be assumed to be time-varying. The second part tackles
the infinite-horizon extension by invoking limiting arguments. The infinite-horizon
results are only developed in a time-invariant setting—we restrict ourselves to time-
invariant plant before taking limits. Our approach to the synthesis theory is based,
therefore, on time-domain techniques which are deeply rooted in the existing and
widely known theory of linear quadratic optimal control. The application to H∞
optimization requires that we consider a quadratic objective function which is not
positive definite, but which connects precisely with the theory of linear, zero-sum
differential games with quadratic pay-off functions. This time-domain, optimal-
control based approach has several advantages. Firstly, the techniques are widely
known and are covered in excellent texts such as [11], [33] and [125]. Secondly,
they require almost no advanced mathematical theory. For the most part, a solid
background in linear algebra and differential equations is sufficient. Thirdly, the
main ideas and equations can be developed in a finite time horizon setting in which
stability issues do not arise. The sufficiency theory in this case is almost trivial,
amounting to little more than “completing the square”. Finally, they are applicable
to time-varying problems and are amenable to generalization to nonlinear systems.

In order to provide the reader with some insight into the alternative approaches
that have been developed, we have: (a) included two complete proofs of the bounded
real lemma, one algebraic and one based on optimal control; (b) covered the four-
block general distance problem in some detail; (c) explored the connection with
factorization methods in several of the problems. The approach based on the four-
block problem is given fairly detailed coverage because it is the only approach that
has yielded a complete treatment of the optimal cases and because it is able to
deal (easily) with problems involving optimization subject to the constraint that
the solution contains no more than a prespecified number of unstable poles. This
problem is of interest in frequency weighted model reduction applications which are
also covered.

Chapters 9 to 11 deal with the approximation of high-order systems by others of
lower order. This approximation process is known as model reduction. The inclusion
of model reduction is motivated by our belief that control system design cannot
be separated from the process of plant modelling. Any serious application of the
optimal synthesis methods in this book is bound to involve some model reduction. In
addition, the similarity of the mathematical techniques involved in model reduction
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and H∞ optimal control makes it appropriate to include this material.
Chapter 12 contains two design case studies. The first considers the design of a

controller to stabilize the vertical dynamics of the elongated plasma in a tokamak
fusion reactor and the second considers the design of a composition controller for a
high-purity distillation column.

For completeness, internal stability theory is covered in Appendix A, although
an advantage of our approach to the synthesis problem is that a detailed knowledge
of internal stability theory is not required. Appendix B offers a brief treatment of
the discrete-time synthesis theory.

Section summaries are included to help readers review their progress and high-
light the main issues. Each chapter ends with student exercises; some are straight-
forward, while others are much more challenging. The easy exercises offer practise
in formula manipulation and are designed to help students increase their confidence
in the subject. On the whole, they add only minor embellishments to the text.
On the other hand, the more difficult exercises expand the text and even develop
aspects of the subject we could not touch on in the main body. Answering the more
difficult problems requires real work—mastering control theory is not a spectator
sport! The exercises are an integral part of the text and there is no doubt that
a serious attempt to answer them will greatly improve one’s understanding of the
subject. A solution to each of the problems is available in a separate solutions
manual.

There is enough material in Chapters 1 to 8 for a 45 hour course in H∞ controller
synthesis. If time is short, or if students have had recent exposure to linear quadratic
optimal control theory, Chapter 5 can be omitted. The material in Chapters 9 to
11 is self contained (excepting for some elementary material in Chapters 3 and 4)
and could be used for a 20 hour course on model reduction. Chapter 2 is self-
contained and could be used as the basis of 2 to 5 hours of lectures on singular
values in a course on multivariable control systems. Indeed, this chapter has evolved
from lecture notes that have been used in the Masters course at Imperial College.
Chapter 12 can also be incorporated in a course on multivariable control system
design and will, we hope, be of interest to engineers who want to find out how these
new methods can be used on real-life problems.

Our aim in writing this book is to generate an accessible text that develops along
a single line of argument. In any exercise of this sort, the selection of material is
bound to involve compromise. We have made no attempt to review all the material
that could be construed as being relevant. Rather, we have restricted our attention
to work that we believe will be of most help to readers in developing their knowledge
of the subject, and to material that has played a direct role in educating us or in
helping us prepare the manuscript. In the case of well established theory, we have
referred to well known texts rather than duplicate their extensive bibliographies.
Despite our best efforts, there is bound to be important work that has escaped our
attention. To those authors, we offer our sincerest apologies.

This work is the result of seven years of collaboration and every part of this
book is the result of our joint efforts.
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1

Introduction

1.1 Goals and origins of H∞ optimal control

Most engineering undergraduates are taught to design proportional-integral-deriva-
tive (PID) compensators using a variety of different frequency response techniques.
With the help of a little laboratory experience, students soon realize that a typical
design study involves juggling with conflicting design objectives such as the gain
margin and the closed-loop bandwidth until an acceptable controller is found. In
many cases these “classical” controller design techniques lead to a perfectly satis-
factory solution and more powerful tools hardly seem necessary. Difficulties arise
when the plant dynamics are complex and poorly modelled, or when the perfor-
mance specifications are particularly stringent. Even if a solution is eventually
found, the process is likely to be expensive in terms of design engineer’s time.

When a design team is faced with one of these more difficult problems, and
no solution seems forthcoming, there are two possible courses of action. These
are either to compromise the specifications to make the design task easier, or to
search for more powerful design tools. In the case of the first option, reduced
performance is accepted without ever knowing if the original specifications could
have been satisfied, as classical control design methods do not address existence
questions. In the case of the second option, more powerful design tools can only
help if a solution exists.

Any progress with questions concerning achievable performance limits and the
existence of satisfactory controllers is bound to involve some kind of optimization
theory. If, for example, it were possible to optimize the settings of a PID regulator,
the design problem would either be solved or it would become apparent that the
specifications are impossible to satisfy (with a PID regulator). We believe that
answering existence questions is an important component of a good design method-

1



2 INTRODUCTION

ology. One does not want to waste time trying to solve a problem that has no
solution, nor does one want to accept specification compromises without knowing
that these are necessary. A further benefit of optimization is that it provides an
absolute scale of merit against which any design can be measured—if a design is
already all but perfect, there is little point in trying to improve it further.

The aim of this book is to develop a theoretical framework within which one
may address complex design problems with demanding specifications in a systematic
way.

Wiener-Hopf-Kalman optimal control

The first successes with control system optimization came in the 1950s with the
introduction of the Wiener-Hopf-Kalman (WHK) theory of optimal control.1 At
roughly the same time the United States and the Soviet Union were funding a
massive research program into the guidance and maneuvering of space vehicles. As
it turned out, the then new optimal control theory was well suited to many of the
control problems that arose from the space program. There were two main reasons
for this:

1. The underlying assumptions of the WHK theory are that the plant has a
known linear (and possibly time-varying) description, and that the exoge-
nous noises and disturbances impinging on the feedback system are stochastic
in nature, but have known statistical properties. Since space vehicles have
dynamics that are essentially ballistic in character, it is possible to develop
accurate mathematical models of their behavior. In addition, descriptions for
external disturbances based on white noise are often appropriate in aerospace
applications. Therefore, at least from a modelling point of view, the WHK
theory and these applications are well suited to each other.

2. Many of the control problems from the space program are concerned with
resource management. In the 1960s, aerospace engineers were interested in
minimum fuel consumption problems such as minimizing the use of retro-
rockets. One famous problem of this type was concerned with landing the
lunar excursion module with a minimum expenditure of fuel. Performance
criteria of this type are easily embedded in the WHK framework that was
specially developed to minimize quadratic performance indices.

Another revolutionary feature of the WHK theory is that it offers a true synthesis
procedure. Once the designer has settled on a quadratic performance index to be
minimized, the WHK procedure supplies the (unique) optimal controller without
any further intervention from the designer. In the euphoria that followed the intro-
duction of optimal control theory, it was widely believed that the control system

1Linear Quadratic Gaussian (LQG) optimal control is the term now most widely used for this
type of optimal control.
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designer had finally been relieved of the burdensome task of designing by trial and
error. As is well known, the reality turned out to be quite different.

The wide-spread success of the WHK theory in aerospace applications soon led
to attempts to apply optimal control theory to more mundane industrial problems.
In contrast to experience with aerospace applications, it soon became apparent
that there was a serious mismatch between the underlying assumptions of the WHK
theory and industrial control problems. Accurate models are not routinely available
and most industrial plant engineers have no idea as to the statistical nature of the
external disturbances impinging on their plant. After a ten year re-appraisal of the
status of multivariable control theory, it became clear that an optimal control theory
that deals with the question of plant modelling errors and external disturbance
uncertainty was required.

Worst-case control and H∞ optimization

H∞ optimal control is a frequency-domain optimization and synthesis theory that
was developed in response to the need for a synthesis procedure that explicitly
addresses questions of modelling errors. The basic philosophy is to treat the worst
case scenario: if you don’t know what you are up against, plan for the worst and
optimize. For such a framework to be useful, it must have the following properties:

1. It must be capable of dealing with plant modelling errors and unknown dis-
turbances.

2. It should represent a natural extension to existing feedback theory, as this will
facilitate an easy transfer of intuition from the classical setting.

3. It must be amenable to meaningful optimization.

4. It must be able to deal with multivariable problems.

In this chapter, we will introduce the infinity norm and H∞ optimal control with the
aid of a sequence of simple single-loop examples. We have carefully selected these
in order to minimize the amount of background mathematics required of the reader
in these early stages of study; all that is required is a familiarity with the maximum
modulus principle. Roughly speaking, this principle says that if a function f (of a
complex variable) is analytic inside and on the boundary of some domain D, then
the maximum modulus (magnitude) of the function f occurs on the boundary of the
domain D. For example, if a feedback system is closed-loop stable, the maximum
of the modulus of the closed-loop transfer function over the closed right-half of the
complex plane will always occur on the imaginary axis.

To motivate the introduction of the infinity norm, we consider the question
of robust stability optimization for the feedback system shown in Figure 1.1. The
transfer function g represents a nominal linear, time-invariant model of an open-loop
system and the transfer function k represents a linear, time-invariant controller to be
designed. If the “true” system is represented by (1+δ)g, we say that the modelling
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Figure 1.1: The problem of robust stability optimization.

error is represented by a multiplicative perturbation δ at the plant output. For
this introductory analysis, we assume that δ is an unknown linear, time-invariant
system.

Since
z = (1 − gk)

−1
gkw,

the stability properties of the system given in Figure 1.1 are the same as those given
in Figure 1.2, in which

h = (1 − gk)
−1

gk.

If the perturbation δ and the nominal closed-loop system given by h are both

s s
δ

h

-

¾

z w

Figure 1.2: The small gain problem.

stable, the Nyquist criterion says that the closed-loop system is stable if and only
if the Nyquist diagram of hδ does not encircle the +1 point. We use the +1 point
rather than the −1 point because of our positive feedback sign convention. Since
the condition

sup
ω

|h(jω)δ(jω)| < 1. (1.1.1)

ensures that the Nyquist diagram of hδ does not encircle the +1 point, we conclude
that the closed-loop system is stable provided (1.1.1) holds.
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Since δ is unknown, it makes sense to replace (1.1.1) with an alternative sufficient
condition for stability in which h and δ are separated. We could for example test
the condition

sup
ω

|h(jω)| sup
ω

|δ(jω)| < 1.

If δ is stable and bounded in magnitude, so that

sup
ω

|δ(jω)| = M,

the feedback loop given in Figure 1.1 will be stable provided a stabilizing controller
can be found such that

sup
ω

|h(jω)| <
1

M
.

The quantity supω |h(jω)| satisfies the axioms of a norm, and is known as the
infinity norm. Specifically,

‖h‖∞ = sup
ω

|h(jω)|.

Electrical engineers will immediately recognize ‖h‖∞ as the highest gain value on a
Bode magnitude plot. The quantity ‖ · ‖∞ is a norm, since it satisfies the following
axioms:

1. ‖h‖∞ ≥ 0 with ‖h‖∞ = 0 if and only if h = 0.

2. ‖αh‖∞ = |α|‖h‖∞ for all scalars α.

3. ‖h + g‖∞ ≤ ‖h‖∞ + ‖g‖∞.

In addition, ‖ · ‖∞ satisfies

4. ‖hg‖∞ ≤ ‖h‖∞‖g‖∞.

The fourth property is the crucial submultiplicative property which is central to all
the robust stability and robust performance work to be encountered in this book.
Note that not all norms have this fourth property.

With this background, the optimal robust stability problem is posed as one
of finding a stabilizing controller k that minimizes ‖(1 − gk)

−1
gk‖∞. Note that

k = 0 gives ‖(1 − gk)
−1

gk‖∞ = 0 and is therefore optimal in this sense provided the
plant itself is stable. Thus, when the plant is stable and there are no performance
requirements other than stability, the optimal course of action is to use no feedback
at all! When k = 0 is not allowed because the plant is unstable, the problem is more
interesting and the optimal stability margin and the optimal controller are much
harder to find. We will return to the analysis of this type of problem in Section 1.4.

In order to lay the groundwork for our analysis of optimal disturbance attenu-
ation and optimal stability robustness, we consider the optimal command response
problem. This problem is particularly simple because it contains no feedback. De-
spite this, it contains many of the essential mathematical features of more difficult
(feedback) problems.
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1.2 Optimizing the command response

As an introduction to the use of the infinity norm in control system optimization, we
analyze the design of reference signal prefilters in command tracking applications.
This is our first example of an H∞ optimal controller synthesis problem.

f
h

gf
?

-

---- −

Figure 1.3: Command response optimization.

In the configuration illustrated in Figure 1.3, we suppose that the plant model
g is a given stable rational transfer function and that h is a given stable rational
transfer function with desired command response properties. The design task is
to find a stable rational prefilter with transfer function f such that ‖h − gf‖∞ is
minimized. An unstable prefilter is unacceptable in practical applications because
it results in unbounded control signals and actuator saturation.

In the case that g has no zeros in the closed-right-half plane, the solution is easy
since we may simply set f = g−1h. If g has right-half-plane zeros, however, the
plant inverse leads to an unstable prefilter unless the right-half-plane poles of g−1

happen to be cancelled by zeros of h. Thus, when g has right-half-plane zeros, the
requirement that the prefilter be stable forces us to accept some error between gf

and h which we denote
e = h − gf . (1.2.1)

This gives
f = g−1(h − e). (1.2.2)

If the right-half-plane zeros of g are z1, z2, . . . , zm and are of multiplicity one, the
prefilter will be stable if and only if

e(zi) = h(zi), i = 1, 2, . . . ,m. (1.2.3)

This is because the unstable poles of g−1 will be cancelled by the zeros of h − e.
The conditions given in (1.2.3) are called interpolation constraints. Any error

system e resulting from a stable prefilter must satisfy the conditions (1.2.3) and,
conversely, the satisfaction of these constraints ensures that all the right-half-plane
poles of g−1 will be cancelled by zeros of h − e when forming the prefilter. The
optimization problem is to find a stable transfer function e of minimum infinity
norm such that the interpolation constraints given in (1.2.3) are satisfied. This
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is an example of a Nevanlinna-Pick interpolation problem. A general solution to
problems of this type is complicated and was found early this century. Once the
optimal error function is found, f follows by back substitution using (1.2.2). We
shall now consolidate these ideas with a numerical example.

Example 1.2.1. Suppose g and h are given by

g =

(
s − 1

s + 2

)
, h =

(
s + 1

s + 3

)
.

The transfer function g has a single zero at s = 1, so there is a single interpolation
constraint given by

e(1) =

(
s + 1

s + 3

)∣∣∣∣
s=1

=
1

2
.

Since e is required to be stable, the maximum modulus principle ensures that

‖e‖∞ = sup
s=jω

|e(s)|

= sup
Re(s)≥0

|e(s)|

≥ |e(1)| =
1

2
.

The minimum infinity norm interpolating function is therefore the constant function
e = 1

2 and the associated norm is ‖e‖∞ = 1
2 . Back substitution using (1.2.2) yields

f =

(
s + 2

s − 1

) (
s + 1

s + 3
− 1

2

)
=

1

2

(
s + 2

s + 3

)
. 5

Interpolating a single data point is particularly simple because the optimal inter-
polating function is a constant. Our next example, which contains two interpolation
constraints, shows that the general interpolation problem is far more complex.

Example 1.2.2. Consider the command response optimization problem in which

g =
(s − 1)(s − 2)

(s + 3)2
, h =

2

3(s + 3)
.

The transfer function g has right-half-plane zeros at z1 = 1 and z2 = 2, so we must
find a stable transfer function e of minimum norm such that:

e(1) = h(1) =
1

6
= h1 (1.2.4)

and

e(2) = h(2) =
2

15
= h2. (1.2.5)
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It follows from the maximum modulus principle that any such e must satisfy

‖e‖∞ ≥ max

{
1

6
,

2

15

}
=

1

6
.

Since we have two values to interpolate, simply setting e = 1
6 will not do!

The Nevanlinna-Pick interpolation theory says that there is a stable interpolat-
ing function e with ‖e‖∞ ≤ γ if and only if the Pick matrix given by

Π(γ) =

[
γ2−h2

1

2
γ2−h1h2

3

γ2−h1h2

3
γ2−h2

2

4

]

is nonnegative definite. Since Π(γ1) ≥ Π(γ2) if γ1 ≥ γ2, our desired optimal norm
is the largest value of γ for which the Pick matrix Π(γ) is singular. Alternatively,
the optimal value of γ (call it γopt) is the square root of the largest eigenvalue of
the symmetric matrix pencil

γ2

[
1
2

1
3

1
3

1
4

]
−

[
h2
1

2
h1h2

3

h1h2

3
h2
2

4

]
.

Carrying out this calculation gives γopt ≈ 0.207233. The Nevanlinna-Pick theory
also gives the optimal interpolating function as

e = γopt

(
a − s

a + s

)
,

with a given by

a = zi
γopt + hi

γopt − hi
(in which i is either 1 or 2)

≈ 9.21699.

(It is easy to check that this e satisfies the interpolation constraints.) Notice that
the optimal interpolating function is a constant multiplied by a stable transfer
function with unit magnitude on the imaginary axis, which is a general property of
optimal interpolating functions. Since ‖a−s

a+s‖∞ = 1, it is clear that ‖e‖∞ = γopt.

Since f = g−1(h − e), it follows that the optimal prefilter is

f = γopt

(
s + 3

s + a

)
. 5

We conclude from this example that an increase in the number of interpolation
constraints makes the evaluation of the interpolating function much harder. Despite
this, the error function retains the “constant magnitude on the imaginary axis”
property associated with constants. We will not address (or require) a general
solution to the Nevanlinna-Pick interpolation problem, although the solution to
the H∞ optimal control problem we shall develop also provides a solution to the
Nevanlinna-Pick interpolation problem. We shall say more about this in Chapter 6.
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1.3 Optimal disturbance attenuation

The aim of this section is to solve a simple H∞ control problem involving feedback by
recasting the optimal disturbance attenuation problem as an optimization problem
constrained by interpolation conditions.

In the system illustrated in Figure 1.4, it is assumed that the plant model g

is a given stable rational transfer function and that the frequency domain signal d
represents some unknown disturbance. The aim is to find a compensator k with the
following two properties:

1. It must stabilize the loop in a sense to be specified below.

2. It must minimize the infinity norm of the transfer function that maps d to y.

f
f s

sk

g

6

¾ ¾?

--

d
y

uw

Figure 1.4: The disturbance attenuation problem.

If w = 0, it is immediate from Figure 1.4 that

y = (1 − gk)
−1

d

= (1 + gk(1 − gk)
−1

)d,

and we note that the closed-loop transfer function is a nonlinear function of k. To
restore an affine parametrization of the type given in (1.2.1), we set

q = k(1 − gk)−1, (1.3.1)

which is the transfer function between the disturbance d and the plant input u. The
closed-loop mapping d to y may now be written as

y = (1 + gq)d, (1.3.2)

which is affine in the unknown parameter q. Before continuing, we need to introduce
the notion of internal stability and discover the properties required of q in order
that the resulting controller be internally stabilizing.
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1.3.1 Internal stability theory for stable plants

Definition 1.3.1 The feedback system given in Figure 1.4 is called internally stable
if each of the four transfer functions mapping w and d to u and y are stable.

If the feedback system in Figure 1.4 is internally stable, we say that k is an
internally-stabilizing controller for g.2

Internal stability is a more stringent stability requirement than the simple input-
output stability of closed-loop transfer functions, because it also bans all right-half-
plane pole-zero cancellations between cascaded subsystems within the feedback loop.

Example 1.3.1. The transfer functions g =
(

−s
s+1

)
and k =

(
s+3

s

)
produce the

stable transfer function (1 − gk)−1 =
(

s+1
2(s+2)

)
mapping d to y. However, the

closed-loop transfer function between d and u is k(1−gk)−1 =
(

(s+1)(s+3)
2s(s+2)

)
, which

is unstable due to the closed-loop pole at the origin. We therefore conclude that the
system in Figure 1.4 is not internally stable for this particular plant and controller
combination, although it is input-output stable. 5

We will now prove our first result on internal stability.

Lemma 1.3.1 The feedback loop in Figure 1.4 is internally stable if and only if

[
1 −k

−g 1

]−1

(1.3.3)

is stable.

Proof. It is immediate from Figure 1.4 that

u = ky + w

y = gu + d,

or equivalently [
w
d

]
=

[
1 −k

−g 1

] [
u
y

]
.

This gives [
u
y

]
=

[
1 −k

−g 1

]−1 [
w
d

]

and the result follows from Definition 1.3.1.

2The terms internally-stabilizing controller and stabilizing controller are synonymous in this
book—internally-stabilizing controller is used to draw special attention to the requirement of
internal stability.



1.3 OPTIMAL DISTURBANCE ATTENUATION 11

We will now discover the properties required of the q-parameter defined in (1.3.1)
for internal stability in the stable plant case. Since

[
1 −k

−g 1

]
=

[
1 0
−g 1

] [
1 −k

0 1 − gk

]
,

we get

[
1 −k

−g 1

]−1

=

[
1 k(1 − gk)−1

0 (1 − gk)−1

] [
1 0
g 1

]

=

[
1 q

0 1 + gq

] [
1 0
g 1

]

on substituting from (1.3.1). Since g is assumed stable, it is apparent that

[
1 −k

−g 1

]−1

is stable if and only if q is stable. This gives the following result:

Lemma 1.3.2 Suppose g is stable. Then k is an internally-stabilizing controller for
the feedback loop in Figure 1.4 if and only if q = k(1−gk)−1 is stable. Equivalently,
k is an internally-stabilizing controller if and only if k = q(1+qg)−1 for some stable
q.

1.3.2 Solution of the disturbance attenuation problem

We may now return to the disturbance attenuation problem given in (1.3.2). Since
the transfer functions that maps d to y is given by

h = 1 + gq, (1.3.4)

one obtains
q = g−1(h − 1).

For the loop to be internally stable, we need to ensure that q is stable.
When g−1 is stable we could, in principle, set q = −g−1, since this results

in h = 0 and perfect disturbance attenuation. Unfortunately, such a q is not
achievable by a realizable controller since k has infinite gain. We may, however, use
q = −(1 − ε)g−1 for an arbitrarily small ε. This gives h = ε and

k = −(
1 − ε

ε
)g−1.

The controller is simply the negative of the inverse of the plant together with an
arbitrarily high gain factor. This is not a surprising conclusion, because high gain
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improves disturbance attenuation and we know from classical root locus theory that
a plant will be closed-loop stable for arbitrarily high gain if all the plant zeros are
in the open-left-half plane.

In the case that g−1 is not stable, q will be stable if and only if

h(zi) = 1, i = 1, 2, . . . ,m, (1.3.5)

for each zero, zi, of g such that Re(zi) ≥ 0 (provided each of the zeros zi is of
multiplicity one). The optimal disturbance attenuation problem therefore requires
us to find a stable closed-loop transfer function h, of minimum infinity norm, which
satisfies the interpolation constraints given in (1.3.5). It follows from (1.3.4) that
the corresponding optimal q may be interpreted as the best stable approximate
inverse of −g, in the infinity norm sense.

It follows from the maximum modulus principle that the constraints h(zi) = 1
make it impossible to achieve ‖h‖∞ < 1 when the plant has a right-half-plane zero.
Since the plant is stable, we can set k = 0 to achieve y = d, which is optimal
in this case. The presence of a right-half-plane zero makes broadband disturbance
attenuation impossible.

If some spectral information is available about the disturbance d, one may be
able to improve the situation by introducing frequency response weighting. If d
is bandlimited, we could seek to minimize ‖wh‖∞ in which w is some low-pass
stable and minimum phase weighting function. If ‖wh‖∞ < 1, it follows that
|h(jω)| < |w−1(jω)| for all real ω. Since |w−1(jω)| is small at low frequency due
to the low pass nature of w, it follows that |h(jω)| will also be small there. The
idea is that |h(jω)| should be small over the range of frequencies for which |d(jω)|
is large. If we set ĥ = wh, one obtains

ĥ = w + wgq

and consequently that
q = g−1w−1(ĥ − w).

Under these conditions the q-parameter will be stable if and only if the interpolation
constraints

ĥ(zi) = w(zi), i = 1, 2, . . . ,m,

are satisfied. If the right-half-plane plant zeros occur beyond the bandwidth of the
weighting function, the w(zi)’s will be small and it is at least possible that an ĥ can

be found such that ‖ĥ‖∞ < 1. Since ‖ĥ‖∞ < 1 ⇒ |h(jω)| < |w−1(jω)| for all ω,
we conclude that |h(jω)| < ε whenever |w(jω)| ≥ 1/ε. Consequently, by designing
w, one can guarantee an appropriate level of disturbance attenuation provided a
controller exists such that ‖ĥ‖∞ < 1. Conversely, if w(zi) > 1 for at least one zi,

we must have ‖ĥ‖∞ > 1 and |w(jω)| ≥ 1/ε no longer ensures |h(jω)| < ε.
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Main points of the section

1. The optimal disturbance attenuation problem is a feedback prob-
lem and it is possible to replace the nonlinear parametrization of
h in terms of stabilizing controllers k, by an affine parametrization
of h in terms of stable functions q. So far we have only established
this fact for the stable plant case, but it is true in general.

2. The optimization problem requires us to find a stable transfer func-
tion h of minimum norm that satisfies the interpolation constraints
given in (1.3.5). This is a classical Nevanlinna-Pick interpolation
problem and satisfaction of the interpolation constraints guarantees
the internal stability of the feedback system. We note that mini-
mizing ‖h‖∞ is equivalent to finding a stable approximate inverse
of the plant.

3. If the plant has a right-half-plane zero, the constraint h(zi) = 1
makes it impossible to achieve ‖h‖∞ < 1 thereby attenuating un-
known disturbances. In this case the best one can do is set k = 0,
since this will give y = d. If some spectral information about the
disturbance is available, the situation may be improved if the right-
half-plane zero is outside the bandwidth in which there is significant
disturbance energy.

1.4 A robust stability problem

When a design team is faced with the problem of designing a controller to meet
certain closed-loop performance specifications, they will hardly ever have a perfect
model of the plant. As a consequence, the design process is complicated by the fact
that the controller has to be designed to operate satisfactorily for all plants in some
model set. The most fundamental of all design requirements is that of finding a
controller to stabilize all plants in some class; we call this the robust stabilization
problem. To set this problem up in a mathematical optimization framework, we
need to decide on some representation of the model error. If the nominal plant
model is g, we can use an additive representation of the model error by describing
the plant as g + δ in which the stable transfer function δ represents the unknown
dynamics; this is an alternative to the multiplicative description of model error
given in Section 1.1.

Let us consider the robust stabilization problem in which some nominal plant
model g is given, and we seek a stabilizing controller for all plants of the form g +δ

in which the allowable ‖δ‖∞ is maximized. A controller that maximizes ‖δ‖∞ is
optimally robust in the sense that it stabilizes the largest ball of plants with center
g. A block diagram of the set-up under consideration is given in Figure 1.5 and

z = (1 − kg)−1kw.
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Figure 1.5: A robust stability problem.

If δ and the nominal closed-loop system are stable, it follows from an earlier “small
gain” argument based on the Nyquist criterion that the perturbed closed loop will
also be stable provided

‖δ‖∞‖(1 − kg)−1k‖∞ < 1.

The optimal robustness problem therefore requires a stabilizing controller that min-
imizes ‖(1 − kg)−1k‖∞.

As before, in the case that the plant is stable, the solution is trivially obtained
by setting k = 0; note, however, that k = 0 offers no protection against unstable
perturbations however small! Before substituting

q = (1 − kg)−1k,

we need the conditions on q that lead to a stable nominal closed-loop system. The
mere stability of q is not enough in the unstable plant case. Since

[
1 −k

−g 1

]−1

=

[
1 + qg q

(1 + qg)g 1 + gq

]
,

it is clear that the nominal closed loop will be stable if and only if

1. q is stable,

2. gq is stable, and

3. (1 + qg)g is stable.

If g is stable and Condition 1 is satisfied, Conditions 2 and 3 follow automatically.
If (p1, p2, . . . , pm) are the right-half-plane poles of g, it follows from Condition 2
that internal stability requires satisfaction of the interpolation constraints

2′. q(pi) = 0, for i = 1, 2, . . . ,m,
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while Condition 3 demands

3′. (1 + gq)(pi) = 0, for i = 1, 2, . . . ,m.

To keep things simple, we will assume for the present that each unstable pole has
multiplicity one and that Re(pi) > 0.

Since the closed-loop transfer function of interest is q, the solution of the robust
stabilization problem requires a stable q of minimum infinity norm that satisfies
the interpolation constraints of Conditions 2′ and 3′.

As we will now show, it is possible to reformulate the problem so that there is
one, rather than two, interpolation constraints per right-half-plane pole. To effect
the reformulation, we introduce the completely unstable function3

a =

m∏

i=1

(
p̄i + s

pi − s

)
(1.4.1)

which has the property that |a(jω)| = 1 for all real ω. If we define q̃ := aq it
follows that:

1. ‖q‖∞ = ‖q̃‖∞.

2. If q̃ is stable, so is q.

3. If q̃ is stable, q(pi) = 0, because q = q̃
∏m

i=1

(
pi−s
p̄i+s

)
.

4. q̃(pi) = −(ag−1)(pi) ⇒ (1 + qg)(pi) = 0.

In its new form, the robust stabilization problem is one of finding a stable q̃ of
minimum infinity norm such that

q̃(pi) = −(ag−1)(pi) i = 1, 2, . . . ,m, (1.4.2)

which is yet another Nevanlinna-Pick interpolation problem . The corresponding
(optimal) controller may be found by back substitution as

k = (a + q̃g)−1q̃. (1.4.3)

Example 1.4.1. Suppose the plant is given by

g =
s + 2

(s + 1)(s − 1)
.

Since there is a single right-half-plane pole at +1, it follows that the allpass function
given in equation (1.4.1) is

a =

(
1 + s

1 − s

)

3Such functions are sometimes known as Blaschke products.
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in this particular case. As a consequence

−ag−1 =
(s + 1)2

(s + 2)
,

and the interpolation condition follows from (1.4.2) as

q̃(1) = −ag−1
∣∣
s=1

=
4

3
.

It is now immediate from the maximum modulus principle that ‖q̃‖∞ ≥ 4/3, so
that q̃ = 4/3 is optimal. Substitution into (1.4.3) yields

k = −4(s + 1)

(3s + 5)

as the optimal controller that will stabilize the closed-loop system for all stable δ

such that ‖δ‖∞ < 3/4. 5
Our second robust stabilization example shows that it is impossible to robustly

stabilize a plant with a right-half-plane pole-zero pair that almost cancel. We expect
such a robust stability problem to be hard, because problems of this type have an
unstable mode that is almost uncontrollable.

Example 1.4.2. Consider the unstable plant

g =

(
s − α

s − 1

)
, α 6= 1,

which has a zero at α. As with the previous example, we require

a =

(
1 + s

1 − s

)

which gives

−ag−1 =

(
s + 1

s − α

)
.

The only interpolation constraint is therefore

q̃(1) = −ag−1
∣∣
s=1

=
2

1 − α
.

Invoking the maximum modulus principle yields q̃ = 2/(1 − α) as the optimal
interpolating function. Substitution into (1.4.3) gives

k =
2

1 + α

as the optimal controller. The closed loop will therefore be stable for all stable δ

such that ‖δ‖∞ < |(1 − α)/2|. From this we conclude that the stability margin
measured by the maximum allowable ‖δ‖∞ vanishes as α → 1. 5
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Our final example considers the robust stabilization of an integrator.

Example 1.4.3. Consider the case of

g =
1

s
.

At first sight this appears to be an awkward problem because the interpolation
constraint occurs at s = 0, and the allpass function in (1.4.1) degenerates to 1.
Suppose we ignore this difficulty for the moment and restrict our attention to con-
stant controllers given by k ≤ 0. This gives

q = (1 − kg)−1k =
ks

s − k

with

‖(1 − kg)−1k‖∞ =

∣∣∣∣
sk

s − k

∣∣∣∣

∣∣∣∣
s=∞

= |k|.
To solve the problem we observe that if we want to stabilize the closed loop for any
stable δ such that ‖δ‖∞ < 1/ε, we simply set k = −ε; ε may be arbitrarily small! In
problems such as this one, which has an interpolation constraint on the imaginary
axis, it is not possible to achieve the infimal value of the norm. For any positive
number, we can achieve a closed-loop with that number as its infinity norm, but we
cannot achieve a closed-loop infinity norm of zero. 5

1.5 Concluding comments and references

We will now conclude this introductory chapter with a few remarks about the things
we have already learned and the things we still hope to achieve.

1. H∞ control problems can be cast as constrained minimization problems. The
constraints come from an internal stability requirement and the object we
seek to minimize is the infinity norm of some closed-loop transfer function.
The constraints appear as interpolation constraints and stable closed-loop
transfer functions that satisfy the interpolation data may be found using the
classical Nevanlinna-Schur algorithm. This approach to control problems is
due to Zames [227] and is developed in Zames and Francis [228] and Kimura
[118]. In our examples we have exploited the fact that there is no need for the
Nevanlinna algorithm when there is only one interpolation constraint.

2. We will not be discussing the classical Nevanlinna-Pick-Schur theory on ana-
lytic interpolation in this book. The interested reader may find this material
in several places such as Garnett [69] and Walsh [207] for a purely function
theoretic point of view, and [53, 43, 44, 129, 221, 227, 228], for various appli-
cations of analytic interpolation to system theory.



18 INTRODUCTION

3. The reader may be puzzled as to why the interpolation theory approach to
H∞ control problems is being abandoned at this early stage of our book.
There are several reasons for this:

(a) Interpolation theoretic methods become awkward and unwieldy in the
multivariable case and in situations where interpolation with multiplic-
ities is required; if there are several interpolation constraints associated
with a single right-half-plane frequency point, we say that the problem
involves interpolation with multiplicities.

(b) It is our opinion that interpolation theoretic methods are computation-
ally inferior to the state-space methods we will develop in later chapters
of the book. Computational issues become important in realistic design
problems in which one is forced to deal with systems of high order.

(c) Frequency domain methods (such as interpolation theory) are restricted
to time-invariant problems. The state-space methods we will develop are
capable of treating linear time varying problems.

(d) It is not easy to treat multitarget problems in an interpolation based
framework. To see this we cite one of many possible problems involving
robust stabilization with performance. Take the case of disturbance at-
tenuation with robust stability, in which we require a characterization of
the set

arg min
k∈S

∥∥∥∥
[

(1 − gk)−1

k(1 − gk)−1

]∥∥∥∥
∞

with S denoting the set of all stabilizing controllers. If the plant is stable,
we may introduce the q-parameter to obtain

arg min
q∈H∞

∥∥∥∥
[

1
0

]
+

[
g

1

]
q

∥∥∥∥
∞

.

Problems of this type are not directly addressable via interpolation due

to the nonsquare nature of

[
g

1

]
; we will not pursue this point at this

stage.

4. Solving each H∞ control problem from scratch, as we have done so far, is
a practice we will now dispense with. This approach is both effort intensive
and an intellectually clumsy way to proceed. Rather, we will develop a single
solution framework that captures many H∞ optimization problems of general
interest as special cases. A large part of the remainder of the book will
be devoted to the development of a comprehensive theory for multivariable,
multitarget problems.

5. The solutions to the problems we have considered so far have a common
theme. With the exception of the robust stabilization of an integrator, the
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magnitudes of the optimal closed-loop transfer functions are a constant func-
tion of frequency. It turns out that this is a general property of the solutions of
all single-input, single-output problems that are free of imaginary axis inter-
polation constraints. In each case, the optimal closed-loop transfer function
is a scalar multiple of a rational inner function. Inner functions are stable
allpass functions, and rational allpass functions have the form

a =

m∏

i=1

(
p̄i + s

pi − s

)

which we have already encountered. Since the poles and zeros of allpass
functions are symmetrically located about the imaginary axis, it is not hard to
see that they have the property |a(jω)| = 1 for all real ω. The “flat frequency
response” property of optimal closed-loop transfer functions is fundamental
in the design of frequency weighting functions.

1.6 Problems

Problem 1.1. Prove that ‖ · ‖∞ is a norm and that ‖gh‖∞ ≤ ‖g‖∞‖h‖∞.

Problem 1.2. Consider the frequency weighted disturbance attenuation problem
of finding a stabilizing controller that minimizes ‖w(1 − gk)−1‖∞. If

g =

(
s − α

s + 2

)
, w =

(
s + 4

2(s + 1)

)
,

in which α is real, show that when 0 ≤ α ≤ 2 there is no stabilizing controller such
that

|(1 − gk)−1(jω)| < |w−1(jω)|, for all ω.

Problem 1.3. Consider the command tracking problem in which

g =

(
(s − 1)2

(s + 2)(s + 3)

)
, h =

1

s + 4
.

Show that the error e = h − gf must satisfy the interpolation constraints

e(1) =
1

5
,

de

ds
(1) =

−1

25
.

The construction of such an e requires the solution of an interpolation problem with
derivative constraints.

Problem 1.4. Suppose an uncertain plant is described by g(1 + δ) in which g is
a given unstable transfer function and δ is a stable but otherwise unknown linear
perturbation bounded in magnitude by ‖δ‖∞ < α.
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1. Give an interpolation theoretic procedure for finding the optimal controller
that stabilizes every g(1 + δ) of the type described and with α maximized.
(Hint: you need to introduce the stable minimum phase spectral factor m

that satisfies gg∼ = mm∼.)
2. Give two reasons why α must always be strictly less than one.

3. Suppose g =
(

s−2
s−1

)
. Show that the largest achievable value of α is αmax = 1

3 ,

and that the corresponding controller is k = 3
4 .

Problem 1.5. Suppose an uncertain plant is described by g + δ in which g is
a given unstable transfer function and δ is a stable but otherwise unknown linear
perturbation such that |δ(jω)| < |w(jω)| for all ω. The function w is a stable and
minimum phase frequency weight.

1. Show that k will stabilize all g + δ with δ in the above class provided it
stabilizes g and ‖wk(1 − gk)−1‖∞ ≤ 1.

2. Explain how to find a stabilizing controller that minimizes ‖wk(1−gk)−1‖∞.

3. If g =
(

s+1
s−2

)
and w =

(
s+1
s+4

)
, find a controller (if one exists) that will

stabilize every g + δ in which δ is stable with |δ(jω)| < |w(jω)| for all ω.

Problem 1.6. Consider the multivariable command response optimization problem
in which the stable transfer function matrices G and H are given and a stable
prefilter F is required such that E = H − GF is small in some sense.

1. If G is nonsingular for almost all s and F is to be stable, show that H − E

must have a zero at each right-half-plane zero of G, taking multiplicities into
account.

2. If all the right-half-plane zeros zi, i = 1, 2, . . . ,m, of G are of multiplicity
one, show that F is stable if and only if there exist vectors wi 6= 0 such that

w∗
i

[
H(zi) − E(zi) G(zi)

]
= 0.

Conclude from this that multivariable problems have vector valued interpo-
lation constraints. What are they?

The relationship between vector interpolation and H∞ control is studied in detail
in Limebeer and Anderson [129] and Kimura [119].
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Multivariable Frequency

Response Design

2.1 Introduction

By the 1950s, classical frequency response methods had developed into powerful
design tools widely used by practicing engineers. There are several reasons for the
continued success of these methods for dealing with single-loop problems and multi-
loop problems arising from some multi-input-multi-output (MIMO) plant. Firstly,
there is a clear connection between frequency response plots and data that can be
experimentally acquired. Secondly, trained engineers find these methods relatively
easy to learn. Thirdly, their graphical nature provides an important visual aid that
is greatly enhanced by modern computer graphics. Fourthly, these methods supply
the designer with a rich variety of manipulative and diagnostic aids that enable a
design to be refined in a systematic way. Finally, simple rules of thumb for standard
controller configurations and processes can be developed. The most widespread of
these is the Ziegler-Nichols method for tuning PID controller parameters based on
the simple “process reaction curve” model. Unfortunately, these classical techniques
can falter on MIMO problems that contain a high degree of cross-coupling between
the controlled and measured variables.

In order to design controllers for MIMO systems using classical single-loop tech-
niques, one requires decomposition procedures that split the design task into a set
of single-loop problems that may be regarded as independent. Such decomposition
methods have many attractive features and are certainly applicable in some cases,
but there are also some fundamental difficulties. How does one find design speci-
fications for the derived single-loop problems that are in some sense equivalent to
the specifications for the multivariable problem? Do good gain and phase margins

21
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for the single loop problems imply good stability properties for the multivariable
problem?

A completely different approach to frequency response design emerged from
Wiener’s work on prediction theory for stochastic processes. By invoking a varia-
tional argument, he showed that certain design problems involving quadratic inte-
gral performance indices may be solved analytically. It turned out that the solu-
tion involved an integral equation which he had studied ten years earlier with E.
Hopf—thus the term Wiener-Hopf optimization. These optimization based design
procedures have the advantage that they automatically uncover inconsistent design
specifications. In addition, because of their optimization properties, the designer is
never left with the haunting thought that a better solution might be possible.

In its early form, the Wiener-Hopf theory could not tackle MIMO or time-
varying problems. These limitations were overcome with Kalman’s introduction of
state-space methods. The key observation was that the solution of the Wiener-Hopf
equation, and hence the optimal control law, may be obtained from the solution of
a quadratic matrix equation known as a Riccati equation.

These ideas formed the core of what was for a long time known as “Modern
Control”, although this term has now fallen into disuse. The theory of minimizing
quadratic integral performance indices subject to linear state-space dynamics driven
by Gaussian white noise is commonly known as Linear Quadratic Gaussian (LQG)
optimal control; the term H2 optimal control is sometimes used for deterministic
versions of this problem. The mathematics and the insight that the “Modern” era
brought into the field has an important bearing on the mathematical techniques
and computational procedures used in the theory and computation of H∞ optimal
controllers.

Despite the success of LQG optimal control and optimal estimation in the
aerospace sector, applications in the process industries have been few and far be-
tween. As a result, a number of authors raised objections to the theory, complaining
that it fails to address the real issues of feedback control. In an attempt to rec-
tify this situation, there was a resurgence of interest in classical frequency response
ideas and several attempts were made to generalize the Nyquist criterion to the
multivariable case. An early version of the generalized Nyquist criterion came from
the relationship

det(I − G) = det
(
(D − N)D−1

)

=
det(D − N)

det(D)

=
closed loop characteristic polynomial

open loop characteristic polynomial
,

in which G = ND−1 is a coprime polynomial matrix fraction description. This
relationship allows closed-loop stability to be tested by counting the number of
encirclements of the origin by the Nyquist diagram of det(I − G), but is of limited
value in design because of the complexity of the relationship between the entries of
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a matrix and its determinant. Later refinements were based on Nyquist diagrams
of the diagonal entries of G and on plots of the eigenvalues of G. Since

det(I − G) =

m∏

i=1

λi(I − G)

=

m∏

i=1

(
1 − λi(G)

)
,

we see that the number of encirclements of the origin by det(I − G) is the sum of
the number of encirclements of +1 by the eigenvalues of G. The controller design
problem may then be considered as a problem requiring the shaping of the open-loop
eigenvalue loci.1

The relationship between a matrix and its eigenvalues is complex, but the eigen-
values are known to lie in circles centered on the diagonal entries of the matrix.
The radii of these circles depend on magnitude of the off-diagonal entries—in the
case of triangular matrices, the diagonal entries are the eigenvalues.2 These ideas
form the basis of Nyquist array design methodologies. Crucial to these eigenvalue-
based techniques is the belief that control objectives for the overall multivariable
plant can be posed as objectives on the eigenvalue loci. The generalized Nyquist
criterion certainly means that stability can be assessed via a consideration of the
eigenvalues. What is less clear is whether eigenvalue “gain margins” and eigenvalue
“phase margins” imply anything about stability robustness for the overall system.
In general, they do not.

It also became apparent that LQG optimal controllers could exhibit poor sta-
bility robustness properties. This came as something of a surprise, because full
state-feedback LQ optimal controllers and Kalman filters, considered separately,
have impressive robust stability properties including at least 60◦ of phase margin,
an infinite gain margin and a 50% gain-reduction tolerance. In contrast, the robust-
ness of an LQG optimal design must be analyzed a posteriori—LQG optimality does
not automatically ensure stability robustness.

During the 1970s, robust stability for MIMO systems and methods of achieving it
emerged as a key problem in feedback design. It cannot be addressed by considering
the eigenvalues of the plant, nor is it guaranteed by LQG optimality. We will now
illustrate these points by examining two examples.

Example 2.1.1. Early frequency response methods for designing controllers
for multivariable systems use diagonalization techniques to decompose the design
into a number of single-loop problems. In Figure 2.1, the plant G is given and
a controller K is required. The designer may introduce loop transformations M

1The eigenvalue loci are called the “characteristic loci” by many authors. Since we shall argue
that the eigenvalues of the plant are anything but characteristic of control system performance
and robust stability, we prefer to use the descriptive term “eigenvalue loci”.

2See Gershgorin’s theorem in [172, 144].
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and N as shown in Figure 2.2. If M and N can be chosen so that Ĝ = NGM is

diagonal, then a diagonal K̂ can be found using single-loop methods. The controller

is then obtained from a reversal of the scaling to give K = MK̂N .

f
f

s
s

G

K

- -

¾¾ ?

6

w

d

u

y

Figure 2.1: A typical feedback loop.

f

fM−1 K N−1

K̂

M G N

Ĝ

M−1

N

- -

¾ ¾ ? ¾¾¾

6
- - -

Figure 2.2: Analysis and design configuration.

From the point of view of nominal stability, there is nothing wrong with this
approach. The difficulties arise when robust stability is considered.

To see this, suppose the transfer function matrix G in Figure 2.1 is given by

G =
1

(s + 1)(s + 2)

[
2 − 47s 56s
−42s 50s + 2

]
,

which may be decomposed as

G =

[
7 8
6 7

] [ 1
s+1 0

0 2
s+2

] [
7 −8
−6 7

]
,

giving

M =

[
7 8
6 7

]
, Ĝ =

[ 1
s+1 0

0 2
s+2

]
, N =

[
7 −8
−6 7

]
.

Since M = N−1, the eigenvalues of G are given by the diagonal entries of Ĝ. The
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closed loop will be stable for

K̂ =

[
k̂1 0

0 k̂2

]

provided −∞ < k̂i < 1 for i = 1, 2. The Nyquist diagrams of Ĝ11 and Ĝ22 also
reveal that both these systems have phase margins of 180◦ if k̂1 and k̂2 are set to

−1. Therefore, if we treat Ĝ11 and Ĝ22 as single loop systems, it would appear

that the feedback loop in Figure 2.2 with K̂ = −I has desirable closed-loop stability

properties. This yields K = MK̂N = −I as the controller for the actual closed
loop of Figure 2.1.

To see that this controller does not result in a robustly stable closed loop, con-
sider the (nondynamic) controller

K =

[
k1 0
0 k2

]
.

If we set k1 = k + δ and k2 = k − δ, it may be shown that the closed-loop charac-
teristic polynomial is given by

s2 + (3 − 3k + 97δ)s + 2
(
(1 − k)2 − δ2

)
.

Closed-loop stability therefore requires

3 − 3k + 97δ > 0

⇔ 3 − 50k2 + 47k1 > 0,

since k = k1+k2

2 and δ = k1−k2

2 , and

(1 − k)2 − δ2 > 0

⇔
(

1 − k1 + k2

2

)2

−
(

k1 − k2

2

)2

> 0

⇔ 1 − k1 − k2 + k1k2 > 0.

With k1 set at its nominal value of −1, the loop is unstable if k2 ≥ −44/50 = −0.88,
since this would make the linear term of the closed-loop characteristic polynomial
nonpositive. If k2 = −1, the loop is unstable if k1 ≤ −53/47 = −1.128. Indeed,
the gains (k1, k2) = (−1.09,−0.9), a distance of 0.1345 from the nominal (−1,−1)
point, creates an unstable loop.3 This lack of stability robustness is not evident
from the eigenvalue loci of Ĝ.

We conclude that the eigenvalue loci of a multivariable plant are not good robust
stability indicators. Eigenvalues may also be misleading indicators of performance,

3It may be shown that (k1, k2) = (−1.0599,−0.9363) minimizes the distance from the line
3 − 50k2 + 47k1 = 0 to the point (−1,−1). The minimum distance is 0.0874.
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since they cannot always account for loop interactions. For example, suppose a
transfer function has the form

G =

[
1 φ(s)
0 1

]
.

The eigenvalues of G are independent of the off-diagonal term φ(s), so they provide
no indication of the fact that φ(s) may cause significant inter-loop coupling between
the second input and the first output. 5

The next example demonstrates that an LQG optimal controller may lead to a
closed loop that is arbitrarily close to instability.

Example 2.1.2. Consider the LQG problem with dynamics

[
ẋ1

ẋ2

]
=

[
1 1
0 1

] [
x1

x2

]
+

[
0
1

]
u +

[
1
1

]
w

y =
[

1 0
] [

x1

x2

]
+ v.

The vector x =
[

x1 x2

]′
is the state vector, u is the control input, y is the

measured output and w and v are independent Gaussian white noises with intensities
σ ≥ 0 and 1 respectively. The performance index is

J = E
{

lim
T→∞

1

T

∫ T

0

ρ(x1 + x2)
2 + u2 dt

}
,

in which E(·) is the expectation operator and ρ is a real nonnegative parameter.
The optimal controller is given by

u = ky,

in which

k =
αβ(1 − 2s)

s2 + (α + β − 2)s + 1 + αβ

with
α = 2 +

√
4 + ρ, β = 2 +

√
4 + σ.

Now consider the closed-loop system shown in Figure 2.3, in which κ is a gain with
nominal value +1.

A calculation shows that only the linear and constant terms in the closed-loop
characteristic polynomial are functions of κ and that these terms are given by

β + α − 4 + 2(κ − 1)αβ and 1 + (1 − κ)αβ
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Figure 2.3: LQG closed loop with variable gain.

respectively. A necessary condition for stability is that both these terms are positive.
This is easily seen to be true for the nominal loop κ = 1. However, for α, β = 4
(i.e., ρ = 0 and σ = 0), the necessary condition for stability is

1 − 1

8
< κ < 1 +

1

16
.

The situation deteriorates if α and β are large. For the case β = α, the necessary
condition for stability becomes

1 +
2

α2
− 1

α
< κ < 1 +

1

α2
.

The gain margin can therefore be made arbitrarily small by selecting α and β
(equivalently, ρ and σ) sufficiently large.

We conclude that LQG optimality does not guarantee stability robustness. 5

Main points of the section

1. Single-loop design techniques may be used for MIMO systems when
the cross-coupling is relatively weak.

2. The eigenvalues of the open-loop plant G may be used to assess
the stability of the nominal closed-loop system. Despite this, the
eigenvalues of G do not give reliable information about the robust
stability or performance of the closed loop.

3. LQG optimality does not automatically ensure good robustness
properties. The robust stability of a LQG optimal closed loop must
be checked a posteriori. This fundamental drawback associated
with quadratic norm minimization methods was one of the triggers
that initiated research into infinity norm minimization approaches.

4. Robustness is a key feedback objective which must be addressed.
A set of robust stability (and robust performance) indicators for
multivariable systems is required. In this chapter, we will motivate
the use of singular values in this role.
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2.2 Singular values

The singular value decomposition (SVD) is one of the most important tools in mod-
ern numerical linear algebra and numerical analysis. Owing to the linear algebraic
nature of many control problems and the importance of the robust stability issue,
the singular value decomposition has found its way into control and system theory.
The aim of this section is to introduce the singular value decomposition and to ex-
amine some of the properties of singular values. Subsequent sections will show how
singular values may be used to analyze the robustness and performance of control
systems.

In order to avoid excessive notational clutter when dealing with vectors and
matrices, dimensions are only rarely mentioned explicitly. Whenever a sum of
matrices such as Q + R appears, it is assumed that the dimensions are compatible
for addition. A similar assumption is made in the case of matrix products. When
an inverse such as Q−1 is written, it is assumed that the matrix Q is square and
that the inverse exists.

2.2.1 The singular value decomposition

In this section we will establish some of the fundamental properties of the singular
value decomposition (SVD). Our first result ensures the existence of the SVD.

Lemma 2.2.1 For any m × p complex matrix Q, there exist m × m and p × p
unitary matrices Y and U , and a real matrix Σ, such that

Q = Y

[
Σ 0
0 0

]
U∗, (2.2.1)

in which Σ = diag(σ1, . . . , σr) with σ1 ≥ σ2 ≥ . . . ≥ σr > 0 and min(m, p) ≥ r.
When Q is real, Y and U may be chosen orthogonal. Expression (2.2.1) is called a
singular value decomposition (SVD) of Q.

Proof. A proof appears in many places—see Stewart [198] for example.

Since σ1, σ2, . . . , σr are the positive square roots of the positive eigenvalues of
Q∗Q or QQ∗, they are uniquely determined by Q. All the nonnegative square roots
of the eigenvalues of Q∗Q will be called the singular values of Q:

σ1, σ2, . . . , σr > 0, while σr+1 = . . . = σp = 0. (2.2.2)

The set of singular values, the maximum singular value and the minimum singular
value of Q will be denoted by

σ(Q) = {σi : i = 1, . . . , p} (2.2.3)

σ(Q) = σ1 (2.2.4)

σ(Q) = σp. (2.2.5)
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Since Y and U are nonsingular, the rank of Q is the same as that of Σ, which is
equal to the number of nonzero singular values:

rank(Q) = r.

A matrix Q has no zero singular values (i.e., σ(Q) > 0) if and only if Q has full
column rank. When Q is square, σ(Q) > 0 if and only if Q is nonsingular. In this
case Q−1 = UΣ−1Y ∗ and the singular values of Q−1 are σ−1

r , σ−1
r−1, . . . , σ

−1
1 . In

particular

σ(Q−1) =
1

σ(Q)
.

To give the SVD an operator theoretic interpretation, we regard the matrix Q as a
linear map from the vector space C

p into the vector space C
m, defined by

Q : C
p 7→ C

m

: u 7→ Qu.

The operator theoretic interpretation of a matrix is important in the analysis of the
input-output properties of system transfer functions. Suppose ui and yi denote the
columns of the unitary matrices U and Y in the SVD (2.2.1). Then the SVD of Q
may be written in the form of the dyadic expansion

Q =

r∑

i=1

σiyiu
∗
i .

Since U is unitary, u∗
i uj = δij (the Kronecker delta) and it follows that uj is mapped

into σjyj by Q:

Quj =

(
r∑

i=1

σiyiu
∗
i

)
uj = σjyj .

We may therefore regard the singular value σj as a dilation or gain factor for the
matrix Q restricted to the one-dimensional subspace spanned by uj .

The maximum singular value σ(Q) and the minimum singular value σ(Q) play
a particularly important role in our analysis and are given by the identities

σ(Q) = max
‖u‖=1

‖Qu‖ (2.2.6)

σ(Q) = min
‖u‖=1

‖Qu‖, (2.2.7)

in which the vector norm is the Euclidean norm. Thus σ(Q) and σ(Q) are respec-
tively the maximum gain and the minimum gain of the matrix Q.

To verify (2.2.6) and (2.2.7), note that

‖Qu‖2 = u∗UΣY ∗Y ΣU∗u

= x∗Σ2x
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where x = U∗u. Since ‖x‖ = ‖u‖, it follows that

max
‖u‖=1

‖Qu‖ = max
‖x‖=1

‖Σx‖.

Now

‖Σx‖2 =

p∑

i=1

σ2
i |xi|2,

subject to ‖x‖2 = 1, is maximized by setting x1 = 1 and xi = 0 for all i 6= 1 and is
minimized by setting xp = 1 and xi = 0 for all i 6= p. This verifies that (2.2.6) and
(2.2.7) hold.

Identities (2.2.6) and (2.2.7) are in fact special cases of a general minimax char-
acterization of singular values:

σi(Q) = min
dim(S)=p−i+1

max
u∈S

‖u‖=1

‖Qu‖ (2.2.8)

= max
dim(S)=i

min
u∈S

‖u‖=1

‖Qu‖, (2.2.9)

in which Q is m × p (see [198]). Identities (2.2.6) and (2.2.7) follow from (2.2.8)
and (2.2.9) by setting i = 1 and i = p.

The identity (2.2.6) implies that σ(Q) is the norm of the operator Q induced by
the Euclidean norm:

σ(Q) = ‖Q‖ (2.2.10)

= max
‖u‖=1

‖Qu‖

= max
u6=0

‖Qu‖
‖u‖ .

It is easy to show that ‖Q‖ is indeed a norm using the properties of the Euclidean
norm on C

m and C
p:

1. ‖Q‖ ≥ 0 is obvious, and ‖Q‖ = 0 ⇔ ‖Qu‖ = 0 ∀u ⇔ Q = 0.

2. Let α ∈ C. Then ‖αQ‖ = max‖u‖=1 ‖αQu‖ = max‖u‖=1 |α|‖Qu‖ = |α|‖Q‖.

3. ‖Q + R‖ = max‖u‖=1 ‖Qu + Ru‖ ≤ max‖u‖=1(‖Qu‖ + ‖Ru‖) ≤ ‖Q‖ + ‖R‖.
Thus

‖Q + R‖ ≤ ‖Q‖ + ‖R‖. (2.2.11)

In addition to these three properties, which all norms must share, induced norms
satisfy
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4. The submultiplicative property:

‖QR‖ ≤ ‖Q‖‖R‖. (2.2.12)

To prove this, note that if R = 0 the inequality is trivial. Otherwise, for
R 6= 0, we have

‖QR‖ = max
‖u‖=1

‖QRu‖

= max
‖u‖=1

(‖QRu‖
‖Ru‖ ‖Ru‖

)

≤ max
v 6=0

‖Qv‖
‖v‖ max

‖u‖=1
‖Ru‖

= ‖Q‖‖R‖.

2.2.2 Singular value inequalities

Using fact that the maximum singular value defines an induced norm, we have the
following inequalities:

σ(Q + R) ≤ σ(Q) + σ(R) (2.2.13)

σ(QR) ≤ σ(Q)σ(R). (2.2.14)

These inequalities and some elementary consequences of them are fundamental to
the singular value analysis of feedback systems.

Lemma 2.2.2

|σ(Q) − σ(R)| ≤ σ(Q + R) ≤ σ(Q) + σ(R) (2.2.15)

σ(Q)σ(R) ≤ σ(QR) ≤ σ(Q)σ(R) (2.2.16)

max{σ(R) − σ(Q), σ(Q) − σ(R)} ≤ σ(Q + R) ≤ σ(Q) + σ(R) (2.2.17)

σ(Q)σ(R) ≤ σ(QR) ≤ σ(Q)σ(R). (2.2.18)

Proof. The right-hand inequality in (2.2.15) is just (2.2.13). The left-hand
inequality follows by replacing Q and R with Q+R and −R respectively in (2.2.13).
In the same way, we can replace Q and R with Q+R and −Q respectively in (2.2.13).

The right-hand inequality in (2.2.16) follows from (2.2.14). For the left-hand
inequality we argue as follows:

σ(QR) = max
‖u‖=1

‖QRu‖

= max
‖u‖=1,Ru6=0

(‖QRu‖
‖Ru‖ ‖Ru‖

)
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(as the maximum must occur for Ru 6= 0)

≥ min
Ru6=0

‖QRu‖
‖Ru‖ max

‖u‖=1
‖Ru‖

≥ σ(Q)σ(R).

The right-hand inequality in (2.2.17) follows from (2.2.7) as follows:

σ(Q + R) = min
‖u‖=1

‖Qu + Ru‖

≤ min
‖u‖=1

(‖Qu‖ + ‖Ru‖)

≤ min
‖u‖=1

‖Qu‖ + max
‖u‖=1

‖Ru‖

= σ(Q) + σ(R).

The left-hand inequality follows by replacing Q and R with Q+R and −R, or Q+R
and −Q, respectively in the right-hand inequality.

For (2.2.18), first consider the case σ(QR) = 0. The right-hand inequality is
trivial and σ(QR) = min‖u‖=1(QRu) implies there is a u 6= 0 such that Ru = 0, or
a v 6= 0 such that Qv = 0, so σ(Q)σ(R) = 0 and the left-hand inequality is verified.
Assume therefore that σ(QR) > 0 (which implies that σ(R) > 0). Then

σ(QR) = min
‖u‖=1

‖QRu‖

= min
‖u‖=1

‖QRu‖
‖Ru‖ ‖Ru‖

≥ min
‖v‖=1

‖Qv‖ min
‖u‖=1

‖Ru‖

= σ(Q)σ(R),

which proves the left-hand inequality. For the right-hand inequality, we argue

σ(QR) = min
‖u‖=1

‖QRu‖

= min
‖u‖=1

‖QRu‖
‖Ru‖ ‖Ru‖

≤ max
‖v‖=1

‖Qv‖ min
‖u‖=1

‖Ru‖

= σ(Q)σ(R).

There are similar inequalities for the other singular values which can be derived
from the identities (2.2.8) and (2.2.9). It may be shown that the following identities
hold whenever the indices are defined:

σi+j+1(Q + R) ≤ σi+1(Q) + σj+1(R)

σi+j+1(QR) ≤ σi+1(Q)σj+1(R).
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Our next corollary shows that the minimum singular value of a square matrix
gives a measure of “closeness to singularity”.

Corollary 2.2.3 Let Q and R be p × p complex matrices and suppose also that Q
is nonsingular. Then

σ(R) < σ(Q) ⇒ (Q + R) is nonsingular (2.2.19)

min
R : det(Q+R)=0

σ(R) = σ(Q). (2.2.20)

Proof. Suppose σ(R) < σ(Q). Then (2.2.17) implies σ(Q+R) ≥ σ(Q)−σ(R) > 0.
Therefore Q + R is nonsingular.

If R is such that det(Q + R) = 0, then σ(R) ≥ σ(Q) by (2.2.19). Consequently

min
det(Q+R)=0

σ(R) ≥ σ(Q).

It remains to show that the bound is attained by some R with σ(R) = σ(Q). Let Q
have SVD Q = Y ΣU∗ and set R = −σpypu

∗
p where yp and up are the last columns

of Y and U respectively. Clearly σ(R) = σ(Q) and Q + R is singular.

Main points of the section

1. The set of columns of the singular-vector matrices U and Y define
orthogonal bases for the domain C

p and range C
m of Q. For this

choice of bases, the map Q takes the jth basis vector uj of C
p to

a vector lying along the direction of the jth basis vector yj of C
m.

The corresponding singular value σj can be regarded as a dilation
(or gain) factor for the restricted map Q|uj

.

2. σ(Q) and σ(Q) are the minimum and maximum gains of the matrix
Q.

3. ‖Q‖ = σ(Q) is the norm of the operator Q induced by the Euclidean
norm. Induced norms have the submultiplicative property ‖QR‖ ≤
‖Q‖‖R‖.

4. The maximum and minimum singular values of a sum or product of
matrices are bounded above and below by simple formulas involv-
ing the maximum and minimum singular values of the individual
matrices.

5. The minimum singular value of a square matrix is a measure of the
distance from that matrix to one which is singular.
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2.3 Singular values and the sensitivity operator

In his classic treatise on feedback amplifier design, Bode analyzed the sensitivity of
closed-loop systems to variations in the constituent elements of the loop. He showed
that the sensitivity of the closed-loop system to variations in the plant is governed
by the sensitivity function. If the sensitivity function is less than one, he concluded
that the feedback system is less sensitive to plant variations than the open-loop
system. In general, the “robustness” of the closed-loop system to plant variations is
improved by making the sensitivity function small. We now show that the singular
values of the sensitivity operator have a role to play in generalizing these ideas to
the multivariable setting.

The sensitivity of a quantity α to changes in a quantity β is defined to be

Sα
β =

∂α

∂β

β

α
,

which is a measure of the relative (or percentage) change in α due to a relative (or
percentage) change in β.

f K Gt
- - - -

6

ycr

Figure 2.4: Unity feedback loop.

If the controller and plant in the unity feedback loop shown in Figure 2.4 are
described by scalar transfer functions k and gt, we may evaluate the sensitivity
of the closed-loop transfer function h that maps r to yc to changes in the plant
transfer function gt. Since

h =
gtk

1 − gtk
,

the sensitivity of the closed-loop transfer function to changes in the plant is

sh
g =

∂h

∂gt

gt

h

=
k

(1 − gtk)2
1 − gtk

k

=
1

1 − gtk
.

Plant variations will have a small or large effect on the closed-loop transfer function
according to the size of the sensitivity function sh

g .
To generalize this analysis to multivariable loops, consider the two control

schemes shown in Figures 2.4 and 2.5. Since
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f K

G

Gt

equivalent
controller

- - - -
6

¾

r yo

Figure 2.5: The equivalent open loop.

yc = GtK(I − GtK)−1r

yo = GtK(I − GK)−1r,

it follows that yc = yo for all r if the system Gt and the model G are identical.
Suppose the plant Gt depends on a parameter δ, so that Gt becomes Gt(δ).

The effect of changes in δ on yc and yo can now be evaluated:

∂yc

∂δ
= (I − GtK)−1 ∂Gt

∂δ
K(I − GtK)−1,

while
∂yo

∂δ
=

∂Gt

∂δ
K(I − GK)−1.

Assume now that the model G is obtained by using a nominal value for δ, so that
G = Gt(δnom). Then

∂yc

∂δ

∣∣∣∣
δ=δnom

= (I − GK)−1 ∂yo

∂δ

∣∣∣∣
δ=δnom

.

This means that the sensitivity operator

S = (I − GK)−1 (2.3.1)

determines how changes in the plant affect the output of the closed-loop scheme
given changes in the nominally equivalent open-loop scheme. Again, the closed-
loop scheme will be more or less sensitive to changes in the plant depending on the
“size” of S.

Using (2.2.6) and (2.2.7) we have
∥∥∥∥

∂yc(jω)

∂δ

∥∥∥∥
δ=δnom

≤ σ
(
S(jω)

) ∥∥∥∥
∂yo(jω)

∂δ

∥∥∥∥
δ=δnom

and ∥∥∥∥
∂yc(jω)

∂δ

∥∥∥∥
δ=δnom

≥ σ
(
S(jω)

) ∥∥∥∥
∂yo(jω)

∂δ

∥∥∥∥
δ=δnom

.
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The closed-loop scheme is uniformly less sensitive to changes in system parameters
than the open-loop scheme when σ

(
S(jω)

)
< 1 and is uniformly more sensitive

when σ
(
S(jω)

)
> 1. If neither of the above inequalities are satisfied, the closed-

loop scheme will only offer a reduction in sensitivity for signals in the subspace (of
the output space) spanned by the singular vectors corresponding to the singular
values that are less than one.

A feedback design objective might be to ensure that

σ
(
S(jω)w(jω)

)
< 1 (2.3.2)

for some scalar valued frequency dependent weighting function w. The weighting
function should satisfy |w(jω)| ≥ 1 over the range of frequencies in which sensitivity
reduction is desired. The objective (2.3.2) ensures that σ

(
S(jω)

)
< 1 over the range

of frequencies of interest.
Using (2.2.17), it follows that

σ
(
S(jω)w(jω)

)
< 1 ⇔ σ

(
I − G(jω)K(jω)

)
> |w(jω)|

⇒ σ
(
G(jω)K(jω)

)
> |w(jω)| − 1. (2.3.3)

Therefore, good sensitivity reduction (i.e., |w(jω)| À 1 in (2.3.2)) demands high
loop gain (σ

(
G(jω)K(jω)

)
À 1). Also,

σ
(
G(jω)K(jω)

)
> |w(jω)| + 1 ⇒ σ

(
S(jω)w(jω)

)
< 1, (2.3.4)

which shows that high loop gain ensures good sensitivity reduction.
In the above, we introduced the sensitivity operator via a special parametric

sensitivity analysis. As we will discover as we progress through the book, the
sensitivity operator also has an important role to play in the assessment of other
feedback objectives such as disturbance rejection and closed-loop tracking.

2.4 Robust stability analysis

Control systems are designed using mathematical models that are only approxi-
mate representations of the real hardware. Since discrepancies between a system
and its mathematical representation may lead to a violation of some performance
specification, or even closed-loop instability, accounting for modelling errors is nec-
essarily an integral part of the design process. The modelling of a physical system
is therefore only complete when the modelling errors have been quantified. By their
very nature, modelling errors defy precise mathematical description and must be
quantified in terms of bounds or probability distributions of some type.

In this section, we analyze the stability robustness of closed-loop systems with
respect to modelling errors quantified in terms of singular values. The treatment
given in this chapter is restricted to systems described by rational matrix func-
tions with real coefficients. A more general situation is considered following the
introduction of the small gain theorem in Chapter 3.
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The difference between the model and the true system may be represented in
several ways. The simplest is the absolute or additive representation

Gt = G + A,

in which G is the nominal model, Gt represents the true system and A is an additive
perturbation.

The model error may also be represented in the relative or multiplicative form

Gt = (I + ∆1)G,

so that ∆1 = (Gt − G)G−1 is the modelling error relative to the nominal model.
An alternative multiplicative representation is to take the model error relative to
the true system, so that ∆2 = (Gt − G)G−1

t , which gives

Gt = (I − ∆2)
−1G.

In each case, the size of the modelling error at any frequency is determined by its
maximum singular value at that frequency. Robust stability may be quantified in
terms of the maximum modelling error that will not destabilize a nominally stable
closed loop.

If G and Gt are the same in each case, the various representations are related
by the identities

A = ∆1G

A = (I − ∆2)
−1∆2G

≈ ∆2G (for σ(∆2) ¿ 1)

∆2 = I − (I + ∆1)
−1

≈ ∆1 (for σ(∆1) ¿ 1).

The various representations of modelling error are therefore equivalent and any
particular selection is purely a matter of convenience. For example, if σ

(
∆1(jω)

)
is

small, the model is accurate in absolute terms when σ
(
G(jω)

)
is small also, since

σ(A) = σ(∆1G)

≤ σ(∆1)σ(G).

On the other hand, if σ
(
A(jω)

)
is small, the model is accurate in relative terms

when σ
(
G(jω)

)
is large since

σ(∆1) = σ(AG−1)

≤ σ(A)σ(G−1)

=
σ(A)

σ(G)
.
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It may be the case that different representations of modelling error are useful over
different frequency ranges.

In contrast to Section 2.3, the modelling error here is not parametric and is
usually referred to as an unstructured modelling error or as unstructured uncer-
tainty. Its main purpose is to allow for high-frequency phenomena that are poorly
modelled or completely neglected. Neglected high-frequency mechanical resonance
is a typical example. Parametric errors also induce modelling errors which may be
represented in the unstructured way considered in this section. However, conclu-
sions about parametric errors that are based on a nonparametric analysis may be
conservative, since the parametric nature of the error is not taken into account.

The robust stability analysis we will present here is based on a Nyquist type
stability theorem.

2.4.1 A Nyquist stability theorem

Following a multivariable version of the basic internal stability lemma, a Nyquist
type test for nominal closed-loop stability will be given in terms of the determinant
of the return-difference matrix.

Definition 2.4.1 Suppose G and K as given in Figure 2.1 are proper4 rational
transfer function matrices and let H denote the closed-loop transfer function matrix
mapping

[
w′ d′

]′
to

[
u′ y′ ]′

. Then

1. The feedback loop is well-posed if H is proper;

2. The feedback loop is internally stable if H is stable.

Lemma 2.4.1 Suppose G and K in Figure 2.1 are proper rational transfer function
matrices. Then the feedback loop shown in Figure 2.1 is well-posed if and only if
det

(
I − G(∞)K(∞)

)
6= 0 and is internally stable if and only if

H =

[
I −K

−G I

]−1

(2.4.1)

is stable.

Proof. From Figure 2.1 we obtain
[

w
d

]
=

[
I −K

−G I

] [
u
y

]
,

which shows that the closed-loop transfer function matrix H mapping
[

w′ d′
]′

to
[

u′ y′ ]′
is given by (2.4.1). In addition,

det

[
I −K

−G I

]
= det

[
I 0

−G I − GK

]
det

[
I −K

0 I

]

= det(I − GK).

4A rational transfer function matrix is proper if it is bounded at infinity.
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Therefore H will be proper if and only if det
(
I − G(∞)K(∞)

)
6= 0. We conclude

that the loop is internally stable if and only if H is stable.

Theorem 2.4.2 Let G and K in Figure 2.1 be given proper rational transfer func-
tions that form a well-posed closed loop, and let G and K have nG and nK poles
(counting multiplicities) respectively in the closed-right-half plane (CRHP). Now
suppose that DR is the Nyquist “D” contour of radius R and with semi-circular
indentations of radius ε into the left-half plane whenever G or K has a pole on the
imaginary axis.5

The feedback loop of Figure 2.1 is internally stable if and only if the Nyquist
diagram Γ = det

(
I−GK(s)

)
, s ∈ DR, makes nG +nK anticlockwise encirclements

of the origin (without crossing it).

Proof. Let G = ND−1 and K = PQ−1 be right coprime polynomial matrix
fraction descriptions of G and K, so that nG and nK are the number of CRHP
zeros of det(D) and det(Q) respectively.6 The closed-loop transfer function matrix
H in (2.4.1) has right matrix fraction description

[
I −K

−G I

]−1

=

[
D 0
0 Q

] [
D −P

−N Q

]−1

, (2.4.2)

which is coprime as a consequence of the coprimeness of N and D and of P and
Q. Hence, the poles of the closed-loop transfer function matrix H are the zeros of
the polynomial

φ = det

[
D −P

−N Q

]

= det

[
I 0

−G I − GK

]
det

[
D −P

0 Q

]

= det(D) det(Q) det(I − GK).

Since the factorization in (2.4.2) is coprime, no zero of det(D) in DR or det(Q) in
DR can be a zero of φ in DR. Consequently, every zero of φ in DR is a zero of
det(I − GK) in DR and every pole of det(I − GK) in DR is a zero of det(D) or
a zero of det(Q) in DR since φ is polynomial. Thus, the closed loop has no poles
in DR if and only if det(I − GK) has no zeros in DR and exactly nG + nK poles
there. By applying the Principle of the Argument to det(I − GK) on the Nyquist
contour DR, we conclude that the closed loop has no poles in DR if and only if
det

(
I −GK(s)

)
, s ∈ DR, makes nG +nK anticlockwise encirclements of the origin

(without crossing it).

5In this, and all other Nyquist type theorems, we assume that DR is given a clockwise orienta-
tion and that R is chosen large enough to contain the CRHP poles of G, K and of the closed-loop
transfer function matrix H. The parameter ε must be such that none of the left-half-plane poles
of G, K or H are contained within DR.

6See, for example, Kailath [105].
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2.4.2 Additive model error

Consider the feedback configuration shown in Figure 2.6, in which G is a nominal
system transfer function, A is an additive perturbation and K is a controller selected
to ensure the internal stability of the nominal closed loop. We would like to know
how large σ

(
A(jω)

)
can become before the closed loop becomes unstable.

f
f

f
A

G

K

- - -

-

?

?¾¾

6

Figure 2.6: Feedback loop with additive model error.

Since the nominal closed loop (i.e., when A = 0) is assumed stable, the roots of
det(I − GK) all lie in the open-left-half plane. Thus

det
(
I − GK(jω)

)
6= 0

for all real ω. Now suppose that A brings the perturbed system to the stability
boundary, so that for some frequency ω0

0 = det
(
I − GK(jω0) − AK(jω0)

)

= det
((

I − AK(I − GK)−1(jω0)
)(

I − GK(jω0)
))

= det
(
I − AK(I − GK)−1(jω0)

)
det

(
I − GK(jω0)

)
,

which is equivalent to

0 = det
(
I − AK(I − GK)−1(jω0)

)

since det
(
I − GK(jω0)

)
6= 0. By Corollary 2.2.3, this situation cannot arise if

σ
(
AK(I − GK)−1(jω)

)
< 1 for all real ω. (2.4.3)

This inequality still depends on the detailed structure of A, which is unknown.
However, the inequality (2.4.3) is implied by

σ
(
A(jω)

)
<

1

σ
(
K(I − GK)−1(jω)

) for all real ω (2.4.4)
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and one is led to the conjecture that this is a sufficient condition on the size of
σ
(
A(jω)

)
for the closed-loop stability of the perturbed system. The next theorem

shows that this is indeed the case.

Theorem 2.4.3 Let G and K in Figure 2.6 be given rational transfer function
matrices. Then the feedback loop of Figure 2.6 is internally stable if the following
conditions are satisfied:

1. The nominal closed-loop system is internally stable;

2. The model error A is a rational transfer function matrix such that G and
G + A have the same number of poles in the closed-right-half plane;

3. The model error A satisfies the bound

σ
(
A(s)

)
<

1

σ
(
K(I − GK)−1(s)

) for all s ∈ DR.

Furthermore, there exists a rational transfer function matrix A satisfying Condi-
tion 2 and

σ
(
A(jω)

)
≤ 1

σ
(
K(I − GK)−1(jω)

) for all real ω

such that the closed loop is not internally stable.

Proof. Let DR be a Nyquist contour as in Theorem 2.4.2. Since the nominal
closed loop is stable, the curve Γ0 defined by

Γ0 = det
(
I − GK(s)

)
, s ∈ DR,

makes nG + nK anticlockwise encirclements of the origin. By Condition 2, the
perturbed system will have no poles in DR provided the curve Γ defined by

Γ = det
(
I − (G + A)K(s)

)
, s ∈ DR, (2.4.5)

also has nG +nK anticlockwise encirclements of the origin. By an elementary result
from algebraic topology, the two curves Γ0 and Γ will encircle the origin the same
number of times if one curve may be continuously deformed into the other without
crossing the origin. Consider the curve

Γε = det
(
I − (G + εA)K(s)

)
for s ∈ DR and ε ∈ [0, 1].

Since the determinant is a continuous function of ε, Γ0 deforms continuously into Γ
as ε varies from 0 to 1. We therefore need to show that Γε does not cross the origin
for any ε ∈ [0, 1]. That is, that

det
(
I − (G + εA)K(s)

)
6= 0 for all s ∈ DR and all ε ∈ [0, 1].
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Since I − GK(s) is nonsingular on DR, and since

I − (G + εA)K =
(
I − εAK(I − GK)−1

)
(I − GK),

it follows that the closed loop will have no poles in DR provided

det
(
I − εAK(I − GK)−1(s)

)
6= 0 (2.4.6)

for all s ∈ DR and for all ε ∈ [0, 1]. From Condition 3 and (2.2.16),

σ
(
εAK(I − GK)−1(s)

)
< 1 for s ∈ DR and ε ∈ [0, 1].

Corollary 2.2.3 therefore implies that (2.4.6) holds for all s ∈ DR and for all ε ∈ [0, 1].
The loop is therefore internally stable.

To establish the existence of a destabilizing perturbation with the required prop-
erties, let

ω0 = arg min
ω

1

σ
(
K(I − GK)−1(jω)

) (2.4.7)

and let

K(I − GK)−1(jω0) =

m∑

i=1

σiuiy
∗
i

be an SVD. Let A = σ1
−1y1u

∗
1, which is a constant, but complex, matrix. Then

σ(A) = σ−1
1 and I − AK(I − GK)−1(jω0) is singular. To realize the destabilizing

perturbation as a physical system, set

y1 =




a1e
iθ1

...
ameiθm


 and u∗

1 =
[

b1e
iφ1 . . . bmeiφm

]
,

in which the ai’s and bi’s are real numbers. The signs of these numbers are selected
to ensure that θi, φi ∈ [0,−π) for i = 1, 2, . . . ,m. It is now possible to find positive

numbers αi and βi so that θi is the phase of
(

jω0−αi

jω0+αi

)
and φi is the phase of

(
jω0−βi

jω0+βi

)
. Setting

A = σ−1
1




a1

(
s−α1

s+α1

)

...

am

(
s−αm

s+αm

)




[
b1

(
s−β1

s+β1

)
. . . bm

(
s−βm

s+βm

) ]

gives A stable with A(jω0) = A = σ−1
1 y1u

∗
1. Furthermore, σ

(
A(jω)

)
= σ−1

1 for all
real ω. Consequently, by the choice of ω0 in (2.4.7),

σ
(
A(jω)

)
≤ 1

σ
(
K(I − GK)−1(jω)

)
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for all ω, with equality at ω = ω0.
The instability of the loop under the influence of this perturbation follows from

the fact that the closed loop will have imaginary-axis poles at ±jωo.

If G has right-half-plane poles, the result allows them to be perturbed, but no
poles are allowed to cross the imaginary axis (in either direction). That is, G must
contain exactly as many unstable poles as the true system G + A.7

In the scalar case, with k = 1, Condition 3 says that robustness to additive
modelling error degrades in proportion to the distance between the Nyquist diagram
of g and the critical +1 point. If

1

|1 − g(jω)| < γ

for all real ω and γ > 0, the Nyquist diagram of g cannot enter the circle of radius
1/γ with center at +1 (see Figure 2.7).

−1 1

imaginary
axis

real
axis

| 1
1−s | = γ

| s
1−s | = γ

guaranteed
phase
margin

2 sin−1( 1
2γ )

Figure 2.7: The circles | 1
1−s | = γ and | s

1−s | = γ.

In the case that G is stable, K = 0 will lead to a nominally stable closed loop.
In this case the quantity σ

(
K(I −GK)−1

)
is zero and the robust stability margin

is arbitrarily large; this is a trivial illustration of low controller gain leading to good

7A robustness theorem that allows a different number of unstable poles in the nominal model
and the true system will be presented in Chapter 12.
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robustness margins. In the general case it may be shown using Lemma 2.2.2 that

σ
(
K(I − GK)−1(jω)

)
≤ γ ⇒ σ

(
K(jω)

)
≤ γ

1 − γσ
(
G(jω)

) (2.4.8)

if 1 − γσ
(
G(jω)

)
> 0

and

σ
(
K(I − GK)−1(jω)

)
≤ γ ⇐ σ

(
K(jω)

)
≤ γ

1 + γσ
(
G(jω)

) . (2.4.9)

Verifiction of these implications is requested in an exercise. The first inequality
shows that if the robust stability margin is large, (i.e., the closed loop is stable for
all perturbations satisfying Condition 2 in Theorem 2.4.3) and σ(A) < γ−1 for a
small value of γ, then the controller gain is necessarily small. Conversely, it follows
from the second inequality that a low controller gain ensures good robust stability
margins (provided such a controller can stabilize the nominal plant).

2.4.3 Multiplicative model error

A disadvantage of the additive representation of modelling error is that the er-
ror in G is not the error in the compensated loop-gain operator GK. This is
because (G + A)K 6= GK + A. It is therefore difficult to envisage the effect
of the additive perturbation A on GK. Multiplicative representations of model
error do not suffer from this disadvantage because a multiplicative perturbation
on G is also a multiplicative perturbation on GK. To see this we observe that(
(I + ∆1)G

)
K = (I + ∆1)GK and

(
(I − ∆2)

−1G
)
K = (I − ∆2)

−1GK.

f f
f

G

K

∆1

- - -

?¾¾

6

-

?

Figure 2.8: Loop with multiplicative model error.

Theorem 2.4.4 Let G and K be given rational transfer function matrices. Then
the feedback loop of Figure 2.8 is internally stable if the following conditions are
satisfied:

1. The nominal closed loop is internally stable;



2.4 ROBUST STABILITY ANALYSIS 45

2. The model error ∆1 is a rational transfer function matrix such that G and
(I + ∆1)G have the same number of poles in the closed-right-half plane;

3. The model error ∆1 satisfies

σ
(
∆1(s)

)
<

1

σ
(
GK(I − GK)−1(s)

) for all s ∈ DR. (2.4.10)

Furthermore, there exists a rational ∆1 that satisfies Condition 2 and

σ
(
∆1(jω)

)
≤ 1

σ
(
GK(I − GK)−1(jω)

) for all real ω

such that the closed loop is not stable.

Proof. The proof is similar to that of Theorem 2.4.3 and makes use of the identity

I − (I + ε∆1)GK =
(
I − ε∆1GK(I − GK)−1

)
(I − GK).

The details are requested as an exercise.

In the scalar case, Condition 3 says that robustness to multiplicative perturba-
tions degrades in inverse proportion to | q

1−q |, with q = gk, which has an M-circle

interpretation. Bounds on the gain and phase margins can be obtained from this
objective. Suppose

|q(jω)|
|1 − q(jω)| < γ (2.4.11)

for some γ > 0. Then the Nyquist diagram of q cannot cross the circle defined by
|s| = γ|1 − s|. Since this circle intersects the real axis at γ/(γ + 1) and γ/(γ − 1),
the loop will be stable for all gains in the range (1+ 1

γ , 1− 1
γ ). In other words, if we

consider the gain variations to be a multiplicative model error, (2.4.11) and Theo-
rem 2.4.4 will guarantee closed-loop stability provided the relative gain variation is
less than ±1/γ. To determine the phase margin, we consider the intersection of the
circles |s| = 1 and |s| = γ|1 − s|. If γ < 1/2, |s| = γ|1 − s| implies |s| < 1, so the
circles |s| = γ|1 − s| and |s| = 1 do not intersect and the phase margin is infinite.
Otherwise, for γ ≥ 1/2, the circles |s| = 1 and |s| = γ|1− s| intersect at two points
e±jθ (see Figure 2.7). By the cosine rule,

1

γ2
= 2(1 − cos θ)

= 4 sin2(θ/2).

The phase margin θm therefore satisfies

|θm| > 2 sin−1(
1

2γ
) (2.4.12)
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Figure 2.9: Guaranteed phase margin as a function of γ.

for γ ≥ 1/2. A plot of θm versus γ is shown in Figure 2.9.
Once again, the bound (2.4.10) is arbitrarily large if GK = 0. Otherwise, with

Q = GK,

σ
(
Q(I − Q)−1(jω)

)
≤ γ






⇒ σ
(
Q(jω)

)
≤ γ

1−γ if γ < 1

⇐ σ
(
Q(jω)

)
≤ γ

1+γ .

(2.4.13)

The first inequality shows that if γ ¿ 1, the loop gain σ
(
Q(jω)

)
is small.

Notice, however, that γ < 1 is not achievable if the open-loop is unstable, since the
perturbation ∆1 = −I will open the feedback loop. The second inequality says that
good robustness margins will be guaranteed if it is possible to stabilize the nominal
plant with a controller that results in σ

(
Q(jω)

)
being small.

The last theorem of this section considers multiplicative model error represen-
tations of the form Gt = (I − ∆2)

−1G.

Theorem 2.4.5 Let G and K be given rational transfer function matrices. Then
the feedback loop of Figure 2.10 is internally stable if the following conditions are
satisfied:

1. The nominal closed loop is internally stable;
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Figure 2.10: Loop with feedback multiplicative model error.

2. The model error ∆2 is a rational transfer function matrix such that G and
(I − ∆2)

−1G have the same number of poles in the closed-right-half plane;

3. The model error ∆2 satisfies

σ
(
∆2(s)

)
< min{1, σ

(
(I − GK)(s)

)
} for all s ∈ DR. (2.4.14)

(Note that σ
(
I − GK(s)

)
=

1

σ
(
S(s)

) .)

Furthermore, there exists a rational ∆2 satisfying Condition 2 and

σ
(
∆2(jω)

)
≤ min{1, σ

(
(I − GK)(jω)

)
} for all real ω

such that the closed loop is not stable.

Proof. Note that σ
(
∆2(s)

)
< 1 and Corollary 2.2.3 ensures that

(
I − ε∆2(s)

)

is nonsingular for all ε ∈ [0, 1]. This means that
(
I − ε∆2(s)

)
has no zeros on

the Nyquist DR contour. The proof now proceeds along lines similar the proof of
Theorem 2.4.3 by making use of the identity

I − (I − ε∆2)
−1Q = (I − ε∆2)

−1(I − Q − ε∆2).

The details are requested as an exercise.

In the scalar case, Condition 3 says that the robustness margin degrades in
proportion to the distance between the Nyquist diagram of q = gk and the critical
+1 point.

2.4.4 Examples

We will now illustrate the robust stability analysis by revisiting our two earlier
examples.
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Example 2.4.1. Consider the feedback loop shown in Figure 2.1 with K = −I
and

G =

[
7 8
6 7

] [ 1
s+1 0

0 2
s+2

] [
7 8
6 7

]−1

as in Example 2.1.1.

10-2

10-1

100

101

102

10-2 10-1 100 101 102 103

frequency (rad/s)

Figure 2.11: Singular value plots of 1/σ
(
GKS(jω)

)
(solid) and 1/σ

(
KS(jω)

)

(dashed).

Figure 2.11 shows singular value plots indicating the robust stability margins
for multiplicative (solid) and additive (dashed) perturbations. At 3 rad/s, these
curves drop down to a minimum value of 0.0612, indicating that a multiplicative or
additive perturbation of infinity norm 0.0612 could destabilize the loop.

To show that this system can be destabilized by a stable rational additive per-
turbation with σ

(
A(jω)

)
≤ 0.0612 for all real ω, we will construct such an additive

perturbation. Using the singular value decomposition of K(I − GK)−1(j3), we
obtain the perturbation

A = 0.0612

[
0.6886

−0.7252
(

s−0.0509
s+0.0509

)
] 

 −0.7851
(

s−0.0341
s+0.0341

)

−0.6194
(

s−0.0864
s+0.0864

)




′

using the techniques described in the proof of Theorem 2.4.3; the details are re-
quested in the exercises.
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It can be seen that A is stable, that σ
(
A(jω)

)
= 0.0612 and that A it is

destabilizing. The destabilization property follows from the fact that

I − AK(I − GK)−1(j3)

is singular. This means that the closed-loop system will have imaginary-axis poles
at ±j3.

The important point is that the singular values of closed-loop operators such as
K(I −GK)−1 and GK(I −GK)−1 give information about the ability of the loop
to tolerate modelling errors.

If we designed an optimally robust controller ignoring all other possible require-
ments, the solution would simply be K ≡ 0! 5

Example 2.4.2. In this example, we consider the design of optimally robust
controllers. We will examine optimal robustness with respect to an additive model
error representation, a multiplicative model error representation and then a combi-
nation of both. Our purpose is to illustrate the properties of controllers and closed
loops that are optimal with respect to these different model error representations.

The optimal robustness problem for the model error representations introduced
so far is only interesting if the plant is unstable. We therefore consider the unstable
system

g =
1

(s − 1)2
.

The fact that g is a simple scalar transfer function allows our insights to develop in
a familiar environment where Nyquist diagrams and criteria such as gain and phase
margins may be used.

Elementary considerations reveal that the loop will be unstable for any constant
gain controller and hence some form of dynamic compensation is required. Such a
compensator can easily be designed using classical control techniques. Our approach
is to optimize robustness with respect to certain model error representations.

Taking the additive model error representation first, we seek a controller that
stabilizes all plants gt = g + a with ‖a‖∞ < 1/γ and with γ minimized. This is
achieved by minimizing γ = ‖k(1 − gk)−1‖∞ over the class of all controllers that
stabilize the nominal loop.

Although a solution using the elementary maximum modulus principle argument
of Chapter 1 is no longer possible, we can make use of more advanced techniques

covered later in the book to show that γopt = 4
√

3 + 2
√

2 and that the optimal
controller is

ka =
4 − γopts

s + 3 +
√

2
.

This controller will stabilize the loop for all additive model errors a such that
‖a‖∞ < 1/γopt ≈ 0.1035. In the parlance of classical control, ka allows gain varia-
tions in the interval (0.85, 1.1), while the phase margin is 6.3◦. These are not good
margins and yet the controller is optimally robust! This apparent contradiction



50 MULTIVARIABLE FREQUENCY RESPONSE DESIGN

arises because gain and phase margins are indicators of robustness to certain mul-
tiplicative model errors. Optimal robustness with respect to additive model error
is not a good criterion if one is only interested in good gain and phase margins.

At high frequencies g(jω) ≈ 0 and so ‖k(1 − gk)−1‖∞ ≤ γ implies that
limω→∞ |k(jω)| ≤ γ. Thus, the additive robustness criterion limits the high-fre-
quency gain of the compensator. In effect, we have found a stabilizing controller
with a high-frequency gain limit.

We now turn our attention to optimizing robustness with respect to multiplica-
tive model errors. We seek a controller that stabilizes all plants gt = (1 + δ)g
such that ‖δ‖∞ < 1/γ with γ minimized. To achieve this, we minimize γ =
‖q(1 − q)−1‖∞, in which q = gk. Because the objective involves only q, and
not g or k separately, the optimization problem is relatively easy to solve.

We require the Nyquist diagram to encircle the +1 point anticlockwise twice,
while remaining in the region of the complex plane defined by |s/(1− s)| < γ. Note
that the circle |s/(1−s)| = γ has center γ2/(γ2−1), radius γ/(γ2−1) and intersects
the real axis at γ/(γ ± 1) (see Figure 2.7). It is therefore clear that we must have
γ > 1 in order that the Nyquist plot encircles +1. It is easy to see that for any
γ > 1, the Nyquist diagram of

q =
γ

γ2 − 1

((
1 + s

1 − s

)2

+ γ

)

is precisely the circle defined by |s/(1− s)| = γ and that it makes two anticlockwise
encirclements of the +1 point. The corresponding controller is

km =
γ

γ2 − 1

(
(s + 1)2 + γ(s − 1)2

)
,

which is not proper. If a proper controller is required, we may use km/(τs+1)2 with
τ sufficiently small. This illustrates an important feature of H∞ optimal control
designs. In this case, the objective requires that the Nyquist diagram be excluded
from an M-circle of some particular radius. The resulting optimum occurs when
the Nyquist diagram is tight against the M-circle boundary.

In this case, there is no minimum achievable value of γ and one can only approach
the greatest lower bound of 1.

Since gkm follows the circle |s/(1 − s)| = γ exactly, the allowable gain range is
[1 − 1/γ, 1 + 1/γ] and the phase margin is 2 sin−1( 1

2γ ). These impressive margins
should be viewed with some caution, however, because the controller has very high
gain at high frequencies and is therefore not implementable in practice. This phe-
nomenon occurs because the objective involves only the loop-gain function q = gk

and there is nothing in the optimization criterion to ensure the controller is reason-
able in any engineering sense.

We have seen that the additive robustness optimization problem places an ex-
plicit limit on the high-frequency controller gain, while the multiplicative version
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of the problem gives good gain and phase margins . In order to reap the benefits
associated with both problems, we will now represent the plant by

gt = (1 + δ1)g + δ2ε,

in which ε a design parameter. The modelling error is given by

gt − g =
[

δ1 δ2

] [
g

ε

]
,

and we will design a controller that accommodates ‖
[

δ1 δ2

]
‖∞ < γ−1 with

γ minimized. Since g is low pass, the multiplicative part of the model error rep-
resentation, δ1, will be emphasized at low frequencies where |g(jω)| À ε. The
additive part of the model error representation, δ2, will then come into play at high
frequencies.

Since 1 − gtk can be written as

(
1 −

[
δ1 δ2

] [
g

ε

]
k(1 − gk)−1

)
(1 − gk),

it follows that the objective will be achieved by minimizing

γ = sup
ω

σ

([
g

ε

]
k(1 − gk)−1

)
.

Note that this objective implies that ‖gk(1 − gk)−1‖∞ < γ and that ‖k(1 −
gk)−1‖∞ < γ/ε.

Taking ε = 1/10, the optimal value of γ is γopt = 2.38 and the optimal controller
is

k =
4.856 − 23.818s

s + 6.9049
.

The infinity norm bound means the loop will be stable for all multiplicative model
errors |δ1(jω)| < 1/γopt ≈ 0.4198 as well as all additive model errors |δ2(jω)| <
1/(10γopt) ≈ 0.04198. The multiplicative model error bound implies the loop will
be stable for gains in the range [0.5802, 1.4198] and that the phase margin is at least
±24◦.

It follows from the Nyquist diagram of gk shown in Figure 2.12 that the actual
stable operating gain range is (0.5731, 1.4241) and that the phase margin is 24.1◦.
Note that the low-frequency region of the Nyquist diagram is close to the 1/γopt

M-circle defined by |s/(1− s)| = 1/γopt. At the same time, the additive part of the
design criterion is limiting the controller gain to 10γopt = 23.82. 5

Main point of the section

Singular values can be used to generalize the classical intuition that
the distance to +1 (or −1 for a negative feedback sign convention) is a
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Figure 2.12: Compensated Nyquist diagram and the 1/γopt M-circle.

measure of robust stability. Theorems 2.4.3, 2.4.4 and 2.4.5 make these
notions precise in the context of additive, multiplicative and inverse
multiplicative model error representations respectively.

2.5 Performance analysis and enhancement

The stabilization of a system is only rarely the major reason for introducing feed-
back control. Indeed, in the case of stable plants, we have seen that feedback control
can only have a detrimental effect on the stability robustness of the system in the
sense we have discussed it. The most common reason for introducing feedback
control is the enhancement of performance in the presence of uncertainty. In this
context, performance enhancing goals include such things as disturbance attenua-
tion, sensitivity reduction, the reduction of nonlinear effects and command tracking
enhancement.

It is well known that the benefits of feedback control accrue from high gain and
it is also known that high gain exacerbates the danger of loop instability, actuator
saturation and sensor noise amplification. This conflict between the high- and low-
gain requirements is what makes control system design interesting (and difficult).
In broad terms, a feedback system designer will try to “shape” the loop gain as
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a function of frequency so that the low-frequency, high-gain requirements are met
without infringing on the high-frequency, low-gain limits imposed by plant model
errors, sensor errors and actuator limits.

f
ff s
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Gt
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Figure 2.13: Closed-loop system.

In this section, our aim is to analyze various performance criteria and limits
using singular values. The closed-loop configuration we will use for much of this
discussion is shown in Figure 2.13.

2.5.1 Disturbance attenuation

The signal d represents an exogenous disturbance such as a load variation or wind
gust that affects the output y of the system via a transfer function matrix Gd in
an undesirable way. The disturbance attenuation problem is to find some means of
reducing or eliminating the influence of d on the output y. Before embarking on the
design of a feedback controller, it is as well to note that the disturbance attenuation
problem may also be addressed by other means.

It may be possible to modify the system in such a way that the disturbance
is eliminated or reduced in magnitude: the effect of wind gusts may be reduced
by constructing a wind-break around the system. Unwanted induced signals in an
electronic circuit may be attenuated by careful component layout, grounding and
shielding. A well designed suspension system reduces the influence of road surface
irregularities on the occupants of an automobile.

If plant modifications are not possible (or practical), one could measure the
disturbance and compensate for its effect via a feedforward compensator F as shown
in Figure 2.14. In the open-loop situation with K = 0, the transfer function matrix
from d to y is Gd+GtF so that the effect of the disturbance may be eliminated if Gt

is square and has no right-half-plane zeros by choosing F = −G−1
t Gd. Complete

cancellation is not possible if Gt has right-half-plane zeros. In this case, the effect
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Figure 2.14: Disturbance attenuation via feedforward compensation.

of d may be reduced by making Gd + GtF small. Specifically,

σ
(
(Gd + GtF )(jω)

)
≤ γ

ensures that
‖y(jω)‖ ≤ γ‖d(jω)‖.

This gives rise to an optimization problem of the same type as the command re-
sponse optimization problem discussed in Section 1.2.

Finally, a feedback controller may be used to attenuate the output disturbance.
In this case, the transfer function matrix from d to y in Figure 2.14 is

(I − GtK)−1 (Gd + GtF )

and we see that the sensitivity operator

St = (I − GtK)−1 (2.5.1)

plays a role in disturbance attenuation using feedback. In particular,

σ
(
St(Gd + GtF )(jω)

)
≤ γ (2.5.2)

ensures that
‖y(jω)‖ ≤ γ‖d(jω)‖.

Using the singular value inequalities (2.2.16) and (2.2.17), assuming γ < 1, we
have

σ(GtK) ≥ σ(Gd + GtF )/γ + 1
⇒ σ(GtK − I) ≥ σ(Gd + GtF )/γ
⇒ σ(St)σ(Gd + GtF ) ≤ γ
⇒ σ

(
St(Gd + GtF )

)
≤ γ.

Good attenuation (γ ¿ 1) will be achieved if the minimum loop gain σ
(
GtK(jω)

)

is high (À 1).



2.5 PERFORMANCE ANALYSIS AND ENHANCEMENT 55

2.5.2 Tracking

The tracking or servo problem is to design the system in Figure 2.13 in such a way
that the output y tracks the command or reference signal r. Ideally, the transfer
function matrix relating r and y should be made equal to the identity matrix. As
indicated in Section 1.2, we may attack this as an open-loop compensation problem
where we seek to design the reference prefilter R. With no feedback (K = 0), the
transfer function matrix from reference r to error r − y is I − GtR so

σ
(
I − GtR(jω)

)
≤ γ

ensures that the error satisfies

‖r(jω) − y(jω)‖ ≤ γ‖r(jω)‖. (2.5.3)

Again, if the plant is square and has no right-half-plane zeros, the obvious (and
optimal) prefilter is R = G−1

t . If the feedback loop is closed, the transfer function
matrix from reference r to error r − y becomes

St

(
I − Gt(K + R)

)
,

in which St is the sensitivity matrix (2.5.1), so that

σ
(
St

(
I − Gt(K + R)

)
(jω)

)
≤ γ (2.5.4)

ensures the objective (2.5.3). The common unity feedback situation corresponds to
the case where the restriction R = −K is imposed and in this case (2.5.4) simplifies
to an objective on the sensitivity operator:

σ
(
St(jω)

)
≤ γ. (2.5.5)

Since

σ
(
GtK(jω)

)
≥ σ

(
I − Gt(K + R)(jω)

)

γ
+ 1

implies (2.5.4) (verify this as an exercise), good tracking (γ ¿ 1) is ensured if the
minimum loop gain σ

(
GtK(jω)

)
is high (À 1) where σ

(
I − Gt(K + R)(jω)

)
is

significant.

2.5.3 Sensor errors

The proper operation of any feedback system relies on accurate measurements of
the feedback quantities. Since sensors are never absolutely accurate or noise free,
the measurements they make differ from the signals they represent. As with distur-
bances, the effect of sensor errors is deleterious to the performance of the control
system and their influence on the system output should be reduced as far as possible.

Given that sensor errors are inevitable, it is important that their effect be con-
sidered in the feedback system analysis and design process. In Figure 2.13, sensor
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errors are represented by the signal n and the transfer function from n to y is
GtKSt, in which St is the sensitivity operator (2.5.1). Therefore

σ
(
GtK(jω)St

)
≤ γ (2.5.6)

ensures that
‖y(jω)‖ ≤ γ‖n(jω)‖.

Note that GtKSt and St are algebraically related by

St − GtKSt = (I − GtK)St

= I, (2.5.7)

which shows that St and GtKSt cannot be small simultaneously. As a result of
this identity GtKSt is sometimes called the complementary sensitivity operator. It
follows that

σ
(
GtKSt(jω)

)
> 1 − σ

(
St(jω)

)

and hence that
‖y(jω)‖ >

(
1 − σ

(
St(jω)

))
‖n(jω)‖.

Objectives requiring that σ
(
St(jω)

)
be small (¿ 1), such as disturbance attenua-

tion and tracking, imply that sensor errors n(jω) will pass (almost) unattenuated
into the output signal y(jω). As a result, there must be a frequency separation be-
tween the requirement (2.5.6) and the objectives (2.5.2) and (2.5.5). Sensors must
be accurate over the operating bandwidth of any high-performance feedback sys-
tem. A sufficient condition for (2.5.6) in terms of the loop-gain operator is obtained
as follows:

σ(GtK) ≤ γ
1+γ

⇒ σ(GtK) ≤ γ
(
1 − σ(GtK)

)

⇒ σ(GtK) ≤ γσ(I − GtK)
⇒ σ(GtK)σ(St) ≤ γ
⇒ σ(GtKSt) ≤ γ.

The effects of sensor errors are reduced by having low loop gain—in the extreme
case of open-loop control (K = 0), sensor errors have no effect on the output y!

This confirms that sensor noise attenuation conflicts with objectives requiring
high loop gain. Ensuring that sensor errors do not destroy high-gain objectives
such as disturbance attenuation generates an important trade-off in the design of
the feedback control system.

2.5.4 The control signal

It has been shown that many of the objectives of control system design are enhanced
by high loop gain. Our next calculation shows that high gain can produce excessive
actuator activity and that the closed-loop bandwidth cannot be made significantly
greater than that of the open loop without invoking high controller gain.
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It follows from Figure 2.13 that the control signal is given by

u = (I − KGt)
−1 (Rr + Kn + KGdd)

= (I − KGt)
−1K(−r + n + Gdd) when R = −K. (2.5.8)

The matrix (I − KGt)
−1K = KSt, which also arises in the analysis of stability

robustness with respect to additive model error, plays a vital role in assessing the
impact of external influences on the control signal.

From the identity (2.5.7), we may write

KSt = G−1
t (St − I)

if Gt is nonsingular. Therefore

σ
(
KSt(jω)

)
≥ 1 − σ

(
St(jω)

)

σ
(
Gt(jω)

) for σ
(
St(jω)

)
< 1. (2.5.9)

This shows that if the sensitivity is smaller than 1 at frequencies beyond the open-
loop bandwidth, where σ

(
Gt(jω)

)
¿ 1, the external signals are amplified at u.

The bandwidth over which the sensitivity may be made small is therefore limited
by actuator performance.

By considering the inequality

σ
(
K(jω)

)
≥ σ

(
GtK(jω)

)

σ
(
Gt(jω)

) ,

we see that any objective requiring high loop gain (i.e., σ
(
GtK(jω)

)
À 1) beyond

the open-loop bandwidth will demand high gain from the controller.

2.5.5 Robust performance

So far, we have analyzed performance assuming the true plant is known. Yet feed-
back control is fundamentally concerned with achieving performance objectives de-
spite modelling errors. We now consider the effect of plant model errors on per-
formance. We choose the multiplicative model error representation and summarize
performance by a sensitivity objective. Of course, a similar analysis can be per-
formed for other model error representations and performance objectives.

Suppose a nominal model G of a system Gt is given. Suppose also that Gt lies
in a neighborhood of G defined by

Gt = (I + ∆)G (2.5.10)

with
σ
(
∆(jω)

)
≤ δ(jω) for all real ω. (2.5.11)

Here, δ(jω) is a given real-valued positive function. Typically, δ(jω) is an increasing
function of frequency—the model is a relatively good representation of the physical
system at low frequencies, but is less reliable at high frequencies. In very general
terms, the design problem is to find a controller K such that:
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1. The system is internally stable for all plants described by (2.5.10) and (2.5.11).

2. The closed-loop performance is acceptable as specified by tracking accuracy,
disturbance attenuation, sensitivity reduction and the reduction of nonlinear
effects.

3. The control signal is of reasonable bandwidth and magnitude.

By Theorem 2.4.4, the stability requirements are ensured provided the nominal
closed loop is internally stable, Gt and G have the same number of poles in the
closed-right-half plane and

σ
(
GKS(jω)

)
<

1

δ(jω)
, (2.5.12)

in which S is the (nominal) sensitivity operator

S = (I − GK)−1.

The performance requirements may be translated into a condition such as

ρ(jω)σ
(
St(jω)

)
< 1 for all real ω (2.5.13)

on the (true) sensitivity operator St = (I − GtK)−1. In (2.5.13), ρ(jω) is some
positive performance indicator, which will usually be large (À 1) at low frequencies
and smaller at high frequencies. The frequency range over which ρ(jω) is large is
usually constrained by the need to avoid control signals of unacceptable bandwidth
or amplitude.

Noting that
St = S(I − ∆GKS)−1,

it may be shown (exercise) that

ρ(jω)σ
(
S(jω)

)
+ δ(jω)σ

(
GKS(jω)

)
< 1 (2.5.14)

⇒ ρ(jω)σ
(
St(jω)

)
< 1.

We also notice that (2.5.14) ensures (2.5.12); the simultaneous satisfaction of
(2.5.12) and (2.5.13) is an example of robust performance. We also conclude from
(2.5.14) that achieving performance objectives when a modelling error is present
requires additional gain.

To obtain a specification on the nominal sensitivity operator involving only ρ(jω)
and δ(jω), we note that S − GKS = I implies

σ
(
GKS(jω)

)
≤ 1 + σ

(
S(jω)

)
.

Consequently,

σ
(
S(jω)

)
<

1 − δ(jω)

ρ(jω) + δ(jω)

ensures (2.5.14).
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2.5.6 Analytic limits on performance

We have already studied the design limitations imposed by algebraic identities such
as

S − GKS = I. (2.5.15)

If equations of this type were the only restriction, we could make σ
(
S(jω)

)
small

for ω ∈ [0, ωB ] and σ
(
GKS(jω)

)
small for ω ∈ (ωB ,∞). Under these conditions we

could achieve high performance in the frequency range [0, ωB ] without compromising
stability. Unfortunately, the rapid change of the loop gain in the vicinity of ωB

implied by this situation is not achievable.
Consider the scalar case with q = gk stable and minimum phase.8 The Bode

gain-phase relation given by

arg
(
q(jω0)

)
− arg

(
q(0)

)
=

1

π

∫ ∞

−∞

d log |q(jω)|
dω

log

∣∣∣∣
ω + ω0

ω − ω0

∣∣∣∣ dω (2.5.16)

indicates that the phase at any frequency ω0 is largely determined by the rate of
change of gain in the vicinity of the frequency ω0. This follows from the logarithmic
singularity at ω = ω0 in the weighting factor. For frequencies much larger than ω0,
the weighting factor is approximately 2ω0/ω, while at frequencies much less than
ω0 it is approximately 2ω/ω0. If |q(jω)| varies according to

d|q(jω)|
dω

≈ −n/ω (2.5.17)

(that is, −n× 20 dB per decade) for ω between ω0 and ωB > 5ω0, it is well known
that

arg
(
q(jωB)

)
− arg

(
q(0)

)
≈ −n × 90◦.

As we will now show, this observation has implications for closed-loop stability.
Let us suppose that |q(jω0)| ≈ 1 and that n = 3 in (2.5.17). Then the resulting

270◦ of phase change over the frequency interval [ω0, ωB ] may well drive the closed-
loop system into instability (by producing an anticlockwise encirclement of +1).
Even if n in (2.5.17) is only 2 at the unity-gain cross-over frequency, the phase
change of about 180◦ could result in a small phase margin. Consequently, it is
normally recommended that the gain should decrease at no more than 20 dB per
decade (n = 1 in (2.5.17)) in the vicinity of the unity-gain cross-over frequency.

The requirement that the closed loop be stable therefore imposes analytic con-
straints on the allowed behavior of the loop gain as a function of frequency. These
analytic constraints are consequences of Cauchy’s integral formula.

A clear statement of these constraints is Bode’s conservation of sensitivity the-
orem:

8This means that q has no poles or zeros in the closed-right-half plane, although it is allowed
infinite zeros.
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Theorem 2.5.1 Suppose that q has relative degree at least 2. If s = (1 − q)−1 is
stable, then ∫ ∞

0

log |s(jω)| dω = π
∑

i

Re(pi), (2.5.18)

in which pi are the right-half-plane poles of q. If q has no right-half-plane pole,
then the right-hand side of (2.5.18) is zero.
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Figure 2.15: Plot of sensitivity on a logarithmic scale versus frequency on a linear
scale.

This theorem states that the average of the logarithm of the sensitivity is con-
served. All controllers such that the right-half-plane poles of q = gk are at pi will
have the same average logarithmic sensitivity. If we make |s(jω)| < 1 in the fre-
quency range [0, ωB ], we must pay this back with |s(jω)| > 1 in the high-frequency
region. Figure 2.15 shows this phenomena for q = −1/s(s + 1).

Equation (2.5.18) may not appear to be a serious restriction, since the debt
incurred in making |s(jω)| < 1 in the frequency range [0, ωB ] may be repaid, in the-
ory, over the infinite frequency interval (ωB ,∞). In reality, however, the controller
bandwidth is limited and the repayment must be made in the active frequency range
of the controller. To clarify the implications of this fact, suppose ωmax is chosen
such that

|q(jω)| ≤ 1

(10ω/ωmax)2
for ω ≥ ωmax.
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Then ∫ ∞

ωmax

log |s(jω)| dω ≤ M < ∞,

in which M depends only on ωmax.9 Hence, if |s(jω)| < 1 on the frequency range
[0, ωB ], the debt must be repaid with |s(jω)| > 1 on the finite frequency interval
[ωB , ωmax]. Specifically, if |s(jω)| ≤ 1/N for ω ∈ [0, ωB ], then

(ωmax − ωB) log(‖s‖∞) ≥ log(N)ωB − M + π
∑

i

Re(pi). (2.5.19)

As we press for more performance over a wider bandwidth (faster and more accurate
tracking for example), stability robustness will be degraded, since |gks(jω)| ≥
|s(jω)|−1 when |s(jω)| ≥ 1. The inequality (2.5.19) therefore imposes a constraint
that must be respected in choosing the performance target. Note that unstable
open-loop poles make this analytic design trade-off even more restrictive.

It is possible to show that right-half-plane zeros in the open-loop transfer func-
tion also introduce an analytic design trade-off. If |s(jω)| ≤ 1/N for ω ∈ [0, ωB ],
then (irrespective of how q behaves at infinity)

‖s‖∞ ≥ α2 log N + α1 log |s−1(z)|, (2.5.20)

in which z is a zero of q with Re(z) > 0 and α1 and α2 are constants depending
only on ωB and z.

These phenomena have come to be known as the “waterbed effect”. Push the
sensitivity down in one range of frequencies and it must pop up somewhere else.

The following theorem summarizes the results that are available in the multi-
variable case:

Theorem 2.5.2 Suppose that Q = GK is n×n and has entries which are each of
relative degree at least 2. If S = (I − Q)−1 is stable, then

∫ ∞

0

log |det
(
S(jω)

)
| dω = π

∑

i

Re(pi) (2.5.21)

n∑

j

∫ ∞

0

log σj

(
S(jω)

)
dω = π

∑

i

Re(pi) (2.5.22)

∫ ∞

0

log σ
(
S(jω)

)
dω ≤ π

n

∑

i

Re(pi) (2.5.23)

∫ ∞

0

log σ
(
S(jω)

)
dω ≥ π

n

∑

i

Re(pi), (2.5.24)

in which the pi’s are the right-half-plane poles of Q.

9M = ωmax[ln(99/100) + ln(11/9)/10] ≈ ωmax/100.
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Equations (2.5.21) and (2.5.22) provide conservation results for the multivariable
sensitivity operator. Any decrease in σ

(
S(jω)

)
on [0, ωB ] must be compensated for

by an increase in sensitivity at other frequencies or in other directions. There is the
tantalizing prospect that a reduction in σ

(
S(jω)

)
on the interval [0, ωB ] might be

traded against an increase in σ
(
S(jω)

)
on the interval [0,∞) (or [0, ωmax]) without

σ
(
S(jω)

)
becoming large—the singular values might be squeezed closer together.

Inequalities (2.5.23) and (2.5.24) show the extent to which this is possible. When
all the singular values have been squeezed together, so that σ

(
S(jω)

)
= σ

(
S(jω)

)
,

(2.5.24) will hold with equality and the scalar situation is recovered.

Main points of the section

1. Performance objectives can be analyzed using singular values.

2. Disturbance attenuation and tracking are improved by making the
sensitivity operator small. This requires high loop gain.

3. Robust stability, and actuator and sensor constraints, limit the use
of high gain.

4. Uncertainty about the plant makes the trade-off between high- and
low-gain objectives more difficult to achieve.

5. Analytic constraints arising from Cauchy’s integral formula impose
“conservation laws” on stable closed-loop systems.

2.6 Example

We will now illustrate the use of singular values as an analysis tool by studying the
unstable batch reactor process first described by Rosenbrock ([172], page 213).

A linearized model of this process is

ẋ =




1.38 −0.2077 6.715 −5.676
−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104


x +




0 0
5.679 0
1.136 −3.146
1.136 0


u

y =

[
1 0 1 −1
0 1 0 0

]
x.

Since the eigenvalues of the A-matrix are (1.99, 0.064, −5.057, −8.67) the reactor
is unstable.

The two main aims of the control system are the stabilization of the process and
the improvement of its step response. Since the actual batch process is nonlinear, we
require stability robustness of the nominal linear closed loop. In order to achieve
zero steady-state tracking error we require σ

(
S(0)

)
= 0. An adequate speed of
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response comes from ensuring that σ
(
S(jω)

)
≤ ε for all ω ∈ [0, ωB ] where ε is

sufficiently small and ωB is sufficiently large.
The objectives call for high loop gain (σ

(
GK(jω)

)
À 1) over a frequency range

that is wide enough to meet the sensitivity specification. The uncompensated plant
singular values σ

(
G(jω)

)
are shown in Figure 2.16. Clearly some low-frequency

gain is required, because σ
(
G(j10−2)

)
≤ 0.4 implies that σ

(
S(j10−2)

)
≥ 10/14.
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Figure 2.16: The two singular values uncompensated batch process.

There are many ways of designing control systems and many problems can be
solved without the aid of the latest theory. Simply using modern methods such as
H∞ optimization for everything, without thought, may lead one to overlook simple
and elegant solutions. H∞ optimization is only one tool and we do not wish to
convey the impression that it is the only tool.

By studying the batch process’ inverse Nyquist array, Rosenbrock deduced that
the control system design task is simplified by crossing over the two inputs and
negating the sign of the first new loop. He then found that the system could easily
be controlled using proportional-plus-integral control. In our study we use

u = Kp(yref − y) + Ki

∫ t

0

(yref − y)dt
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where

Kp =

[
0 2
−5 0

]
and Ki =

[
0 2
−8 0

]
.

The proportional part is taken from Rosenbrock, while the integral part is ours—
Rosenbrock did not specify the integral term in his writing. The elegance and
simplicity of this solution is self evident.

From the singular values of the compensated plant σ
(
GK(jω)

)
shown in Fig-

ure 2.17, we see that the tracking requirements will now be met. Indeed, since
σ
(
GK(jω)

)
> 1 +

√
2 implies that σ

(
S(jω)

)
< 1/

√
2 and σ

(
S(jω)

)
< 1/

√
2

implies that σ
(
GK(jω)

)
>

√
2 − 1, the closed-loop bandwidth must be between

1.8 rad/s and 27.3 rad/s. These calculations illustrate the importance of simple
singular value inequalities in the selection of frequency shaping functions during the
design process.
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Figure 2.17: The two singular values of the loop-gain operator of the batch process
compensated by Rosenbrock’s controller.

Figure 2.18 shows the characteristics of σ
(
S(ω)

)
that are necessary for tracking

step reference inputs. These same characteristics will ensure the attenuation of
step-like disturbances at the system output. The closed-loop bandwidth is about
15.2 rad/s. The step response of the closed-loop system is given in Figure 2.19.

We may examine robust stability to multiplicative model error by plotting the
singular values of the complementary sensitivity GKS(jω), which are shown in
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Figure 2.18: The two singular values of the sensitivity operator of the batch process.

Figure 2.20. Since σ
(
GKS(jω)

)
¿ 1 beyond about 100 rad/s, considerable high-

frequency model error is tolerable. The peak of 1.34 at about 2.5 rad/s indicates
that the loop will be stable for all stable multiplicative perturbations ∆ to G such
that σ

(
∆(jω)

)
< 1/1.34 = 0.75 for all ω. However, there is a ∆ with σ

(
∆(jω)

)
≤

1/1.34 = 0.75 that will destabilize the loop (Problem 2.15). Sensor errors are
unlikely to be a problem if they are small at frequencies below about 100 rad/s.

2.7 Notes and References

There is a large literature on Nyquist array and characteristic locus methods and
some excellent books on the subject are available. We refer the interested reader to
MacFarlane [143], Rosenbrock [172] and Maciejowski [144].

Example 2.1.1 is from Doyle [50] (also Doyle and Stein [55]), who introduced it
to make much the same points. Example 2.1.2 is taken from Doyle [49], who showed
that LQG regulators have no guaranteed robust stability margins. For a treatment
of the robustness properties of the linear quadratic regulator, see Anderson and
Moore [11, 13] and Safonov and Athans [179].

The singular value decomposition and singular value inequalities are discussed
in many places. Three useful references are Golub and van Loan [81], Horn and
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Figure 2.19: Step response of the batch process compensated with Rosenbrock’s
controller. The first diagram shows the response to a step input of the form yref =
H(t)[1 0]′, while the second is the response to yref = H(t)[0 1]′.

Johnson [94] and Stewart [198]. Readers interested in interlacing inequalities on the
sums and products of matrix valued operators are referred to Ky Fan [59].

The importance of the sensitivity operator in feedback design dates back to the
classical texts of Bode [31] and Horowitz [95]. The multivariable case was analyzed
in the early 1960s by Cruz and Perkins [38]. The parametric analysis in Section 2.3
follows that given in Anderson and Moore [13], page 112.

The use of singular values for the stability robustness analysis of multivariable
control systems began in the late 1970s. The papers by Safonov [176], Stein and
Doyle [197], and Sandell [190] in the 16th Annual Allerton Conference on Commu-
nications, Control and Computing, 1978, appear to be the first references containing
analysis along the lines presented in Section 2.4. The derivation using the general-
ized Nyquist theorem is due to Doyle [50]—Safonov derives his results (which allow
a larger class of model errors) from the sector bounded stability results in his Ph.D.
thesis [175] (see also [177]), while Sandell uses operator theoretic arguments. The
paper by Sandell contains the acknowledgment:

“The ideas in this paper arose during the course of discussions with M.
Athans, J.C. Doyle, A.J. Laub, M.G. Safonov and G. Stein.”
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Figure 2.20: The two singular values of the complementary sensitivity operator of
the batch process compensated with Rosenbrock’s controller.

The journal papers on the singular value analysis of multivariable control systems
by MacFarlane and Scott-Jones [142]; Doyle and Stein [55]; Safonov, Laub and
Hartmann [182]; and Postlethwaite, Edmunds and MacFarlane [166] appeared a
year or so later—all but one are in the IEEE Transactions on Automatic Control
Special Issue on Linear Multivariable Control Systems [185] published in January
1981.

Analytic constraints on closed-loop performance date from the work of Bode [31],
who developed the famous gain-phase relations that bear his name and proved the
conservation of sensitivity result (Theorem 2.5.1) for the case of stable systems (see
page 285 of [31]). The result was generalized by Freudenberg and Looze [67] to
include open-loop unstable systems. An inequality similar to (2.5.19) appears in
the monograph by Freudenberg and Looze [68], page 53. The limits on performance
imposed by right-half-plane zeros have been studied at least since Horowitz [95]. An
explicit statement of the design trade-off equivalent to (2.5.20) is given in Francis
and Zames [66]. Multivariable extensions of the sensitivity conservation law were
developed by Boyd and Desoer [32] and Freudenberg and Looze [68].

The unstable batch reactor example first appeared in Rosenbrock [172].
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2.8 Problems

Problem 2.1. Suppose σ(Q) < 1.
1. Show that (I − Q) is nonsingular.
2. Show that the series

∑∞
k=0 Qk converges.

3. Show that (I − Q)−1 =
∑∞

k=0 Qk.

Problem 2.2. Prove the following identities

Q(I − Q)−1 = (I − Q)−1Q

(I − Q)−1 = I + Q(I − Q)−1

K(I − GK)−1 = (I − KG)−1K.

Problem 2.3. Let Q be a p × p matrix with ordered singular values σ1 ≥ σ2 ≥
. . . ≥ σp > 0.

1. Show that σ(Q−1) = 1
σ(Q) .

2. Show that σ−1
p ≥ . . . ≥ σ−1

1 are the ordered singular values of Q−1.

Problem 2.4. Let Q be a p× p matrix with λi(Q), i = 1, 2, . . . , p, the eigenvalues
of Q.

1. Show that

det(Q) =

p∏

i=1

λi(Q) = eiθ

p∏

i=1

σi(Q)

for some phase θ.
2. Show that σ(Q) ≤ |λi(Q)| ≤ σ(Q), i = 1, . . . , p.

Problem 2.5. Assume the feedback loop of Figure 2.1 is internally stable and that
the Nyquist diagram of each eigenvalue λi(s) has the property |1−λi(jω)| > αi > 0
for constants αi. What can one say about the stability robustness of the feedback
loop?

Problem 2.6. Suppose

G =

[
7 8
6 7

] [ 1
s+1 0

0 2
s+2

] [
7 8
6 7

]−1

.

1. Sketch the Nyquist diagrams for the eigenvalues of G.
2. Show that G has the following state-space realization:

ẋ =

[
−1 0
0 −2

]
x +

[
7 −8

−12 14

]
u

y =

[
7 8
6 7

]
x.
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3. By evaluating the linear term of det(sI − A − BKC) with

K =

[
k1 0
0 k2

]
,

show that 3− 50k2 +47k1 > 0 is a necessary condition for the stability of the
feedback loop of Figure 2.1.
(Hint: you can simplify your calculations by setting k1 = k+δ and k2 = k−δ.)

Problem 2.7. (M.C. Smith) The aim of this exercise is to demonstrate that the m
eigenvalue loci of m×m transfer functions do not necessarily form m closed curves.
To see this, plot the eigenvalue loci of

G =




(
1+ε
s+1

) (
−5s−8

s+2

)

(
1+ε
s+1

) (
−2s−6

s+2

)




for ε = −0.005, 0.000,+0.005 and note the number of closed curves in each case.

Problem 2.8. By mimicking the arguments used in the proof of Theorem 2.4.3,
establish Theorem 2.4.4.

Problem 2.9. By mimicking the arguments used in the proof of Theorem 2.4.3,
establish Theorem 2.4.5.

Problem 2.10. Derive the implications expressed in (2.4.8), (2.4.9) and (2.4.13).

Problem 2.11. The aim of this exercise is to check the calculations in Exam-
ple 2.4.1.

1. By making use of a computer package such as MATLAB10, reconstruct Fig-
ure 2.11, thereby checking that

min
ω

{
1/σ

(
K(I − GK)−1(jω)

)}
= 0.0612

with
arg min

ω

{
1/σ

(
K(I − GK)−1(jω)

)}
= 3.

2. If

K(I − GK)−1(j3) =
2∑

i=1

σiviu
∗
i ,

show that I − ∆K(I − GK)−1(j3) is singular if ∆ = σ−1
1 u1v

∗
1 .

3. Find a rational stable perturbation such that ‖∆‖∞ ≤ σ−1
1 and ∆(j3) =

σ−1
1 u1v

∗
1 . Compare your answer with the solution given in the text of Exam-

ple 2.1.1.

10MATLAB is a registered trademark of The MathWorks, Inc.
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Problem 2.12. Show that

σ
(
GK(jω)

)
≥ σ

(
I − G(K + R)(jω)

)

γ
+ 1

ensures satisfaction of the reference tracking objective ‖r(jω)− y(jω)‖ ≤ γ‖r(jω)‖
for the loop in Figure 2.13.

Problem 2.13. Show that (2.5.14) implies (2.5.13). Show also that (2.5.13)
implies that ρ(jω)σ

(
S(jω)

)
≤ 1 + δ(jω)σ

(
GKS(jω)

)
.

Problem 2.14. Suppose a controller has been designed for the feedback loop
in Figure 2.4 such that ‖r(jω) + yc(jω)‖ ≤ ρ(jω)‖r(jω)‖ for all r(jω) and some
nonnegative function ρ(jω). Suppose also that Gt = (I + ∆2)

−1G, in which ∆2

satisfies σ
(
∆2(jω)

)
≤ δ(jω) < 1 for some other nonnegative function δ(jω). Show

that this objective will be achieved if

σ
(
S(jω)

)
≤ ρ(jω)

1 + δ(jω)
(
1 + ρ(jω)

) ,

in which S = (I − GK)−1 is the nominal sensitivity function.

Problem 2.15. Consider the unstable batch reactor described in Example 2.6,
together with the controller

K =

[
0 2
−5 0

]
+

1

s

[
0 2
−8 0

]
.

1. Using MATLAB11 or otherwise, plot σ
(
GK(I − GK)−1(jω)

)
. Show that

min
ω

1

σ
(
GK(I − GK)−1(jω)

) = 0.7451,

and that

arg min
ω

1

σ
(
GK(I − GK)−1(jω)

) ≈ 2.5

2. Find a singular value decomposition of GK(I − GK)−1(j2.5).
3. Show that

∆ = 0.7451

[
0.9787

0.2052
(

s−1.7651
s+1.7651

)
] 

 0.9915
(

s−0.1656
s+0.1656

)

−0.1299
(

s−3.5936
s+3.5936

)




′

is a stable destabilizing perturbation satisfying ‖∆‖∞ ≤ 0.7451.

11MATLAB is a registered trademark of The MathWorks, Inc.
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Signals and Systems

In Chapter 2, we presented singular values as a multivariable design tool for sys-
tems described by rational transfer function matrices—systems that are linear,
time-invariant and finite-dimensional. However, as all physical systems are both
time-varying and nonlinear to some extent, the assumption that both models and
modelling errors are described by transfer function matrices is unacceptable. In
particular, we need to be able to allow time-varying and nonlinear modelling errors.
Fortunately, a singular value bound of the form σ

(
G(jω)

)
< γ for all ω has impli-

cations beyond linear, time-invariant theory. In this chapter we review the basic
definitions and properties of signals and systems required to make these generaliza-
tions. Two important results, the small gain theorem and the bounded real lemma,
are the main focus of the chapter.

Sections 3.1 and 3.2 are concerned with the basic definitions and properties of
signals and systems. The Lebesgue 2-spaces L2[0, T ] and L2[0,∞) are reviewed.
The frequency domain Lebesgue space L2 and the Hardy space H2 are introduced.
Definitions of causality, time-invariance, stability and linearity are given. The infin-
ity norm is defined and the spaces L∞ and H∞ are introduced. The properties of
adjoint and allpass systems are reviewed. These sections do not attempt to provide
a definitive or comprehensive treatment of signal and system theory; we assume that
the reader is familiar with most of this material through exposure to senior under-
graduate or graduate level courses and texts. In particular, we assume familiarity
with state-space system descriptions, controllability, observability and minimality.
Our treatment does little more than introduce the terminology, notation and results
that will be required for our subsequent work.

In Section 3.3, the incremental gain and the induced norm are introduced as
measures of system size. In addition, the 2-norm of a system, which is the objective
function of interest in LQG optimal control, is defined. Section 3.4 presents the
small gain theorem. Some extensions of the basic result that can be obtained by
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simple loop transformations are presented in Section 3.5. Again, our treatment is
reasonably terse in order to restrict its length. We excuse this on the grounds that
this material is covered in several excellent texts. The small gain theorem allows
us to obtain robust stability results in Section 3.6 which permit time-varying and
nonlinear model errors. These results are natural generalizations of those given in
Chapter 2.

The chapter concludes with the bounded real lemma, which allows us to answer
the question “is σ

(
G(jω)

)
< γ for all ω?”. The proof of this result provides a warm-

up exercise for our later work on the synthesis of controllers that meet singular value
objectives.

3.1 Signals

A signal is a (Lebesgue) measurable function that maps the real numbers R to R
n.

The set of signals is
S = {f : R 7→ R

n} .

Note here, once and for all, that S is formally being considered as a set of equivalence
classes of signals—signals which differ only on sets of (Lebesgue) measure zero are
formally identical. Readers not familiar with measure theory may regard S as a set
which contains all signals that could occur in an engineering system. It also contains
many functions which could not conceivably occur in any engineering system.

Signals form a natural vector space under addition and scalar multiplication,
which are defined by

(f + g)(t) = f(t) + g(t)

(αf)(t) = αf(t).

It is convenient to define the two subspaces

S+ = {f ∈ S : f(t) = 0 for all t < 0}
S− = {f ∈ S : f(t) = 0 for all t > 0} .

3.1.1 The size of signals

The size of a signal will be measured by a 2-norm defined over either a finite or
infinite time interval. In the sequel, ‖x‖ =

√
x′x is the Euclidean norm.1

1We also use ‖X‖ to denote the matrix norm σ(X). The use of upper-case letters for matrices
and lower-case letters for vectors means that no confusion should arise.
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Finite horizon

The finite-horizon 2-norm is defined by

‖f‖2,[0,T ] =

{∫ T

0

‖f(t)‖2 dt

} 1
2

. (3.1.1)

The set of signals for which this norm is finite is known as the finite-horizon Lebesgue
2-space:

L2[0, T ] =
{
f ∈ S+ : ‖f‖2,[0,T ] < ∞

}
. (3.1.2)

Any signal that is continuous on [0, T ] is bounded and is therefore in L2[0, T ].
Signals like 1

|2t−T | are not in L2[0, T ].

A signal f is in the finite-horizon 2-space L2[t0, T ] if and only if the time-shifted
signal g(t) = f(t + t0) is in L2[0, T − t0]. The norm ‖f‖2,[t0,T ] is defined in the
obvious way.

Infinite horizon

In order to address stability issues, we must consider the behavior of signals over
infinite time intervals. The infinite-horizon Lebesgue 2-space is defined by

L2(−∞,∞) = {f ∈ S : ‖f‖2 < ∞} , (3.1.3)

in which

‖f‖2 =

{∫ ∞

−∞
‖f(t)‖2 dt

} 1
2

. (3.1.4)

The spaces L2[0,∞) and L2(−∞, 0] are defined by L2[0,∞) = S+ ∩L2(−∞,∞)
and L2(−∞, 0] = S− ∩ L2(−∞,∞).

Establishing that signals are in L2[0,∞) will often be done in several steps,
with each step corresponding to increasingly stringent growth conditions. For this
purpose, it is convenient to introduce the extended 2-space L2e defined by

L2e = {f ∈ L2[0, T ] for all T < ∞} . (3.1.5)

Note, however, that f ∈ L2e does not imply supT ‖f‖2,[0,T ] < ∞. For example,
f(t) = t and g(t) = et, t ≥ 0, are both in L2e, but are not in L2[0,∞).

Inner product

The space L2(−∞,∞) is a Hilbert space with inner product defined by

〈f, g〉 =

∫ ∞

−∞
g′(t)f(t) dt.
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Two signals f and g are orthogonal if 〈f, g〉 = 0. This is a natural extension of
orthogonality in R

n. Note that f ∈ L2[0,∞) and g ∈ L2(−∞, 0] implies that
〈f, g〉 = 0, which means that L2[0,∞) and L2(−∞, 0] are orthogonal subspaces of
L2(−∞,∞).

The spaces L2[0,∞), L2(−∞, 0] and L2[0, T ] are all Hilbert spaces in their own
right, with the inner product integral taken over the appropriate time interval. For
example, for L2[0, T ] we have

〈f, g〉[0,T ] =

∫ T

0

g′(t)f(t) dt.

Note that ‖f‖2
2 = 〈f, f〉 and that the inner product satisfies the Cauchy-Schwarz

inequality2

|〈f, g〉| ≤ ‖f‖2‖g‖2.

The 2-norm of exponential signals

The following theorem shows that the initial condition response of a time-varying
state-space system is always in L2e and, in the time-invariant case, gives conditions
under which the initial condition response is in L2[0,∞). The proof provides an
elementary introduction to the techniques we will use to prove the bounded real
lemma and the later results on controller synthesis.

Theorem 3.1.1 Consider a signal z such that

ẋ(t) = A(t)x(t), x(0) = x0,

z(t) = C(t)x(t),

in which A(t) and C(t) are continuous matrix valued functions of appropriate di-
mension.

1. The finite-horizon case:

(a) z ∈ L2e for all x0.

(b) ‖z‖2
2,[0,T ] = x′

0Q(0)x0, in which Q(t) is the observability gramian gener-

ated by

−Q̇(t) = Q(t)A(t) + A′(t)Q(t) + C ′(t)C(t), Q(T ) = 0. (3.1.6)

2. The infinite-horizon case: Assume that A and C are constant.

(a) The following are equivalent:

(i) z ∈ L2[0,∞) for all x0.

2Any inner product satisfies the Cauchy-Schwarz inequality.
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(ii) CeAt → 0 as t → ∞.

(iii) Every observable eigenspace of A is asymptotically stable.

(iv) Q(t) satisfying

−Q̇(t) = Q(t)A + A′Q(t) + C ′C, Q(T ) = 0, (3.1.7)

is uniformly bounded on t ≤ T .
In this case, Q = limt→−∞ Q(t) exists, is independent of T and
satisfies

QA + A′Q + C ′C = 0. (3.1.8)

Furthermore, Q ≥ 0.

(v) There exists Q ≥ 0 satisfying (3.1.8).
(Such a Q may not be equal to limt→−∞ Q(t), which is the smallest
nonnegative definite solution to (3.1.8).)

(b) If the conditions in Item 2a hold, then ‖z‖2
2 = x′

0Qx0, in which Q =
limt→−∞ Q(t).

Proof.

1. The solution of the differential equation is given by z(t) = C(t)Φ(t, 0)x0, in
which Φ(t, τ) denotes the transition matrix associated with the linear system:

d

dt
Φ(t, τ) = A(t)Φ(t, τ), Φ(τ, τ) = I.

Some properties of Φ(t, τ) that are needed in the sequel are explored in Prob-
lem 3.3. Since z is continuous, z ∈ L2[0, T ] for any finite T . Furthermore,

∫ T

0

z′(t)z(t) dt = x′
0

{∫ T

0

Φ′(t, 0)C ′(t)C(t)Φ(t, 0) dt

}
x0

= x′
0M(0)x0,

in which

M(t) =

∫ T

t

Φ′(τ, t)C ′(τ)C(τ)Φ(τ, t) dτ.

Invoking Leibniz’s rule concerning the interchange of the order of integration
and differentiation, we obtain

d

dt
M(t) = −C ′(t)C(t) +

∫ T

t

d

dt

(
Φ′(τ, t)C ′(τ)C(τ)Φ(τ, t)

)
dτ

= −C ′(t)C(t) − A′(t)M(t) − M(t)A(t).

Since M(T ) = 0 and Q(T ) = 0, we conclude that M(t) = Q(t) as they satisfy
the same differential equation.
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2.

(i)⇒(ii) Follows from z(t) = CeAtx0.

(ii)⇒(iii) If AW = WJ , in which J is a Jordan block corresponding to an
eigenvalue s with Re(s) ≥ 0, then CeAtW = CWeJt. Hence CeAtW → 0 as
t → ∞ implies CW = 0.

(iii)⇒(iv) Q(t) is given by the integral

Q(t) =

∫ T−t

0

eA′σC ′CeAσ dσ. (3.1.9)

Write A in the form

A =
[

W1 W2

] [
Λ1 0
0 Λ2

] [
V1

V2

]
,

in which Re

(
λi(Λ1)

)
< 0, Re

(
λi(Λ2)

)
≥ 0 and V = W−1. Since every un-

stable mode is unobservable, CW2 = 0. Therefore, CeAt = CW1e
Λ1tV1 and

‖CW1e
Λ1σV1‖ ≤ αeλt for λ = maxi Re

(
λi(Λ1)

)
< 0 and some α < ∞. Hence

‖Q(t)‖ ≤
∫ T−t

0

‖CW1e
Λ1σV1‖2 dσ

≤ α2

∫ T−t

0

e2λσ dσ

≤ α2

∫ ∞

0

e2λσ dσ =
α2

2|λ| .

Therefore Q(t) is uniformly bounded. From (3.1.9), it follows that Q(t1) ≥
Q(t2) for any t1 ≤ t2, which is to say that Q(t) is monotonic. Consequently,
Q(t) uniformly bounded implies that limt→−∞ Q(t) exists. From (3.1.9) we
see that Q = Q(−∞) is independent of t, satisfies (3.1.8) and Q ≥ 0.

(iv)⇒(v) Set Q = limt→−∞ Q(t).

(v)⇒(i) Let Q be any nonnegative definite solution to (3.1.8) and define X(t) =
Q − Q(t). Then

Ẋ(t) = −X(t)A − A′X(t), X(T ) = Q,

so that X(t) = eA′(T−t)QeA(T−t) ≥ 0 for all t, T . Hence 0 ≤ Q(t) ≤ Q for all
t ≤ T , which shows that limt→−∞ Q(t) is the smallest nonnegative definite
solution to (3.1.8). It also shows that

∫ T

0

z′(t)z(t) dt = x′
0Q(0)x0

≤ x′
0Qx0.

Since this bound is independent of T , it follows that z ∈ L2[0,∞).
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To prove Item 2(b), we note that ‖z‖2 = limT→∞ ‖z‖2,[0,T ].

3.1.2 Signals in the frequency domain

A frequency domain signal is a (measurable) function f(jω) that has the property(
f(jω)

)∗
= f ′(−jω). The variable ω is the real frequency variable in radians per

unit time and the superscript (·)∗ denotes the complex conjugate transpose. The
frequency domain 2-norm is defined by

‖f‖2 =

{
1

2π

∫ ∞

−∞
f∗(jω)f(jω) dω

} 1
2

. (3.1.10)

The frequency domain Lebesgue 2-space consists of those signals with finite norm:

L2 = {f : ‖f‖2 < ∞} . (3.1.11)

L2 is a Hilbert space under the inner product

〈f, g〉 =
1

2π

∫ ∞

−∞
g∗(jω)f(jω) dω. (3.1.12)

The reason we use the same symbol for the norm and the inner product in both the
time and frequency domains is because the Fourier transform, which is a Hilbert
space isomorphism between L2(−∞,∞) and L2, preserves the inner product and
the 2-norm.3 For f ∈ L2(−∞,∞), the Fourier transform of f is

f̂(jω) = lim
T→∞

∫ T

−T

f(t)e−jωt dt.

Here, lim denotes convergence in the L2 norm.4 Furthermore,

〈f, g〉 = 〈f̂ , ĝ〉, (3.1.13)

which is known as Parseval’s identity. A consequence of (3.1.13) is that ‖f‖2 =

‖f̂‖2.
Since L2(−∞,∞) and L2 are isomorphic, we will not make a notational distinc-

tion between time-domain signals and their frequency-domain counterparts—the
“hat” notation is only used on the rare occasions on which some confusion might
arise. Generally, the context determines whether signals are being considered as
elements of L2(−∞,∞) or L2.

3Isomorphism comes from the Greek for same shape. Two Hilbert spaces are isomorphic if
there is a bijective linear mapping from one to the other that preserves the inner product.

4That is, ‖f̂ −
∫ T

−T
f(t)e−jωt dt‖2 → 0 as T → ∞.
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The space H2

The Hardy 2-space H2 consists of functions of a complex variable that are analytic
in the open right-half of the complex plane and such that the norm

‖f‖2 =

{
sup
α>0

1

2π

∫ ∞

−∞
f∗(α + jω)f(α + jω) dω

} 1
2

(3.1.14)

is finite. That is,

H2 = {f : f(s) is analytic in Re(s) > 0 and ‖f‖2 < ∞} . (3.1.15)

We also assume that
(
f(s)

)∗
= f ′(s̄).

For any f ∈ H2, the boundary function defined by fb(jω) = limα↓0 f(α + jω)
exists for almost all ω, which is Fatou’s theorem. In addition: (1) fb ∈ L2; (2) the
mapping f 7→ fb is linear and injective5; and (3) ‖fb‖2 = ‖f‖2. This final property
means that we may evaluate the H2 norm by the formula

‖f‖2 =

{
1

2π

∫ ∞

−∞
fb(jω)∗fb(jω) dω

} 1
2

instead of (3.1.14)—the supremum always occurs on the boundary α = 0.
Because the mapping from f ∈ H2 to the boundary function fb ∈ L2 is linear,

injective and norm preserving, we will drop the subscript b, writing f(jω) instead of
fb(jω), and will regard H2 as a closed subspace of L2.

6 The Paley-Wiener theorem
states that H2 is isomorphic to L2[0,∞) under the Laplace transform. For any
signal f ∈ S the Laplace transform is defined by the integral

f̂(s) =

∫ ∞

−∞
f(t)e−st dt. (3.1.16)

For any particular f , the domain of definition (allowable values of s) depends on the
convergence of the integral. For f ∈ L2[0,∞) the domain of definition is Re(s) > 0

and f̂ ∈ H2. The function f̂(s) is often defined outside this domain of convergence
by analytic continuation.

The space H−
2 defined by

H−
2 = {f : f(−s) ∈ H2}

is isomorphic to L2(−∞, 0] under the Laplace transform. It follows that the spaces
H2 and H−

2 are orthogonal.

5That is, the function fb is uniquely defined by the equation fb(jω) = limα↓0 f(α + jω).
6Every f ∈ H2 is identified with its boundary function fb ∈ L2.
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Main points of the section

1. In this book, the size of a signal is its 2-norm, which is denoted by
‖ · ‖2,[0,T ] in the case of a finite horizon and by ‖ · ‖2 in the case of
an infinite horizon.

2. The signals of interest to us are signals that have finite 2-norm.
This property defines the time-domain 2-spaces L2[0, T ], L2[0,∞)
and L2(−∞,∞), which are Hilbert spaces.

3. The Cauchy-Schwartz inequality |〈f, g〉| ≤ ‖f‖2‖g‖2 holds.

4. The Fourier transform is a Hilbert space isomorphism from the
time-domain 2-space L2(−∞,∞) to the frequency-domain 2-space
L2.

5. The Laplace transform is a Hilbert space isomorphism from the
time-domain 2-space L2[0,∞) to the frequency-domain 2-space H2.
Signals in H2 are analytic in the open-right-half plane.

3.2 Systems

A system is a mapping from one signal space, the input space, to another signal
space, the output space:

G : S1 7→ S2

: w 7→ z = Gw.

Systems form a linear space under addition (parallel connection) and multiplication
by a scalar, which are defined by

(G1 + G2)w = G1w + G2w

(αG)w = α(Gw).

A system is called causal if the output up to time T depends only on the input
up to time T , for every T . That is, G is causal if P T GP T = P T G, in which P T

is the projection operator defined by the truncation operation

(P T w)(t) =

{
w(t) t ≤ T
0 t > T.

(3.2.1)

Let z(t) be the response of a system G to input w(t). If the response to the
time-shifted input w(t−T ) is z(t−T ), the system is called time-invariant. Defining
the time-shift operator ST by

(ST w)(t) = w(t − T ),

we see that a system is time-invariant if it commutes with the time-shift operator.
That is, if GST = ST G, for every T .

A system G is stable if z = Gw is in L2[0,∞) whenever w is in L2[0,∞).
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3.2.1 Linear systems

A system G : S1 7→ S2 is linear if

G(αw1 + βw2) = αGw1 + βGw2

for all scalars α, β and for all w1, w2 ∈ S1. The space of linear systems forms an
algebra under addition (parallel connection) and composition (series connection).
For systems G : S1 7→ S1, this algebra has the identity Iw = w for all w.

Any linear system may be represented by the integral operator

z(t) =

∫ ∞

−∞
G(t, τ)w(τ) dτ.

The matrix valued function G(t, τ) may have to be a generalized function7; a δ-
function for example.

The system is causal if and only if G(t, τ) = 0 for all τ > t and is time-invariant
if G(t, τ) = G(t − τ, 0) for all t, τ . Thus any linear, time-invariant system may be
represented as a convolution integral

z(t) =

∫ ∞

−∞
G(t − τ)w(τ) dτ, (3.2.2)

in which we have written G(t − τ) instead of G(t − τ, 0) to make the formula more
compact.

Transfer function matrices

Taking the Laplace transform of (3.2.2), we have

z(s) = G(s)w(s),

in which

G(s) =

∫ ∞

−∞
G(t)e−st dt.

The function G is known as the transfer function matrix of the system. Note that
any system described by a transfer function matrix is linear and time-invariant.
The transfer function is called proper if lims→∞ G(s) exists and is finite.

In this book, a signal is a real vector valued function of time. It follows that the
impulse response matrix G(t) is a real matrix valued function and that the transfer
function matrix G(s) is a complex matrix valued function of s such that

G∗(s) = G′(s̄).

For want of a better word, we shall call such transfer function matrices real transfer
function matrices—all transfer function matrices in this book are assumed to be
real.

7That is, for each t, G(t, τ)dτ is a measure.



3.2 SYSTEMS 81

State-space systems

Systems that are described by linear differential equations are our main concern.
We shall assume that the design problem is governed by equations of this form and
that a controller of this form is desired. These systems will invariably be written as
state-space equations:

ẋ(t) = A(t)x(t) + B(t)w(t), x(t0) = x0 ∈ R
n,

z(t) = C(t)x(t) + D(t)w(t).
(3.2.3)

In (3.2.3), w(t) ∈ R
m is the input vector, x(t) ∈ R

n is the state vector and z(t) ∈ R
p

is the output vector. We assume that A(t), B(t), C(t) and D(t) are continuous real
matrix valued functions of time with appropriate dimensions.

The equations (3.2.3) define a linear system

G : R
n ⊕ S1 7→ S2;

[
x0

w

]
7→ z.

In the case that x(t0) = 0, the system is said to be relaxed at time t0 and we may
write G : S1 7→ S2. It is often convenient to assume that the system is relaxed in
the infinitely remote past, i.e., that limt0→−∞ x(t0) = 0.

The quadruple of matrices
(
A(t), B(t), C(t),D(t)

)
is called a realization of the

system. We will also use the notation

G
s
=

[
A(t) B(t)
C(t) D(t)

]
.

Realizations are not unique and we assume that the reader is familiar with con-
cepts such as controllability, observability and minimality.8 Briefly, the realization
is observable if the pair

(
z(t), w(t)

)
, t ∈ [t0, T ], uniquely determines x(t0). This is

equivalent to Q(t0, T ) > 0, in which Q(t, T ) is the observability gramian satisfying
(3.1.6). Thus observability depends only on A(t) and C(t). In the time-invariant
case, (A,C) is observable if and only if CAkx = 0 for k = 0, 1, 2, . . . implies x = 0,
which is equivalent to the condition

[
A − λI

C

]
x = 0 ⇒ x = 0,

which is known as the Popov-Belevitch-Hautus test. The realization is controllable
if and only if, for any xT ∈ R

n, there exists a w(t), t ∈ [t0, T ], such that x(T ) = xT .
Controllability depends only on A(t) and B(t) and it can be shown that

(
A(t), B(t)

)

is controllable if and only if
(
A′(t), B′(t)

)
is observable. The realization is minimal

if no other realization with the same input-output properties has a lower state
dimension. It can be shown that the realization is minimal if and only if it is both
controllable and observable.

8See, for example, [105, 33, 126].
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Let Φ(t, τ) be the transition matrix associated with (3.2.3), which is the solution
to the array of first-order differential equations

d

dt
Φ(t, τ) = A(t)Φ(t, τ), Φ(τ, τ) = I.

Then

z(t) = D(t)w(t) + C(t)

∫ t

t0

Φ(t, τ)B(τ)w(τ) dτ + C(t)Φ(t, t0)x0. (3.2.4)

Notice that z ∈ L2[t0, T ] for any w ∈ L2[t0, T ], so that w ∈ L2e implies z ∈ L2e.
State-space systems are always causal on the restricted time interval [t0,∞).

That is, P T GP T = P T G for all T ≥ t0. State-space systems are time-invariant
when the matrices A(t), B(t), C(t) and D(t) are constant. In this case, Φ(t, τ) =
eA(t−τ) and

z(t) = Dw(t) + C

∫ t

t0

eA(t−τ)Bw(τ) dτ + CeA(t−t0)x0.

Taking Laplace transforms we obtain

z(s) =
(
D + C(sI − A)−1B

)
w(s) + C(sI − A)−1x0.

The matrix valued function G = D +C(sI −A)−1B is the transfer function matrix
of the system. The number of poles in G(s) is known as the McMillan degree of
G. The McMillan degree of G is equal to the dimension of the state vector in a
minimal realization of the system.

The transfer function matrix G = D+C(sI−A)−1B has no poles in the closed-
right-half plane if and only if G defines a stable system. Therefore, G is stable if
and only if every unstable eigenspace of A is either uncontrollable or unobservable.
We say that (A,B) is stabilizable if every unstable eigenspace is controllable, and
we say that (A,C) is detectable if every unstable eigenspace is observable. Thus,
if (A,B,C,D) is a stabilizable and detectable realization, G is stable if and only
if A is asymptotically stable, which is to say its eigenvalues λi(A) all have strictly
negative real part (Re

(
λi(A)

)
< 0 for all i).

3.2.2 The space L∞

Our basic infinite-horizon signal space is L2(−∞,∞), so we will be concerned with
systems G : L2(−∞,∞) 7→ L2(−∞,∞).

Because L2(−∞,∞) is isomorphic to L2, a linear time-invariant system maps
L2(−∞,∞) to L2(−∞,∞) if and only if the transfer function matrix G is such that
Gw ∈ L2 for any w ∈ L2. A sufficient condition for this is supω σ

(
G(jω)

)
< ∞,

since

‖Gw‖2
2 =

1

2π

∫ ∞

−∞
‖G(jω)w(jω)‖2 dω
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≤ 1

2π

∫ ∞

−∞
σ
(
G(jω)

)2‖w(jω)‖2 dω

≤ sup
ω

σ
(
G(jω)

)2 1

2π

∫ ∞

−∞
‖w(jω)‖2 dω.

The class of systems for which the supremum is finite is known as L∞:

L∞ = {G : ‖G‖∞ < ∞},

in which the L∞-norm is defined by

‖G‖∞ = sup
ω

σ
(
G(jω)

)
. (3.2.5)

It is a straightforward exercise to show that ‖ · ‖∞ is a norm. We note that

‖Gw‖2 ≤ ‖G‖∞‖w‖2 for all w ∈ L2,

and also that the important submultiplicative property

‖GH‖∞ ≤ ‖G‖∞‖H‖∞

is satisfied.
When G is rational, G ∈ L∞ if and only if G has no poles on the imaginary

axis. In this case σ
(
G(jω)

)
is a continuous function of ω and

‖G‖∞ < γ ⇔ σ
(
G(jω)

)
< γ for all ω ∈ R ∪∞.

Thus bounds on ‖G‖∞ are equivalent to uniform bounds on σ
(
G(jω)

)
, thereby

allowing us to write objectives of the form σ
(
G(jω)

)
< γ for all ω using the more

compact notation ‖G‖∞ < γ. All the design problems discussed in Chapter 2 can
be expressed in terms of bounds on the infinity norm of various closed-loop transfer
function matrices.

We have shown that G ∈ L∞ implies that GL2 ⊂ L2. The converse is also true.
To see why, choose any ω0 ∈ R and let v and u be unit vectors such that

G(jω0)v = σ
(
G(jω0)

)
u.

(i.e., v is the right singular vector corresponding to the maximum singular value of

G(jω0)). Considering w(jω) =
√

2πvδ
1
2 (ω − ω0) we have that

‖Gw‖2
2 =

∫ ∞

−∞
v∗G∗(jω)G(jω)vδ(ω − ω0) dω

= v∗G∗(jω0)G(jω0)v

= σ
(
G(jω0)

)2
u′u

= σ
(
G(jω0)

)2
.
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The right-hand side must be finite if Gw ∈ L2 and we conclude that GL2 ⊂ L2 ⇒
‖G‖∞ < ∞. The trouble with this argument is that neither the input nor the
output considered are in L2 in the first place! However, these “functions” may be
approximated to arbitrary accuracy by signals that are in L2 and the argument can
be made rigorous.

Mathematically inclined readers may prefer the proof of this result presented in
[222], page 171, which is based on a different approach.

3.2.3 The space H∞

If G is the transfer function matrix of a linear, time-invariant system, then G defines
a stable system if and only if z = Gw ∈ H2 whenever w ∈ H2. This is because
L2[0,∞) is isomorphic to H2.

Since z ∈ H2 requires that z is analytic in the open-right-half plane, a necessary
condition for stability is that G is analytic in the open-right-half plane. A sufficient
condition for ‖z‖2 < ∞ is supα>0

{
supω σ

(
G(α + jω)

)}
< ∞, since

‖Gw‖2
2 = sup

α>0

1

2π

∫ ∞

−∞
‖G(α + jω)w(α + jω)‖2 dω

≤ sup
α>0

1

2π

∫ ∞

−∞
σ
(
G(α + jω)

)2‖w(α + jω)‖2 dω

≤
{

sup
α>0

sup
ω

σ
(
G(α + jω)

)2
}

sup
α>0

1

2π

∫ ∞

−∞
‖w(α + jω)‖2 dω

= sup
α>0

sup
ω

σ
(
G(α + jω)

)2‖w‖2
2.

The class of systems for which G is analytic in the open-right-half plane and this
supremum is finite is known as H∞:

H∞ = {G : G is analytic in Re(s) > 0 and ‖G‖∞ < ∞}, (3.2.6)

in which

‖G‖∞ = sup
α>0

{
sup

ω
σ
(
G(α + jω)

)}
. (3.2.7)

A system that has a transfer function matrix in H∞ is a stable system. In fact, a
transfer function matrix G defines a stable system if and only if G ∈ H∞.

We use the symbol ‖ · ‖∞ for both the L∞ and H∞ norms because the limit
Gb(jω) = limα↓0 G(α + jω) exists for almost all ω if G ∈ H∞ . Furthermore, the
mapping G 7→ Gb is linear, injective and

‖G‖∞ = sup
ω

σ
(
Gb(jω)

)
.

We therefore drop the b notation, writing G(jω) instead of Gb(jω), and regard H∞
as a closed subspace of L∞.



3.2 SYSTEMS 85

In the case that G is rational, G ∈ H∞ if and only if G has no pole in the
closed-right-half plane.

The terminology “H∞ control theory” derives from the fact that we would like
to achieve objectives on ‖ · ‖∞ subject to closed-loop stability.

Spaces of rational transfer function matrices

As we have previously indicated, we are primarily concerned with state-space sys-
tems. In the time-invariant case, such systems have transfer function matrices that
are rational functions of the Laplace transform variable s. We use the prefix R to
denote rationality. Thus RL∞ and RH∞ denote the rational subspaces of L∞ and
H∞ respectively.

3.2.4 Adjoint systems

Suppose G : S1 → S2 is a linear system and S1 and S2 are Hilbert spaces such as
L2[0, T ] or L2[0,∞). The adjoint system is the linear system G∼ : S2 → S1 that
has the property

〈Gw, y〉S2
= 〈w,G∼y〉S1

for all w ∈ S1 and all y ∈ S2. It is a standard exercise to show that G∼ is uniquely
defined by this equation and that (G∼)∼ = G.

To determine the adjoint of G in the Hilbert space L2[0, T ], consider inputs
w ∈ L2[0, T ] and represent the linear system z = Gw by

z(t) =

∫ T

0

G(t, τ)w(τ) dτ.

(It is assumed that w(t) = 0 for t 6∈ [0, T ]). For any y ∈ L2[0, T ],

〈Gw, y〉[0,T ] =

∫ T

0

dt

∫ T

0

y′(t)G(t, τ)w(τ) dτ

=

∫ T

0

dτ

∫ T

0

(
G′(t, τ)y(t)

)′
w(τ) dt

= 〈w, η〉[0,T ],

in which

η(τ) =

∫ T

0

G′(t, τ)y(t) dt.

The L2[0, T ] adjoint of G is therefore the system G∼ defined by

(
G∼y

)
(t) =

∫ T

0

G′(τ, t)y(τ) dτ.
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In the case of a state-space system,

G(t, τ) =

{
C(t)Φ(t, τ)B(τ) + D(t)δ(t − τ) if t ≥ τ
0 otherwise,

and it is easily shown that η(t) =
∫ T

0
G′(τ, t)y(τ) dτ satisfies

ṗ(t) = −A′(t)p(t) − C ′(t)y(t), p(T ) = 0, (3.2.8)

η(t) = B′(t)p(t) + D′(t)y(t), (3.2.9)

which is therefore a state-space realization of the adjoint system G∼. Note that a
zero terminal condition is applied to the state of G∼.

If G is a transfer function matrix mapping L2 to L2, which is to say G ∈ L∞,
the adjoint system has transfer function matrix

G∼(s) = G′(−s).

If G has realization (A,B,C,D) then G∼ has realization (−A′,−C ′, B′,D′).

3.2.5 Allpass systems

An allpass system has the property that the norm of the output is equal to the norm
of the input.9 The term “allpass” derives from the fact that, by definition, allpass
systems pass all signals with unchanged magnitude, in contrast to other systems
of interest such as low-pass, high-pass or band-pass systems, which attenuate the
magnitude of certain signals. The term lossless is also used in the network theory
literature. As we have already seen in Chapter 1, these systems play an important
role in the synthesis of H∞ optimal controllers.

Suppose S1 and S2 are normed signal spaces such as L2[0, T ] or L2(−∞,∞),
with the norms on these spaces denoted by ‖ · ‖Si

. If G : S1 7→ S2 is linear, then G

is allpass if
‖Gw‖S2

= ‖w‖S1
for all w ∈ S1. (3.2.10)

Note that an allpass system is necessarily injective, since (3.2.10) gives ‖Gw‖S2
=

0 ⇔ ‖w‖S1
= 0.

In any real inner product space (L2(−∞,∞) for example), the polarization
identity

4〈x, y〉 = ‖x + y‖2 − ‖x − y‖2

holds. It follows that when the spaces Si are Hilbert spaces, G is an allpass if and
only if

〈Gu,Gw〉S2
= 〈u,w〉S1

, for all u,w ∈ S1,

9In the mathematician’s terminology, these systems are isometric operators.
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which means an allpass system between two Hilbert spaces preserves the inner
product. Consequently, G is an allpass system between two Hilbert spaces if and
only if

G∼G = I. (3.2.11)

If an allpass system is a bijection (i.e., is surjective10 in addition to being injective),
then the spaces Si are necessarily of the same dimension and G∼ = G−1. This
implies that GG∼ = I.

Theorem 3.2.1 (A characterization of allpass state-space systems)

1. Suppose G is a state-space system with realization

ẋ(t) = A(t)x(t) + B(t)w(t), x(0) = 0,

z(t) = C(t)x(t) + D(t)w(t)

and let Q(t) be the observability gramian satisfying (3.1.6). If the realization
satisfies

D′(t)C(t) + B′(t)Q(t) = 0

D′(t)D(t) = I

for all t ∈ [0, T ], then G is allpass on L2[0, T ].

If the system is controllable, these conditions are also necessary.

2. Suppose the matrices A, B, C, D are constant and G(s) = D+C(sI−A)−1B.

(a) If there is a symmetric Q such that

QA + A′Q + C ′C = 0 (3.2.12)

D′C + B′Q = 0 (3.2.13)

D′D = I, (3.2.14)

then G∼G = I and G ∈ L∞. Consequently, G is allpass on L2.

(b) If there is a Q ≥ 0 such that (3.2.12), (3.2.13) and (3.2.14) hold, then
G ∈ H∞ and G∼G = I. Consequently, G is allpass on H2 (and on
L2[0,∞), with initial condition x(0) = 0).

If (A,B) is controllable, then these conditions are also necessary.

10That is, for any z ∈ S2, there exists a w ∈ S1 such that z = Gw.
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Proof.

1.

‖z‖2
2,[0,T ] =

∫ T

0

(Cx + Dw)′(Cx + Dw) +
d

dt
(x′Qx) dt,

since x(0) = 0 and Q(T ) = 0,

=

∫ T

0

w′D′Dw + 2w′(D′C + B′Q)x dt, using (3.1.6)

= ‖w‖2
2,[0,T ],

when D′C + B′Q = 0 and D′D = I.

The proof that these conditions are necessary if the system is controllable is
left as an exercise. (Hint: consider wt∗ = P t∗w and note that controllability
ensures that x(t∗) spans R

n as w ranges over L2[0, T ].)

2. (a) If Q satisfies (3.2.12), then

G∼G =
(
D′ + B′(−sI − A′)−1C ′)(D + C(sI − A)−1B

)

= D′D + B′(−sI − A′)−1C ′D + D′C(sI − A)−1B

+B′(−sI − A′)−1C ′C(sI − A)−1B

= D′D + B′(−sI − A′)−1C ′D + D′C(sI − A)−1B

+B′(−sI − A′)−1[Q(sI − A) + (−sI − A′)Q](sI − A)−1B

= D′D + B′(−sI − A′)−1(C ′D + QB)

+(D′C + B′Q)(sI − A)−1B. (3.2.15)

= I

if (3.2.13) and (3.2.14) hold. This also implies that G has no pole on the
imaginary axis, so G ∈ L∞ is allpass on L2.

(b) If Q ≥ 0, then every eigenvalue of A in the closed-right-half plane is
unobservable (see Theorem 3.1.1) and consequently G has no poles in
the closed-right-half plane, so G ∈ H∞. The identity G∼G follows as
before and G is allpass on H2.

To prove necessity, we note that (A,B) controllable and G ∈ H∞ implies
that every eigenvalue of A in the closed right-half plane is unobservable.
We therefore let Q = limt→−∞ Q(t) with Q(t) the solution to (3.1.7),
which satisfies (3.2.12) and Q ≥ 0 by Theorem 3.1.1. Hence (3.2.15)
holds. Setting s = ∞ in (3.2.15) results in D′D = I.

To conclude that D′C+B′Q = 0, we suppose (without loss of generality)
that

A =

[
A1 0
0 A2

]
, B =

[
B1

B2

]
,

C =
[

C1 0
]
,
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in which A1 is asymptotically stable and A2 has all its eigenvalues in
the closed right-half plane. Since Q = limt→−∞ Q(t) and Q(T ) = 0, it
follows that

Q =

[
Q1 0
0 0

]
.

From these considerations and (3.2.15), Z ∈ H∞ defined by the realiza-
tion (A1, B1,D

′C1 + B′
1Q1, 0) satisfies Z + Z∼ = 0, which is equivalent

to Z = 0 because Z has all its poles in the open-left-half plane. Since
(A,B) is controllable, (A1, B1) is also controllable and we conclude that
D′C1 + B′

1Q1 = 0. It now follows that D′C + B′Q = 0.

Main points of the section

1. The basic system theoretic notions of causality, time-invariance and
linearity have been reviewed. Stability has been defined to mean
w ∈ L2[0,∞) ⇒ Gw ∈ L2[0,∞).

2. The infinity norm of a transfer function matrix G is defined by
‖G‖∞ = supω σ

(
G(jω)

)
. A transfer function matrix G maps L2

to L2 if and only if ‖G‖∞ is finite; this space is known as L∞.

3. A transfer function matrix G defines a stable system if and only if

(a) G is analytic in the right-half of the complex plane;

(b) ‖G‖∞ is finite.

The space of transfer function matrices satisfying these properties
is called H∞.

4. A linear system G has adjoint system denoted by G∼.

5. A system for which the norm of the output is equal to the norm of
the input is called an allpass system. A system is allpass if and only
if G∼G = I. A condition for a state-space system to be allpass is
given in Theorem 3.2.1.

3.3 The size of a system

For a linear, time-invariant system, we may use the infinity norm of the transfer
function matrix as the measure of size. This notion of system size is ideally suited
to the frequency domain design ideas developed in Chapter 2, but is limited to
the linear time-invariant case. Since our aim is to obtain robust stability theorems
in which the systems may be time-varying and nonlinear, a generalization of the
notion of size to time-varying and nonlinear systems is required. The basic theorem
we need for such stability results is known as the small gain theorem and we will
measure the size of systems by a quantity known as the incremental gain. For



90 SIGNALS AND SYSTEMS

systems that are causal and stable, the incremental gain is equal to the (Lipschitz)
induced norm. The incremental gain, the induced norm and the infinity norm are
identical for systems that are causal, linear, stable and time-invariant.

We also introduce the 2-norm of a system, which is the norm associated with
the LQG optimal control problem, although this will play only a minor role in this
book.

3.3.1 The incremental gain

Suppose G : L2e 7→ L2e. The incremental gain of the system G is defined by

γ(G) = inf{γ : ‖Gw − Gw̃‖2,[0,T ] ≤ γ‖w − w̃‖2,[0,T ]

for all w, w̃ ∈ L2e and for all T ≥ 0}. (3.3.1)

Since

‖(G + H)w − (G + H)w̃‖2,[0,T ] ≤ ‖Gw − Gw̃‖2,[0,T ] + ‖Hw − Hw̃‖2,[0,T ],

it is clear that
γ(G + H) ≤ γ(G) + γ(H).

Indeed, the incremental gain is a norm. In addition, the submultiplicative property

γ(GH) ≤ γ(G)γ(H)

which is vital to our work is satisfied. This follows from the inequalities

‖GHw − GHw̃‖2,[0,T ] ≤ γ(G)‖Hw − Hw̃‖2,[0,T ]

≤ γ(G)γ(H)‖w − w̃‖2,[0,T ].

We note the following facts concerning the incremental gain:

1. Any system that has finite incremental gain is causal. To see this, sup-
pose γ(G) is finite. Take w̃ = P T w in the definition to obtain ‖(G −
GP T )w‖2,[0,T ] = 0 for all w and all T . Hence P T G = P T GP T for all
T , which shows G is causal.

2. Any system that has finite incremental gain is stable, since

‖Gw‖2,[0,T ] ≤ γ(G)‖w‖2,[0,T ]

≤ γ(G)‖w‖2.

The right-hand side is finite if w ∈ L2[0,∞) and is independent of T . There-
fore ‖Gw‖2 is finite.

3. Any system that has finite incremental gain is continuous on L2[0, T ], since
‖w − w̃‖2,[0,T ] < ε/γ(G) implies that ‖Gw − Gw̃‖2,[0,T ] < ε.

4. The memoryless system
(
fw

)
(t) = f

(
w(t)

)
with f a differentiable real valued

function of a real variable has γ(f) = supw | df
dw |.
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3.3.2 The induced norm

Suppose G : S1 7→ S2, where S1 and S2 are normed spaces such as L2[0, T ] or
L2[0,∞). The (Lipschitz) induced norm of G is defined by

‖G‖ = sup
w−w̃ 6=0

‖Gw − Gw̃‖S2

‖w − w̃‖S1

. (3.3.2)

It follows trivially from the definition (3.3.2) that

‖Gw − Gw̃‖S2
≤ ‖G‖‖w − w̃‖S1

for all w, w̃ ∈ S1.

Notice that although we have used the symbol ‖ ·‖ again, no confusion should arise.
‖X‖ is the induced norm of a system, ‖X‖ = σ(X) is a matrix norm (which is

induced by the Euclidean norm on R
n) and ‖x‖ =

√
x′x is the Euclidean norm on

R
n.

It is a standard exercise to show that an induced norm is indeed a norm. In
addition, the induced norm has the submultiplicative property

‖GH‖ ≤ ‖G‖‖H‖. (3.3.3)

For systems that are causal and stable, ‖G‖ = γ(G), in which ‖G‖ is the norm
induced by L2[0,∞). We use ‖ · ‖[0,T ] to denote the norm induced by L2[0, T ].

In the case of linear systems, we may replace (3.3.2) by

‖G‖ = sup
w 6=0

‖Gw‖S2

‖w‖S1

. (3.3.4)

If G is a state-space system, it follows from (3.2.4) that ‖G‖[0,T ] is finite for any
finite T . To see this, we note that

z(t) − D(t)w(t) =

∫ T

0

G(t, τ)w(τ) dτ,

in which G(t, τ) = C(t)Φ(t, τ)B(τ) for t ≥ τ and G(t, τ) = 0 for t < τ . By the
Cauchy-Schwartz inequality,

‖z(t) − D(t)w(t)‖2 ≤
∫ T

0

σ
(
G(t, τ)

)2
dτ

∫ T

0

‖w(τ)‖2 dτ

≤ M2‖w‖2
2,[0,T ],

in which M2 = maxt∈[0,T ]

∫ T

0
σ
(
G(t, τ)

)2
dτ < ∞, since G(t, τ) is continuous in t

and τ . Therefore

‖z‖2,[0,T ] ≤ ‖z − Dw‖2,[0,T ] + ‖Dw‖2,[0,T ]

≤
(

MT 1/2 + max
t∈[0,T ]

σ
(
D(t)

))
‖w‖2,[0,T ].
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As D(t) is continuous, the maximum is finite and we conclude that ‖G‖[0,T ] is finite.
When the system G is linear and time-invariant, it may be represented by a

transfer function matrix G(s). Since z(s) = G(s)w(s) we may define ‖G(s)‖ to be
the norm induced by a frequency domain signal norm such as the L2 norm. By
Parseval’s identity, this induced norm on the transfer function matrix is identical
to the norm on the system induced by L2(−∞,∞) and we may therefore write
‖G‖ = ‖G(s)‖.

For w ∈ L2 and z = Gw we have

‖z‖2
2 =

1

2π

∫ ∞

−∞
‖z(jω)‖2 dω

≤ sup
ω

σ
(
G(jω)

)2 1

2π

∫ ∞

−∞
‖w(jω)‖2 dω

= ‖G‖2
∞‖w‖2

2.

Hence, by (3.3.4), ‖G‖ ≤ ‖G‖∞. In fact

‖G‖ = ‖G‖∞.

That is, for a linear, time-invariant system, the norm induced by the 2-norm is
precisely the infinity norm of its transfer function matrix.

Induced norms and allpass systems

Suppose a system G : S1 7→ S2 and A : S2 7→ S3 is allpass. Since ‖AGw‖S3
=

‖Gw‖S2
for all w ∈ S1 it follows from (3.3.4) that

‖AG‖ = ‖G‖. (3.3.5)

Considering the case G = I, any allpass system A has ‖A‖ = 1.

The induced norm of the adjoint system

Suppose S1 and S2 are Hilbert spaces and G : S1 7→ S2 is a linear system with
adjoint G∼. Then for any z ∈ S2

‖G∼z‖2
S1

= 〈G∼z,G∼z〉S1

= 〈GG∼z, z〉S2

≤ ‖GG∼z‖S2
‖z‖S2

by the Cauchy-Schwarz inequality

≤ ‖G‖‖G∼z‖S1
‖z‖S2

.

Therefore, ‖G∼z‖S1
≤ ‖G‖‖z‖S2

for all z. Consequently ‖G∼‖ ≤ ‖G‖. Since
(G∼)∼ = G, we also see that ‖G‖ = ‖(G∼)∼‖ ≤ ‖G∼‖. Hence

‖G∼‖ = ‖G‖. (3.3.6)
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3.3.3 The 2-norm of a system

The 2-norm of the system G is the expected root-mean-square (RMS) value of the
output when the input is a realization of a unit variance white noise process. That
is, if the input is

w(t) =

{
a unit variance white noise process, t ∈ [0, T ]
0 otherwise.

(3.3.7)

and z = Gw, the finite-horizon 2-norm of G is defined by

‖G‖2
2,[0,T ] = E

{
1

T

∫ T

0

z′(t)z(t) dt

}
, (3.3.8)

in which E(·) is the expectation operator.
In the case of a linear system,

z(t) =

∫ T

0

G(t, τ)w(τ) dτ

when w is given by (3.3.7). Substituting into (3.3.8), noting that z′z = trace(zz′)
and interchanging the order of integration and expectation we obtain

‖G‖2
2,[0,T ] =

1

T

∫ T

0

dt

∫ T

0

dτ

∫ T

0

trace
(
G(t, τ)E{w(τ)w′(σ)}G′(t, σ)

)
dσ

=
1

T

∫ T

0

dt

∫ T

0

trace
(
G(t, τ)G′(t, τ)

)
dτ (3.3.9)

since E
(
w(τ)w′(σ)

)
= Iδ(τ − σ).

Note that the right-hand side of (3.3.9) is finite if and only if G(·, ·) ∈ L2[0, T ]×
L2[0, T ]. In particular, G(·, ·) must not contain delta functions. Thus, the system
defined by w(t) 7→ D(t)w(t), which we may write as

z(t) =

∫ ∞

−∞
D(t)δ(t − τ)w(τ) dτ,

has infinite 2-norm (unless D(t) ≡ 0).
In the time-invariant case G(t, τ) = G(t − τ, 0). Writing G(t − τ) instead of

G(t − τ, 0) and setting σ = t − τ in (3.3.9) we obtain

‖G‖2
2,[0,T ] =

1

T

∫ T

0

dt

∫ t

t−T

trace
(
G(σ)G′(σ)

)
dσ.

Interchanging the order of integration yields

‖G‖2
2,[0,T ] =

∫ T

−T

trace
(
G(t)G′(t)

)
dt

− 1

T

∫ T

0

trace
(
G(t)G′(t) + G(−t)G′(−t)

)
t dt.
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If G is such that the integrals remain bounded11 as T → ∞ we obtain the infinite-
horizon 2-norm of G:

‖G‖2
2 =

∫ ∞

−∞
trace

(
G(t)G′(t)

)
dt (3.3.10)

=
1

2π

∫ ∞

−∞
trace

(
G(jω)G∗(jω)

)
dω. (3.3.11)

Here G(jω) is the Fourier transform of G(t); the final equality follows from Parse-
val’s identity. It follows from (3.3.11) that a necessary and sufficient condition for
‖G‖2 finite is that G ∈ L2.

Although ‖·‖2 defines a norm on systems, the submultiplicative property satisfied
by the incremental gain, the induced norm and the infinity norm does not hold for
‖ · ‖2. That is, ‖GH‖2 may be greater than or less than ‖G‖2‖H‖2 (an exercise
requests an example of each case). This is why it is not possible to obtain stability
robustness results using the 2-norm as the measure of system size.

The adjoint of G on L2[0, T ] has the form

[G∼y](t) =

∫ T

0

G′(τ, t)y(τ) dτ.

Since trace[XY ′] = trace[Y ′X] for any matrices X and Y of the same dimensions, it
follows from (3.3.9) that ‖G∼‖2,[0,T ] = ‖G‖2,[0,T ] and from (3.3.10) that ‖G∼‖2 =
‖G‖2.

The following result expresses the 2-norm of a state-space system in terms of
the controllability or observability gramian of the realization.

Theorem 3.3.1 Suppose G is a linear system described by the state-space equations

ẋ(t) = A(t)x(t) + B(t)u(t), x0 = 0,

y(t) = C(t)x(t) + D(t)w(t).

1. A necessary and sufficient condition for ‖G‖2,[0,T ] < ∞ is D(t) ≡ 0 for all
t ∈ [0, T ].

2. If D(t) ≡ 0 for all t ∈ [0, T ], then

‖G‖2
2,[0,T ] =

1

T

∫ T

0

trace
(
C(t)P (t)C ′(t)

)
dt (3.3.12)

=
1

T

∫ T

0

trace
(
B′(t)Q(t)B(t)

)
dt, (3.3.13)

in which P (t) is the controllability gramian satisfying

Ṗ (t) = A(t)P (t) + P (t)A′(t) + B(t)B′(t), P (0) = 0,

11For example, assume that trace
(
G(t)G′(t)

)
≤ αe−β2|t|.
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and Q(t) is the observability gramian satisfying

−Q̇(t) = Q(t)A(t) + A′(t)Q(t) + C ′(t)C(t), Q(T ) = 0.

3. If the matrices A, B and C and D are constant and A is asymptotically stable,
then ‖G‖2 is finite if and only if D = 0 and in this case

‖G‖2
2 = trace(CPC ′)

= trace(B′QB),

in which

AP + PA′ + BB′ = 0

QA + A′Q + C ′C = 0.

Proof. Let Φ(t, τ) denote the transition matrix associated with A(t). Then

G(t, τ) =

{
C(t)Φ(t, τ)B(τ) + D(t)δ(t − τ) for t ≥ τ
0 otherwise.

We see that G(t, τ) ∈ L2[0, T ] × L2[0, T ] if and only if D(t) ≡ 0 for t ∈ [0, T ], and
consequently ‖G‖2,[0,T ] is finite if and only if D(t) ≡ 0 for t ∈ [0, T ], which we
henceforth assume. Substituting G(t, τ) into (3.3.9) we obtain

‖G‖2
2,[0,T ] =

1

T

∫ T

0

trace
(
C(t)M(t)C ′(t)

)
dt,

in which

M(t) =

∫ t

0

Φ(t, τ)B(τ)B′(τ)Φ′(t, τ) dτ.

Invoking Leibniz’s rule on interchanging the order of differentiation and integration
we obtain

d

dt
M(t) = B(t)B′(t) + A(t)M(t) + M(t)A′(t).

Since M(0) = 0, we see that P (t) = M(t) and (3.3.12) follows.
To obtain (3.3.13), we note that

d

dt

(
P (t)Q(t)

)
= Ṗ (t)Q(t) + P (t)Q̇(t)

= APQ − PQA + BB′Q − PC ′C.

Integrating from 0 to T yields

∫ T

0

P (t)C ′(t)C(t) dt

=

∫ T

0

(
A(t)P (t)Q(t) − P (t)Q(t)A(t) + B(t)B′(t)Q(t)

)
dt.
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Taking the trace of this identity, we have that

∫ T

0

trace
(
C(t)P (t)C ′(t)

)
dt =

∫ T

0

trace
(
B′(t)Q(t)B(t)

)
dt.

For the infinite-horizon result, since A is asymptotically stable, the controllability
and observability gramians P (t) and Q(t) converge to constant matrices, which are
the unique solutions to the stated algebraic equations.

Main points of the section

1. We have introduced three ways of determining the “size” of a sys-
tem. These are the incremental gain, the induced norm and the
2-norm.

2. A system with finite incremental gain is causal and stable.

3. The L2[0, T ] induced norm of a state-space system is finite.

4. For causal, stable systems, the incremental gain and the L2[0,∞)
induced norm are equal. If, in addition, the system is linear and
time-invariant, the incremental gain and the induced norm are
equal to the infinity norm.

5. An allpass system A has the property ‖GA‖ = ‖G‖. In particular,
‖A‖ = 1.

6. A linear system and its adjoint system have the same induced norm.

7. The 2-norm of a system is the expected value of the RMS power
of the output when the system is driven by white noise of unit
variance.

8. A linear system and its adjoint system have the same 2-norm.

9. The 2-norm of a state-space system is given by a trace formula
involving either the controllability or the observability gramian of
the realization.

3.4 The small gain theorem

The small gain theorem is the key result on which the robust stability analysis in
this book depends. Essentially, the small gain theorem states that if a feedback
loop consists of stable systems and the loop-gain product is less than unity, then
the feedback loop is internally stable. Several versions of the small gain theorem
are available in the literature. The version we will use is based on the incremental
gain and it guarantees the existence of solutions to the loop equations as well as
their stability.

The small gain theorem is based on a fixed point theorem known as the contrac-
tion mapping theorem, which we now present.
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Contractive systems

A system S : S 7→ S in which S is a Banach space (such as L2[0, T ] or L2[0,∞)) is
a contraction if its (Lipschitz) induced norm is less than 1. That is, there exists a
γ < 1 such that

‖Sw − Sw̃‖S ≤ γ‖w − w̃‖S for all w, w̃ ∈ S.

For example, a system S : L2e 7→ L2e with γ(S) < 1 is a contraction on L2[0, T ] for
any T .

A contractive system S has the property that there exists w ∈ S such that
w = Sw. This is known as the contraction mapping theorem.

To see that such a w exists, choose any w0 ∈ S and define the sequence wk+1 =
Swk. This sequence is Cauchy, since ‖wk+1 −wk‖ ≤ γ‖wk −wk−1‖ for some γ < 1,
and this implies limk→∞ ‖wk+1 − wk‖ = 0. Since S is a Banach space, there is a
w ∈ S such that w = limk→∞ wk. Since ‖S‖S is finite, S is continuous on S. Hence
w = limk→∞(Swk−1) = S(limk→∞ wk−1) = Sw.

The small gain theorem

f
f

s
s

G1

G2

--

?¾¾

6

w1 e1

w2e2

Figure 3.1: Feedback loop for the small gain theorem.

Theorem 3.4.1 Suppose the systems G1 : L2e 7→ L2e and G2 : L2e 7→ L2e in
Figure 3.1 have finite incremental gains such that γ(G1)γ(G2) < 1. Then:

1. For all w1, w2 ∈ L2e, there exist unique solutions e1, e2 ∈ L2e.

2. For all w1, w2 ∈ L2[0,∞), there exist unique solutions e1, e2 ∈ L2[0,∞).
That is, the closed loop is internally stable.

Proof. Let w1T = P T w1 and w2T = P T w2 and define the system S by

Se2T = w2T + P T

(
G1

(
w1T + P T (G2e2T )

))
.

S is a contraction on L2[0, T ] since γ(G1)γ(G2) < 1 and

‖Se2T − Sê2T ‖2,[0,T ]
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= ‖G1

(
w1T + P T (G2e2T )

)
− G1

(
w1T + P T (G2ê2T )

)
‖2,[0,T ]

≤ γ(G1)‖G2e2T − G2ê2T ‖2,[0,T ]

≤ γ(G1)γ(G2)‖e2T − ê2T ‖2,[0,T ].

Consequently, by the contraction mapping theorem, there is an e2T ∈ L2[0, T ] such
that e2T = Se2T for any T . That is,

e2T = w2T + P T

(
G1

(
w1T + P T (G2e2T )

))
.

Recalling that the finite incremental gain assumption implies that the systems Gi

are causal, it follows that

e2T = P T

(
w2 + G1(w1 + G2e2)

)

= P T e2,

in which e2 satisfies the loop equations (on [0, T ]). Since T was arbitrary, we
conclude that for any w1 and w2 ∈ L2e, there is an e2 ∈ L2e satisfying the loop
equations. The same holds for e1 by a similar argument.

When w1 and w2 are in L2[0,∞), we may apply the above arguments on L2[0,∞)
instead of L2[0, T ] to obtain the result.

The remarkable feature of this theorem is that we can establish the internal
stability of the closed loop without any precise knowledge of the systems Gi making
up the loop. All we need to know is that the systems Gi have finite incremental
gains such that the product of their incremental gains is smaller than 1.

Example 3.4.1. Suppose G1 is the saturation nonlinearity

(
G1e1

)
(t) =

{
e1(t) if ‖e1(t)‖ ≤ M

Msign
(
e1(t)

)
otherwise,

which has γ(G1) = 1. Then the feedback loop will be internally stable for any
system G2 for which γ(G2) < 1. 5

Main point of the section

If the product of the incremental gains of systems in a feedback loop is
strictly less than unity, the feedback loop is internally stable. This is
known as the small gain theorem.

3.5 Loop transformation

It is often the case that the systems comprising a feedback loop fail to satisfy the
hypotheses of the small gain theorem. In such cases, it may be possible to establish
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the stability of the closed loop by applying the small gain theorem to a modified
form of the feedback system that has the same stability properties.

Three common loop transformations will be introduced. The first is a linear
multiplier or weight, the second is a linear shift and the third is the famous trans-
formation relating passive and contractive systems. Readers familiar with classical
network theory will recall this as the transformation relating the admittance de-
scription of a circuit to its scattering description. Many other loop transformations
are possible—sector bounded nonlinearities, for example, may be transformed into
systems that have incremental gain less than unity (see Section 4.7). These trans-
formations have a linear fractional character that will be considered in more detail
in the next chapter. Our purpose here is to show that loop transformations can
extend the range of applicability of the small gain theorem.

3.5.1 Multipliers or weights

The use of “multipliers” or “weights” is common currency in control system op-
timization. In the case of infinity norm optimization, the introduction of weights
allows the frequency dependent characteristics of signals and systems to be cap-
tured as well as their size. For example, if G is known to be low-pass, mean-
ing that σ

(
G(jω)

)
< w(jω) for all ω and some scalar low-pass weight w, then

‖w−1G‖∞ < 1 contains this information in a compact way. Similarly, a low-
frequency disturbance is modelled by ‖w−1d‖2 < 1, in preference to the model
‖d‖2 < 1, which does not contain the a priori knowledge about the low-frequency
nature of the disturbance.

The following result justifies the use of weights in determining closed-loop sta-
bility.

f
f

s
s

G1 W

G2 W−1

Ĝ1 = WG1

Ĝ2 = G2W
−1

- - -

?¾¾¾

6

e2 ê2 ŵ2 = Ww2

e1w1

Figure 3.2: Feedback loop with weight.

Lemma 3.5.1 Consider the two feedback loops shown in Figures 3.1 and 3.2. Sup-
pose G1, G2 : L2e 7→ L2e and that W : L2e 7→ L2e is a linear system such that
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W−1 : L2e 7→ L2e.

1. If w1, w2 ∈ L2e implies e1, e2 ∈ L2e in Figure 3.1, then w1, ŵ2 ∈ L2e implies
e1, ê2 ∈ L2e in Figure 3.2.

2. If w1, ŵ2 ∈ L2e implies e1, ê2 ∈ L2e in Figure 3.2, then w1, w2 ∈ L2e implies
e1, e2 ∈ L2e in Figure 3.1.

If W and W−1 are stable, then

3. The loop in Figure 3.1 is internally stable if and only if the loop in Figure 3.2
is internally stable.

Proof. Since W−1 is linear, we have

e2 = w2 + G1e1

= W−1(Ww2 + WG1e1),

which verifies that the loop in Figure 3.2 generates the same signal as that in
Figure 3.1.

1. Let w1, ŵ2 ∈ L2e. Define w2 = W−1ŵ2 ∈ L2e and apply the inputs w1 and w2

to the loop of Figure 3.1 to obtain e1, e2 ∈ L2e. Now define ê2 = W e2 ∈ L2e.

2. Let w1, w2 ∈ L2e. Define ŵ2 = Ww2 and apply the inputs w1 and ŵ2 to the
loop in Figure 3.2 to obtain e1 and ê2 ∈ L2e. Now define e2 = W−1ê2 ∈ L2e.

3. Repeat the above arguments with L2e replaced by L2[0,∞).

Combining this with the small gain theorem we have, for example:

Corollary 3.5.2 Suppose G1, G2 are stable. Then the loop in Figure 3.1 is in-
ternally stable if there exists a stable linear system W such that W−1 is stable
and

γ(WG1)γ(G2W
−1) < 1.

3.5.2 Linear shift

Lemma 3.5.3 Consider the two feedback loops shown in Figures 3.1 and 3.3. Sup-
pose G1, G2 : L2e 7→ L2e and that H : L2e 7→ L2e is a linear system such that
G2(I − HG2)

−1 : L2e 7→ L2e.

1. If w1, w2 ∈ L2e implies e1, e2 ∈ L2e in Figure 3.1, then w1, ŵ2 ∈ L2e implies
e1, ê2 ∈ L2e in Figure 3.3.

2. If w1, ŵ2 ∈ L2e implies e1, ê2 ∈ L2e in Figure 3.3, then w1, w2 ∈ L2e implies
e1, e2 ∈ L2e in Figure 3.1.

If H and G2(I − HG2)
−1 are stable, then
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ff

ff

s

s s

−H

G1

G2

H

Ĝ2 = G2(I − HG2)
−1

Ĝ1 = G1 − H

- - -

?¾

-

?

¾ ¾

6

-

6

w1

ŵ2 = w2 + Hw1

e1

e2 ê2

Figure 3.3: Linear shift transformation.

3. The loop in Figure 3.1 is internally stable if and only if the loop in Figure 3.3
is internally stable.

Proof. Since H is linear, we have

He1 = H(w1 + G2e2)

= Hw1 + HG2e2,

which verifies that the loop in Figure 3.3 generates the same signal as that in
Figure 3.1.

1. Let w1, ŵ2 ∈ L2e. Define w2 = ŵ2 − Hw1 ∈ L2e and apply the inputs
w1 and w2 to the loop of Figure 3.1 to obtain e1, e2 ∈ L2e. Now define
ê2 = (I − HG2)e2 ∈ L2e.

2. Let w1, w2 ∈ L2e. Define ŵ2 = w2 + Hw1 ∈ L2e and apply the inputs w1

and ŵ2 to the loop in Figure 3.3 to obtain e1 and ê2 ∈ L2e. Now define
e2 =

(
I + HG2(I − HG2)

−1
)
ê2 ∈ L2e.

3. Repeat the above arguments with L2e replaced by L2[0,∞). Note that internal
stability of the loop in Figure 3.1 implies that G2e2 = e1 −w1 ∈ L2[0,∞) for
all w1, w2 ∈ L2[0,∞).
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This linear shift together with the small gain theorem yields, for example, the
following closed-loop stability result.

Corollary 3.5.4 The loop in Figure 3.1 is internally stable if there exists a stable
linear system H such that G2(I − HG2)

−1 has finite incremental gain and

γ(G1 − H)γ(G2(I − HG2)
−1) < 1.

Note that this corollary requires that we have sufficient information about G2 to
determine whether G2(I − HG2)

−1 is stable.

3.5.3 Passivity

The passivity theorem is another theorem which allows us to conclude closed-loop
stability from very general properties of the systems comprising the feedback loop.
Any negative feedback loop which is made up of a passive system and a strictly
passive system will be stable. We now show how a version of this result may be
deduced from the small gain theorem.

A system P : L2e 7→ L2e is incrementally strictly passive if there exists an ε > 0
such that

〈Pw − P w̃, w − w̃〉[t0,T ] ≥ ε‖w − w̃‖2
2,[t0,T ]

for all w, w̃ ∈ L2[t0, T ] and all T. (3.5.1)

It is assumed that the system is relaxed at time t0 = 0. If ε = 0 is allowed, the
system is incrementally passive, rather than incrementally strictly passive.

To motivate this definition, let Z be the impedance of a linear, passive circuit,
which maps the vector of port currents i to the vector of port voltages v. Then

〈Zi, i〉[0,T ] =

∫ T

0

i′(t)v(t) dt (3.5.2)

is the energy consumed by the circuit over the time interval [0, T ]. Since a passive
circuit never produces energy, the integral in (3.5.2) must be nonnegative. A strictly
passive circuit consumes energy for any port current i 6= 0 and all terminal times
T , so the integral in (3.5.2) must be positive for any i 6= 0. By evaluating the inner
product in the frequency domain, one can show that the (time-invariant) circuit is
incrementally strictly passive if and only if the transfer function matrix Z is in H∞
and satisfies

Z(jω) + Z∗(jω) ≥ 2εI.

A proof of this is requested as an exercise (Problem 3.15). Since this inequality
is equivalent to the requirement that the real part of Z(jω) is larger than ε for
all ω, such transfer function matrices are called strictly positive real.12 If z is a

12The transfer function matrix is positive real if ε = 0 is allowed.



3.5 LOOP TRANSFORMATION 103

scalar positive real transfer function, the positive real condition is equivalent to
the requirement that the phase of z lies between ±90◦. It is easy to see that if a
positive real transfer function z1 and a strictly positive real transfer function z2 are
connected in a negative feedback configuration, then the Nyquist diagram of z1z2

can never encircle the −1 point. Therefore, the feedback loop must be stable by the
Nyquist criterion.

To derive the passivity theorem from the small gain theorem, we will need the
following properties of passive systems.

Lemma 3.5.5 Suppose P : L2e 7→ L2e is incrementally strictly passive and has
finite incremental gain. Then

1. P−1 : L2e 7→ L2e exists, is incrementally strictly passive and γ(P−1) ≤ 1/ε.

2. (I + P )−1 : L2e 7→ L2e exists, is incrementally strictly passive and γ
(
(I +

P )−1
)

< 1.

Proof.

1. Note that z = Pw is equivalent to w = w + α(z − Pw), for α 6= 0. Choose
z ∈ L2e and set α = ε/γ2, where ε is such that (3.5.1) is satisfied and γ = γ(P ).
Define the system S by Sw = w + α(z −Pw). Then S is a contraction, since

‖Sw − Sw̃‖2
2,[0,T ] = ‖w − w̃ − α(Pw − P w̃)‖2

2,[0,T ]

= ‖w − w̃‖2
2,[0,T ] + α2‖Pw − P w̃‖2

2,[0,T ]

−2α〈Pw − P w̃, w − w̃〉[0,T ]

≤ ‖w − w̃‖2
2,[0,T ]

(
α2γ2 − 2εα + 1

)

=
(
1 − (ε/γ)2

)
‖w − w̃‖2

2,[0,T ].

Hence, there exists a unique w ∈ L2e such that w = Sw. That is, for any
z ∈ L2e, there is a unique w ∈ L2e such that Pw = z. Thus P−1 exists.

Notice that

‖w − w̃‖2,[0,T ] = ‖PP−1w − PP−1w̃‖2,[0,T ]

≤ γ(P )‖P−1w − P−1w̃‖2,[0,T ].

Therefore

〈P−1w − P−1w̃, w − w̃〉2,[0,T ]

= 〈P−1w − P−1w̃,PP−1w − PP−1w̃〉2,[0,T ]

≥ ε‖P−1w − P−1w̃‖2
2,[0,T ]

≥ ε

γ(P )2
‖w − w̃‖2

2,[0,T ],
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which shows that P−1 is incrementally strictly passive.

Also,

‖P−1w − P−1w̃‖2
2,[0,T ]

≤ 1

ε
〈PP−1w − PP−1w̃,P−1w − P−1w̃〉2,[0,T ]

=
1

ε
〈w − w̃,P−1w − P−1w̃〉2,[0,T ]

≤ 1

ε
‖w − w̃‖2,[0,T ]‖P−1w − P−1w̃‖2,[0,T ]

by Cauchy-Schwartz. Hence

‖P−1w − P−1w̃‖2,[0,T ] ≤
1

ε
‖w − w̃‖2

2,[0,T ],

which shows that γ(P−1) ≤ 1/ε.

2. Since P is incrementally strictly passive, the system I+P is also incrementally
strictly passive:

〈(I + P )w − (I + P )w̃, w − w̃〉[0,T ]

= ‖w − w̃‖2
2,[0,T ] + 〈Pw − P w̃, w − w̃〉[0,T ]

≥ (1 + ε)‖w − w̃‖2
2,[0,T ].

The result now follows from Item 1.

This result implies that the closed-loop system of Figure 3.1 with G2 = −I is in-
ternally stable provided G1 has finite incremental gain and is incrementally strictly
passive. Item 2, however, does not provide a complete connection between pas-
sive and “small gain” systems, since γ(S) < 1 does not imply P = S−1 − I is
incrementally strictly passive.

ff s sG- - - -?

6

x z y
−−

w

Figure 3.4: Transformation between passive and contractive systems.

Lemma 3.5.6

1. If S : L2e 7→ L2e and γ(S) < 1, then P = (I − S)(I + S)−1 : L2e 7→ L2e is
incrementally strictly passive and has finite incremental gain.
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2. If P : L2e 7→ L2e is incrementally strictly passive and has finite incremental
gain, then the system S = (I − P )(I + P )−1 : L2e 7→ L2e and γ(S) < 1.

Proof.

1. If S : L2e 7→ L2e and γ(S) < 1, then (I + S)−1 : L2e 7→ L2e by the small gain
theorem (Theorem 3.4.1). Furthermore (exercise),

γ
(
(I + S)−1

)
≤ 1

1 − γ(S)
,

giving

γ(P ) ≤ 1 + γ(S)

1 − γ(S)
< ∞.

It remains to show that P is incrementally strictly passive.

Consider two signals x and x̃ entering the loop of Figure 3.4 in which we set
G = S. Let y and ỹ be the corresponding outputs and let w, w̃ and z, z̃ be
the intermediate signals. Note that these signals are all in L2e by the small
gain theorem.

〈y − ỹ, x − x̃〉[0,T ] = 〈w − z − (w̃ − z̃), w + z − (w̃ + z̃)〉[0,T ]

= ‖w − w̃‖2
2,[0,T ] − ‖z − z̃‖2

2,[0,T ]

≥ (1 − γ
(
S

)2
)‖w − w̃‖2

2,[0,T ]

≥ 1 − γ
(
S

)

1 + γ
(
S

)‖x − x̃‖2
2,[0,T ].

The last inequality follows from x − x̃ = (I + S)w − (I + S)w̃, which implies
that ‖x − x̃‖2,[0,T ] ≤ (1 + γ

(
S

)
)‖w − w̃‖2,[0,T ]. Hence P is incrementally

strictly passive.

2. If P : L2e 7→ L2e is incrementally strictly passive and has finite incremental
gain, then (I + P )−1 : L2e 7→ L2e by Lemma 3.5.5. It remains to show that
γ(S) < 1.

Consider two signals x and x̃ entering the loop of Figure 3.4 in which we set
G = P . Let y and ỹ be the corresponding outputs and let w, w̃ and z, z̃ be the
intermediate signals. Note that these signals are all in L2e by Lemma 3.5.5.

‖y − ỹ‖2
2,[0,T ]

= 〈w − z − (w̃ − z̃), w − z − (w̃ − z̃)〉[0,T ]

= ‖w − w̃‖2
2,[0,T ] + ‖z − z̃‖2

2,[0,T ] − 2〈z − z̃, w − w̃〉[0,T ]

≤ 〈w − w̃ + (z − z̃), w − w̃ + (z − z̃)〉[0,T ] − 4ε‖w − w̃‖2
2,[0,T ]

= ‖x − x̃‖2
2,[0,T ] − 4ε‖w − w̃‖2

2,[0,T ]

≤
(

1 − 4ε
(
1 + γ(P )

)2

)
‖x − x̃‖2

2,[0,T ].
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The last inequality follows from x − x̃ = (I + P )w − (I + P )w̃ as before.

Using this transformation and the small gain theorem, we obtain the passivity
theorem:

f
f

s
s

P 1

P 2

- -

?¾

6

¾

−
w1 e1

e2 w2

Figure 3.5: Feedback loop for passivity theorem.

Theorem 3.5.7 Suppose that in Figure 3.5 the systems P 1, P 2 : L2e 7→ L2e have
finite incremental gain and are incrementally strictly passive. Then

1. For all w1, w2 ∈ L2e there exist unique solutions e1, e2 ∈ L2e.

2. For all w1, w2 ∈ L2[0,∞), there exist unique solutions e1, e2 ∈ L2[0,∞).
That is, the loop is internally stable.

Proof. Redraw the loop of Figure 3.1 as shown in Figure 3.6. The results follow
immediately from Lemma 3.5.6 and the small gain theorem (Theorem 3.4.1).

ff

f f

f

f

s

s

P 2

P 1

S1 = (I − P 1)(I + P 1)
−1

S2 = (I − P 2)(I + P 2)
−1

6
¾¾?

6
- - ?-

?¾¾

6
- − −

w1 + w2

w1 − w2

e2

e1

− −

Figure 3.6: Loop shifting transformation for passivity theorem.
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Main points of the section

1. Loop transformations may be introduced before applying the small
gain theorem.

2. Multipliers or weights must be stable, linear systems with stable
inverses if stability properties are to be preserved.

3. By introducing a simple loop transformation, a passivity condition
may be converted into a small gain condition.

4. Two incrementally strictly passive systems may be connected to
form a stable negative feedback loop.

3.6 Robust stability revisited

By using the small gain theorem, the robust stability results of Chapter 2 may
be extended to encompass systems that may be time-varying and nonlinear. The
general situation is depicted in Figure 3.7.

s s∆

P
¾

-

¾ ¾z2

z1 w1

w2

Figure 3.7: Figure for robust stability considerations.

Theorem 3.6.1 Consider the system shown in Figure 3.7. Suppose that ∆ : L2e 7→
L2e and that P : L2e 7→ L2e is causal and linearly connected in the sense that

z1 = P 11w1 + P 12w2

z2 = P 21w1 + P 22w2.

Suppose also that P 11 has finite incremental gain. Then

γ(P 11)γ(∆) < 1 (3.6.1)

implies that for any w2 ∈ L2e, there exist unique solutions w1, z1, z2 ∈ L2e.
If, in addition, P is stable, then w2 ∈ L2[0,∞) implies w1, z1, z2 ∈ L2[0,∞).

That is, the closed loop is stable.
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Proof. Write the loop equations as

z1 = P 11w1 + (P 12w2)

w1 = ∆z1.

Noting that [P 12w2] ∈ L2e for any w2 ∈ L2e, the result follows from the small gain
theorem (Theorem 3.4.1). When P is stable, replace L2e with L2[0,∞).

As an example of the application of this theorem, we consider the analysis of
robustness with respect to an additive model error. The situation is shown in
Figure 3.8, in which G and K are assumed to be causal and linear.

f
f

f
ss

s

A

G

K

- -

?¾¾

6

-

?-

z1 w1

w21

w22z2

Figure 3.8: Feedback system with additive uncertainty.

The loop may be redrawn in the form of Figure 3.7 by choosing z1, z2 and w1

as shown in Figure 3.8 and setting

w2 =

[
w21

w22

]
.

A routine calculation reveals that P is given by

P =

[
K(I − GK)−1 (I − GK)−1 K(I − GK)−1

(I − GK)−1 (I − GK)−1G (I − GK)−1

]
.

If P is stable and γ
(
K(I − GK)−1

)
< ∞, the closed-loop system will map inputs

w2 ∈ L2[0,∞) to “outputs” z1, z2 ∈ L2[0,∞) provided

γ(A) <
1

γ
(
K(I − GK)−1

) . (3.6.2)

The stability of the system P is (by definition) equivalent to the internal stability
of the nominal (A = 0) closed loop. Therefore, provided K stabilizes the nominal
loop, the closed-loop system will be internally stable for any model error A that
satisfies (3.6.2).
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Main points of the section

1. The feedback loop of Figure 3.7 is stable provided P is a stable
linearly connected system with γ(P 11) finite and γ(P 11)γ(∆) < 1.

2. The stability robustness theorems of Chapter 2 can be extended to
time-varying, nonlinear model errors by replacing conditions of the
form σ

(
∆(jω)

)
< δ for all ω with γ(∆) < δ.

3.7 The bounded real lemma

In Chapter 2, we argued that performance and robustness issues in feedback system
design could be posed as objectives for certain closed-loop transfer matrices of the
form σ

(
G(jω)

)
< γ for all ω. These objectives may be written as infinity norm

objectives of the form ‖G‖∞ < γ, since supω σ
(
G(jω)

)
= ‖G‖∞. It is therefore

important that we are able to determine whether ‖G‖∞ < γ.
One approach is to plot σ

(
G(jω)

)
as a function of ω and determine the maximum

by inspection. A more sophisticated version of this approach might involve a search
over ω performed by a computer. Such an approach cannot determine whether
‖G‖∞ < γ because for any ω0, the evaluation of σ

(
G(jω0)

)
merely informs us that

‖G‖∞ ≥ σ
(
G(jω0)

)
. If we have smoothness information about σ

(
G(jω)

)
, we can

determine ‖G‖∞ from such an approach to any desired accuracy.
Alternatively, if we have a method of determining whether ‖G‖∞ < γ, then

‖G‖∞ may be found from

‖G‖∞ = inf
γ
{‖G‖∞ < γ}.

This technique of finding ‖G‖∞ involves a search over γ > 0. For each γ, we test
whether ‖G‖∞ < γ and then decrease or increase γ accordingly. The algorithm may
be designed so that at any time we can stop and conclude that γlow < ‖G‖∞ <
γhigh.

If G is a state-space system, determining whether ‖G‖∞ < γ is an algebraic
problem: find conditions on a realization (A,B,C,D) of G that are equivalent to
‖G‖∞ < γ. The bounded real lemma provides this characterization.13

Theorem 3.7.1 Suppose G = D + C(sI − A)−1B with A asymptotically stable.
Then ‖G‖∞ < γ if and only if

1. ‖D‖ < γ (equivalently R = γ2I − D′D > 0);

2. There exists P = P ′ satisfying the Riccati equation

P (A + BR−1D′C) + (A + BR−1D′C)′P

+PBR−1B′P + C ′(I + DR−1D′)C = 0 (3.7.1)

13In network theory, matrices S ∈ H∞ satisfying ‖S‖∞ < 1 are called strictly bounded real.
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such that A + BR−1(D′C + B′P ) is asymptotically stable.

Furthermore, when such a P exists, P ≥ 0.

Example 3.7.1. Consider the system g = 1
s−a , with a < 0 and realization

(a, 1, 1, 0). The Riccati equation (3.7.1) is

2ap + p2/γ2 + 1 = 0,

which has solutions p = γ2(−a ±
√

a2 − γ−2). Now a + p/γ2 = ±
√

a2 − γ−2 is
either pure imaginary or real and therefore can be asymptotically stable only if
real. In this case, the solution with the minus sign is asymptotically stable. Thus
‖g‖∞ < γ if and only if γ > 1/|a|. Hence,

‖g‖∞ = inf
γ

[γ > ‖g‖∞] = 1/|a|. 5

Two proofs of the bounded real lemma will be given. The first is based on
purely algebraic arguments, while the second is based on an optimization problem.
The first proof shows that the question of whether P exists may be settled by an
eigenvalue calculation and provides an algebraic procedure for determining P . The
second proof shows that P may be determined, when it exists, as the steady-state
solution to a matrix Riccati differential equation. It is also applicable to time-
varying systems—we can determine whether ‖G‖[0,T ] < γ and whether γ(G) < γ.
The optimal control proof also provides a preview of the approach we will use to
solve the controller synthesis problem.

Before proceeding to these complete proofs, we present an sufficiency argument
based on spectral factorization.

Spectral factorization proof of sufficiency

Suppose there is a transfer function matrix W ∈ RH∞ such that W−1 ∈ RH∞
and

γ2I − G∼(jω)G(jω) = W∼(jω)W (jω). (3.7.2)

Any such transfer function matrix W is called a spectral factor of γ2I − G∼G.
Since W−1 ∈ RH∞, the right-hand side of (3.7.2) is strictly positive for all real ω.
Therefore, if a spectral factor W exists, ‖G‖∞ < γ.

Conditions 1 and 2 of the bounded real lemma, namely that R > 0 and that
P exists, enable us to construct a spectral factor of γ2I − G∼G. Let W be any
nonsingular matrix such that W ′W = γ2I−D′D, define L = −(W ′)−1(D′C +B′P )
and define

W = W + L(sI − A)−1B. (3.7.3)

Note that W−1 has realization (A−BW−1L,BW−1,−W−1L,W−1). Since A and
A − BW−1L are asymptotically stable, W and W−1 are in RH∞. From (3.7.1)
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and the definition of W and L, we obtain

PA + A′P +
[

C ′ L′ ] [
C
L

]
= 0

[
γ−1D′ γ−1W ′ ] [

C
L

]
+ γ−1B′P = 0

[
γ−1D′ γ−1W ′ ] [

γ−1D
γ−1W

]
= I.

By Theorem 3.2.1, the transfer function matrix

γ−1

[
G

W

]
s
=




A γ−1B
C γ−1D
L γ−1W





is allpass. Hence G∼G + W∼W = γ2I and we conclude that W is the desired
spectral factor.

Note

Theorem 3.7.1 characterizes state-space systems that satisfy ‖G‖∞ < γ. The term
“bounded real lemma” generally refers to the characterization of state-space systems
that satisfy ‖G‖∞ ≤ γ:

If A is asymptotically stable, then ‖G‖∞ ≤ γ if and only if there exist
real matrices P ≥ 0, L and W satisfying

PA + A′P + C ′C = −L′L

D′C + B′P = −W ′L

γ2I − D′D = W ′W.

The sufficiency proof follows by the spectral factorization argument above. When
‖G‖∞ = γ, the spectral factor W = W + L(sI − A)−1B will have zeros on the
imaginary axis. The strict inequality case is technically easier and is all we require.

3.7.1 An algebraic proof

The question of whether ‖G‖∞ < γ may be settled by determining whether some
object has imaginary axis roots. To see this, choose any ω0 ∈ R∪∞. If σ

(
G(jω0)

)
≥

γ, then ‖G‖∞ ≥ γ. If, on the other hand, σ
(
G(jω0)

)
< γ, then σ

(
G(jω)

)
< γ for

all ω if and only if γ − σ
(
G(jω)

)
is never zero. It is convenient to take w0 = ∞,

which yields the following lemma. It is worth noting that this result has the added
advantage of not requiring that A be asymptotically stable.
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Lemma 3.7.2 Suppose G = D +C(sI −A)−1B in which A has no imaginary axis
eigenvalue. Then

sup
ω

σ
(
G(jω)

)
< γ (3.7.4)

if and only if:

1. ‖D‖ < γ (equivalently R = γ2I − D′D > 0);

2.

H =

[
A 0

−C ′C −A′

]
−

[
−B
C ′D

]
R−1

[
D′C B′ ]

(3.7.5)

has no eigenvalue on the imaginary axis.

Proof. Condition 1 is obtained from ‖D‖ = σ
(
G(∞)

)
≤ supω σ

(
G(jω)

)
< γ.

Assuming now that ‖D‖ < γ,

sup
ω

σ
(
G(jω)

)
< γ ⇔ γ2I − G∼(jω)G(jω) > 0 for all ω

⇔ det
(
γ2I − G∼(jω)G(jω)

)
6= 0 for any ω.

Now

γ2I − G∼G
s
=




A 0 −B

−C ′C −A′ C ′D

D′C B′ γ2I − D′D



 . (3.7.6)

Since A has no eigenvalue on the imaginary axis, the realization in (3.7.6) has no
uncontrollable or unobservable mode on the imaginary axis. Therefore, γ2I −G∼G

has no zero on the imaginary axis if and only if H has no eigenvalue on the imaginary
axis.

Example 3.7.2. Consider g = 1
s−a again. Then

H =

[
a γ−2

−1 −a

]
(3.7.7)

has eigenvalues ±
√

a2 − γ−2. Clearly H has no imaginary axis eigenvalue if and
only if γ > 1/|a| = ‖g‖∞. 5

The next result links the spectral condition on the Hamiltonian matrix (3.7.5)
with the existence of a stabilizing solution to the Riccati equation (3.7.1).

Lemma 3.7.3 Suppose A is asymptotically stable, ‖D‖ < γ and H is as in (3.7.5).
Then H has no imaginary axis eigenvalue if and only if there exists a matrix P
satisfying Condition 2 of Theorem 3.7.1. Furthermore, P ≥ 0.
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Proof. Suppose P satisfying Condition 2 exists. Then

[
I 0

−P I

]
H

[
I 0
P I

]
=

[
Â BR−1B′

0 −Â′

]
,

in which Â = A + BR−1(D′C + B′P ). Since Â is asymptotically stable, it follows
that H has no imaginary axis eigenvalue.

Now suppose H has no imaginary axis eigenvalue. Since H is Hamiltonian, its
eigenvalues are symmetric with respect to the imaginary axis (see Problem 3.21)
and since none are on the axis, H has n eigenvalues with strictly negative real part.
Let

H

[
X1

X2

]
=

[
X1

X2

]
Λ, (3.7.8)

in which Λ is an n × n, asymptotically stable and real matrix, and

[
X1

X2

]
is a

2n × n real matrix with full column rank, in which n is the dimension of A. From
the properties of Hamiltonian matrices, X ′

2X1 = X ′
1X2 (see Problem 3.21).

Claim X1 is nonsingular. Suppose, to the contrary, that X1z = 0, z 6= 0. From
(3.7.8), we have

(A + BR−1D′C)X1 + BR−1B′X2 = X1Λ. (3.7.9)

Hence

X ′
2(A + BR−1D′C)X1 + X ′

2BR−1B′X2 = X ′
2X1Λ = X ′

1X2Λ.

Multiplying by z′ on the left and by z on the right, and noting that R−1 > 0
by assumption, we obtain B′X2z = 0. Now multiply (3.7.9) by z to obtain
X1Λz = 0. Iterating this argument yields

X1z = 0 ⇒
[

X1

B′X2

]
Λkz = 0 for k = 0, 1, 2, . . .

⇒ (Λ,

[
X1

B′X2

]
) is not observable.

Consequently, by the Popov-Belevich-Hautus observability test (see Kailath
[105], for example), there exists y 6= 0 and λ such that




Λ − λI

X1

B′X2



 y = 0.

Note that Re(λ) < 0 because Λ is asymptotically stable. From (3.7.8) we have
that

−C ′(I + DR−1D′)CX1 − (A′ + C ′DR−1B′)X2 = X2Λ.
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Multiplying by y we get −A′X2y = λX2y, which we may rearrange to obtain
(λI +A′)X2y = 0. Because A is asymptotically stable and Re(λ) < 0, λI +A′

is nonsingular and therefore X2y = 0. We now have X1y = 0 and X2y = 0,

which contradicts the full rank property of

[
X1

X2

]
. We conclude that X1 is

nonsingular.

To obtain P , set P = X2X
−1
1 . It is easy to show that (3.7.1) is satisfied and that

A + BR−1(D′C + B′P ) = X1ΛX−1
1 ,

which is asymptotically stable. (The required calculations are requested in Prob-
lem 3.21.)

To show that P ≥ 0, write the Riccati equation (3.7.1) as

PA + A′P + (D′C + B′P )′R−1(D′C + B′P ) + C ′C = 0. (3.7.10)

This, together with A stable and R−1 > 0, implies P ≥ 0, since P is the observability

gramian of

(
A,

[
C

R− 1
2 (D′C + B′P )

])
.

The bounded real lemma is obtained by combining these two results.

3.7.2 An optimal control proof

Instead of using the property ‖G‖∞ = supω σ
(
G(jω)

)
, we now use the property

that, for a stable system,

‖G‖∞ = sup
w∈L2[0,∞)

‖z‖2

‖w‖2
,

in which z = Gw. Hence ‖G‖∞ < γ if and only if there is an ε > 0 such that
‖z‖2

2 − γ2‖w‖2
2 ≤ −ε‖w‖2

2 for all w ∈ L2[0,∞). The optimal control problem

max
w∈L2[0,∞)

{
J(w) =

∫ ∞

0

(
z′(t)z(t) − γ2w′(t)w(t)

)
dt

}

is therefore intimately related to the question at hand.
Initially, we consider the optimization problem on the finite time interval [0, T ];

this determines whether the L2[0, T ] induced norm is strictly less than γ. For
this work, there is no advantage in assuming that the system is time-invariant.
By allowing the horizon length T to be arbitrary, we may determine whether the
incremental gain γ(G) is strictly less than γ. For the infinite-horizon problem, the
main technical issue is to show that the maximizing w is actually in L2[0,∞) rather
than L2e. For this work we restrict our attention to the time-invariant case.



3.7 THE BOUNDED REAL LEMMA 115

The finite-horizon case

Consider the state-space system

ẋ(t) = A(t)x + B(t)w(t), x(0) = 0, (3.7.11)

z(t) = C(t)x(t). (3.7.12)

To simplify the expressions, we have assumed that D(t) = 0, since this assump-
tion results in no loss of generality (see Problem 4.16). In the following, the time
dependence is not shown explicitly. Define the performance index

JT (w) =

∫ T

0

(z′z − γ2w′w) dt. (3.7.13)

Theorem 3.7.4 There exists an ε > 0 such that JT (w) ≤ −ε‖w‖2
2,[0,T ] for all

w ∈ L2[0, T ] if and only if the Riccati differential equation

−Ṗ = PA + A′P + γ−2PBB′P + C ′C, P (T ) = 0 (3.7.14)

has a solution on [0, T ].
If the solution P (t) exists on [0, T ], then P (t) ≥ 0 for any t ∈ [0, T ].

An alternative statement of the result is that ‖G‖[0,T ] < γ if and only if (3.7.14)
has a solution on [0, T ].

Recall that for a linear system the incremental gain is given by

γ(G) = inf{γ : ‖Gw‖2,[0,T ] ≤ γ‖w‖2,[0,T ] for all w ∈ L2e and for all T}.

Hence γ(G) < γ if and only if the Riccati differential equation (3.7.14) has a solution
on [0, T ] for all finite T .

Example 3.7.3. We return to the system g = 1
s−a , a < 0, once more. Let

τ = T − t, λ =
√

a2 − γ−2, and note that ±λ are the eigenvalues of H in (3.7.7).
When λ is imaginary (i.e., γ ≤ 1/|a|) let λ = jω. The solution to the Riccati

equation is then given by

p(t) =
1

ω cot(ωτ) − a
.

Hence p(t) exists only for T − t < tan−1(ω/a)
ω , so that ‖g‖[0,T ] < γ if and only if

T < tan−1(ω/a)
ω .

In the case when λ is real,

p(t) =
1

λ coth(λτ) − a
,

which exists for all t ≤ T , since the denominator can never be zero for τ ≥ 0.
Evaluating p(0) in the limit as T → ∞ gives

lim
T→∞

p(0) =
1

λ − a
= −γ2(a +

√
a2 − γ−2).
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Thus, when γ > ‖g‖∞, the solution to the Riccati differential equation converges
to the stabilizing solution to the algebraic Riccati equation. 5

Proof of sufficiency

We prove sufficiency using a time-varying, finite-horizon version of the spectral
factorization argument.

Suppose the solution P (t) exists and define

W
s
=

[
A B

− γ−1B′P γI

]
.

Then

γ−1

[
G

W

]
s
=




A γ−1B
C 0

−γ−1B′P I





is allpass on L2[0, T ] by Theorem 3.2.1. Hence ‖z‖2
2,[0,T ] + ‖η‖2

2,[0,T ] = ‖γw‖2
2,[0,T ],

in which η = Ww, for all w ∈ L2[0, T ]. Since W has a nonsingular D-matrix, W−1

exists and ‖W−1‖[0,T ] < ∞. Setting ε = 1/‖W−1‖2
[0,T ], we have

‖z‖2
2,[0,T ] − ‖γw‖2

2,[0,T ] = −‖η‖2
2,[0,T ] ≤ −ε‖w‖2

2,[0,T ],

which is equivalent to JT (w) ≤ −ε‖w‖2
2, for all w ∈ L2[0, T ].

Proof of necessity

We prove necessity using a conjugate point argument frequently used in the calculus
of variations and optimal control.

Conjugate points:

Two times t0 and tf , with t0 ≤ tf , are conjugate points of the two-point-
boundary-value problem (TPBVP)

[
ẋ∗(t)
λ̇(t)

]
=

[
A γ−2BB′

−C ′C −A′

] [
x∗(t)
λ(t)

]
,

[
x∗(t0)
λ(tf )

]
=

[
0
0

]

(3.7.15)
if (3.7.15) has a nontrivial solution.14

Equation (3.7.15) is a two-point-boundary-value problem because there is an initial
condition on x∗ and a terminal condition on λ.

14The trivial solution is the solution x∗ ≡ 0 and λ ≡ 0.
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Example 3.7.4. If a2 − γ−2 < 0, then the TPBVP

d

dt

[
x∗

λ

]
=

[
a γ−2

−1 −a

] [
x∗

λ

]
,

[
x∗(t0)
λ(tf )

]
=

[
0
0

]

has the nontrivial solution
[

x∗(t)
λ(t)

]
=

[
sin

(
ω0(t − t0)

)

γ2ω0 cos
(
ω0(t − t0)

)
− γ2a sin

(
w0(t − t0)

)
]

whenever
cot

(
ω0(tf − t0)

)
=

a

ω0
.

In the above, ω0 =
√

γ−2 − a2. 5
We now have the following result, which can be thought of as a finite-horizon

version of Lemma 3.7.2

Lemma 3.7.5 Suppose t∗ ∈ [0, T ] and that there exists an ε > 0 such that JT (w) ≤
−ε‖w‖2

2,[0,T ] for all w ∈ L2[0, T ]. Then t∗ and T are not conjugate points of the

TPBVP (3.7.15).

Proof. For t∗ = T , the result is trivial. Now consider 0 ≤ t∗ < T and let x∗, λ be
any solution to (3.7.15). Define

w̄(t) =

{
γ−2B′λ(t) t > t∗

0 t ≤ t∗.

Apply w̄ to the system (3.7.11) and note that x(t) = 0 for t ≤ t∗ and x(t) = x∗(t)
for t ≥ t∗. This gives

JT (w̄) =

∫ T

0

(z′z − γ2w̄′w̄) dt

=

∫ T

t∗
(x∗′C ′Cx∗ − γ−2λ′BB′λ) dt as w̄(t) = 0 for t ≤ t∗

=

∫ T

t∗

(
−x∗′(λ̇ + A′λ) + (Ax∗ − ẋ∗)′λ

)
dt

= −
∫ T

t∗

d

dt
(x∗′λ) dt

= (x∗′λ)(t∗) − (x∗′λ)(T ) = 0.

Since JT (w) ≤ −ε‖w‖2
2,[0,T ] for all w, we must have ‖w̄‖2

2,[0,T ] = 0, giving B′λ(t) = 0

on [t∗, T ]. This reduces the TPBVP to
[

ẋ∗

λ̇

]
(t) =

[
A 0

−C ′C −A′

] [
x∗

λ

]
(t),

[
x∗(t∗)
λ(T )

]
=

[
0
0

]

and we conclude that x∗ ≡ 0 and λ ≡ 0. That is, t∗ and T are not conjugate points,
since any solution to the TPBVP has been shown to be trivial.
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Lemma 3.7.6 If there exists an ε > 0 such that JT (w) ≤ −ε‖w‖2
2,[0,T ] for all w ∈

L2[0, T ], then the Riccati equation (3.7.14) has a solution on [0, T ] and P (t) ≥ 0.

Proof. Let Φ(t, T ) be the transition matrix associated with the differential equa-
tion (3.7.15). Imposing the boundary condition λ(T ) = 0, we have that

[
x∗

λ

]
(t) =

[
Φ11

Φ21

]
(t, T )x∗(T ).

Since the transition matrix Φ(t, T ) is nonsingular for all t, T ,

[
x∗(t)
λ(t)

]
= 0 ⇔ x∗(T ) = 0. (3.7.16)

We now show that Φ11(t, T ) is nonsingular for all t ∈ [0, T ]. We do this by
showing that if Φ11(t

∗, T )v = 0 for some t∗ and some v, then v = 0. Choose
t∗ ∈ [0, T ] and let v be any vector such that Φ11(t

∗, T )v = 0. Setting tf = T ,
t0 = t∗ and imposing the boundary condition x∗(T ) = v results in a solution to
(3.7.15). By Lemma 3.7.5, t∗ and T cannot be conjugate points and we conclude that
x∗(t) = 0 and λ(t) = 0 on [t∗, T ]. It now follows from (3.7.16) that v = x∗(T ) = 0,
which means that Φ11(t

∗, T ) is nonsingular. Since t∗ was arbitrary, the claim that
Φ11(t, T ) is nonsingular for any t ∈ [0, T ] is established.

It can be verified (Problem 3.22) that P (t) = Φ21(t, T )Φ−1
11 (t, T ) is the solution

to the Riccati equation (3.7.14).
To see that P (t) ≥ 0, note that X(t) = P (t) − Q(t), in which Q(t) is the

observability gramian (see (3.1.6)), satisfies

−Ẋ = XA + A′X + γ−2PBB′P, X(T ) = 0.

That is, X is the observability gramian of (A, γ−1B′P ). Hence P − Q ≥ 0 and we
conclude that P ≥ 0.

Example 3.7.5. The solution to

d

dt

[
φ11

φ21

]
(t, T ) =

[
a γ−2

−1 −a

] [
φ11

φ21

]
(t, T ),

[
φ11

φ21

]
(T, T ) =

[
I
0

]

is given by

[
φ11

φ21

]
(t, T ) =

1

2λ

[
λ(eλτ + e−λτ ) − a(eλτ − e−λτ )

eλτ − e−λτ

]
,

in which τ = T − t and λ =
√

a2 − γ−2. It can be verified that φ21(t, T )φ−1
11 (t, T )

yields the solutions to the Riccati equation that are given in Example 3.7.3. 5
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The infinite-horizon case

We now turn our attention to the case when the time horizon T is infinite and the
matrices A, B and C are constant. Our aim is to show that if ‖G‖∞ < γ, the
algebraic Riccati equation

0 = ΠA + A′Π + γ−2ΠBB′Π + C ′C (3.7.17)

has a solution such that A + γ−2BB′Π is asymptotically stable and that such a
solution is nonnegative definite. Our approach is to examine the behavior of the
solution to the Riccati differential equation in the limit as T → ∞.

The argument we use to show that P (t) converges to the desired solution Π
(when ‖G‖∞ < γ) depends on a monotonicity property of the solution P (t). Specif-
ically, the solution P (t) to (3.7.14) is monotonically nonincreasing as a function of
t when the matrices A, B and C are constant. To see this, differentiate (3.7.14) to
obtain

−P̈ = Ṗ (A + γ−2BB′P ) + (A + γ−2BB′P )′Ṗ , Ṗ (T ) = −C ′C.

If Φ is the transition matrix associated with (A + γ−2BB′P )′, then

Ṗ (t) = −Φ(t, T )C ′CΦ′(t, T ) ≤ 0,

which establishes the desired monotonicity property.

Lemma 3.7.7 Suppose the matrices A, B and C are constant, that A is asymp-
totically stable and that

ẋ(t) = Ax(t) + Bw(t), x(0) = 0

z(t) = Cx(t).

Define the cost function

J(w) =

∫ ∞

0

(z′z − γ2w′w) dt. (3.7.18)

If there exists an ε > 0 such that J(w) ≤ −ε‖w‖2
2 for all w ∈ L2[0,∞), then:

1. The Riccati differential equation (3.7.14) has a solution P(t,T) on [0, T ] for
all finite T .

2. There exists a constant β such that P (t, T ) ≤ βI for all t ∈ [0, T ] and all
finite T .

3. Π = limT→∞ P (t, T ) exists and satisfies (3.7.17). Furthermore, Π ≥ 0 and
A + γ−2BB′Π has no eigenvalue on the imaginary axis.

4. A + γ−2BB′Π is asymptotically stable.
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Proof.

1. Let T ≥ 0 be arbitrary, let w̄ be an arbitrary L2[0, T ] signal and define the
L2[0,∞) signal w by P T w = w̄ and w(t) = 0 for t > T . Then JT (w̄) ≤
J(w) ≤ −ε‖w‖2

2 = −ε‖w̄‖2
2,[0,T ]. Hence P (t, T ) exists.

2. Consider the dynamics

ẋ = Ax + Bw, x(0) = x0

z = Cx,

in which w ∈ L2[0,∞) is arbitrary and x0 is arbitrary. Write z = zx0
+ zw,

in which zx0
is that part of the response due to x0, and zw is that part of the

response due to w. Note that ‖z‖2
2 ≤ ‖zx0

‖2
2 + ‖zw‖2

2 + 2‖zx0
‖2‖zw‖2. Since

A is asymptotically stable, ‖zx0
‖2 ≤ α‖x0‖ for some α > 0. Thus

J(w) ≤
∫ ∞

0

(z′wzw − γ2w′w) dt + α‖x0‖(α‖x0‖ + 2‖zw‖2)

≤ −ε‖w‖2
2 + α‖x0‖(α‖x0‖ + 2γ‖w‖2)

= −ε(‖w‖2 −
αγ

ε
‖x0‖)2 + α2(1 +

γ2

ε
)‖x0‖2

≤ α2

(
1 +

γ2

ε

)
‖x0‖2.

The particular input

w(t) =

{
γ−2B′P (t)x(t) t ∈ [0, T ]

0 t > T

gives

J(w) ≥
∫ T

0

(z′z − γ2w′w) dt since w(t) = 0 for t > T

= −
∫ T

0

d

dt
(x′Px) dt

= x′
0P (0, T )x0.

on substituting for w and P . Hence

x′
0P (0, T )x0 ≤ α2

(
1 +

γ2

ε

)
‖x0‖2 for all x0 and all T.

The monotonicity of P (t, T ) ensures that P (t, T ) ≤ α2(1 + γ2

ε )I for t ∈ [0, T ].
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3. Since 0 ≤ P (t, T ) ≤ βI and P (t, T ) is monotonic, Π(t) = limT→∞ P (t, T )
exists for all t. To see that Π(t) is constant, we observe that

Π(t1) = lim
T→∞

P (t1, T )

= lim
T→∞

P (t2, T + t2 − t1) by time-invariance

= lim
T→∞

P (t2, T )

= Π(t2).

To see that Π satisfies (3.7.17), we make use of the fact that a solution of the
differential equation (3.7.14) depends continuously on the terminal condition
(see Problem 3.22). That is, if P (t, T,Σ) denotes the solution to (3.7.14) with
terminal condition P (T ) = Σ, then P (t, T,Σ) is continuous in Σ. Note also
that, by definition, P (t, T,Σ) = P

(
t, T1, P (T1, T,Σ)

)
, for any t ≤ T1 ≤ T .

Therefore

Π = lim
T→∞

P (t, T, 0)

= lim
T→∞

P
(
t, T1, P (T1, T, 0)

)

= P
(
t, T1, lim

T→∞
P (T1, T, 0)

)
by continuity

= P (t, T1,Π).

That is, Π is a solution to the Riccati equation (3.7.14) with terminal condition
Π. Noting that Π̇ = 0, we see that Π satisfies (3.7.17). Π ≥ 0 because
P (t) ≥ 0.

To show that A+γ−2BB′Π has no imaginary axis eigenvalue, we observe that
‖z‖2

2 − γ2‖w‖2
2 = −γ2‖w − w∗‖2

2 has the transfer function matrix form

γ2I − G∼G = W∼W , (3.7.19)

in which G = C(sI − A)−1B and

W = γI − γ−1B′Π(sI − A)−1B. (3.7.20)

(This follows by observing that Ww = γ(w − w∗), or by direct calculation,
or by Theorem 3.2.1). Since ‖G‖∞ < γ, we have W ′(jω)W (jω) > 0, so
W has no zeros on the imaginary axis. Since A is asymptotically stable,
the realization (3.7.20) has no uncontrollable or unobservable modes on the
imaginary axis and we conclude that A + γ−2BB′Π has no eigenvalue on the
imaginary axis.

4. To show that Π is the stabilizing solution, subtract (3.7.14) from (3.7.17) and
rearrange to obtain

Ṗ = (Π − P )(A + γ−2BB′Π) + (A + γ−2BB′Π)′(Π − P )

−γ−2(Π − P )BB′(Π − P ), P (T ) = 0. (3.7.21)
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We now make the assumption that (Π − P )(t) is nonsingular for all finite t.
The extension to the case when this is not necessarily true is called for in

Problem 3.24. Let V (t) =
(
Π − P (T − t)

)−1
. Since V̇ (t) = V (t) d

dt

(
P (T −

t)
)
V (t), we have from (3.7.21) that

V̇ (t) = −(A + γ−2BB′Π)V (t) − V (t)(A + γ−2BB′Π)′ + γ−2BB′. (3.7.22)

If y 6= 0 is such that (A + γ−2BB′Π)′y = λy, then

d

dt
y∗V (t)y = −(λ + λ̄)y∗V (t)y + γ−2y∗BB′y.

But y∗V (t)y is unbounded on t ≥ 0, since σ
(
Π − P (T − t)

)
→ 0 as t → ∞

and σ
(
(V (t)

)
= 1/σ

(
Π − P (T − t)

)
. Consequently −(λ + λ̄) ≥ 0, and (since

A + γ−2BB′Π has no eigenvalue on the imaginary axis) we conclude that
A + γ−2BB′Π is asymptotically stable.

Main points of the section

1. The infinity norm of a transfer function matrix G ∈ RH∞ is
bounded by a given number γ if and only if (a) σ

(
G(∞)

)
< γ

and (b) the algebraic Riccati equation (3.7.1) has a stabilizing so-
lution. This is known as the bounded real lemma.

2. The solution of the algebraic Riccati equation, when it exists, may
be determined either by an eigenvalue calculation on the Hamil-
tonian matrix (3.7.5) constructed from a realization of G and γ,
or as the limiting (steady-state) solution to the Riccati differential
equation (3.7.14), generalized to the D 6= 0 case.

3. In the case of a transfer function matrix G ∈ RL∞, an eigenvalue
calculation on the Hamiltonian matrix (3.7.5) determines whether
‖G‖∞ < γ.

4. The incremental gain of a time-varying, state-space system with
realization (A,B,C, 0) is bounded by a given number γ if and only
if the Riccati differential equation (3.7.14) has a solution on [0, T ]
for all finite T .

3.8 Notes and References

The material presented in this chapter is standard and is covered in several excellent
texts.

The signals and systems text by Kwakernaak and Sivan [126] provides an intro-
duction to the mathematical properties of signals and systems. Lebesgue 2-spaces,
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the Fourier transform and Parseval’s identity are treated in many books on signal
and systems theory ([126] or example) and in many books on integration, analysis
or Hilbert space. See Rudin [174] and Young [222], for example. Hardy spaces and
the Paley-Wiener theorem are treated in detail in Hoffman [93] and Duren [56],
and there is a chapter on this topic in Rudin [174] and in Young [222]. State-space
systems are widely used in control and system theory and are covered in many
modern texts on these subjects. Brockett [33] is still amongst the best treatments
of the general time-varying case. Linear systems driven by white noise processes
are analyzed in Kwakernaak and Sivan [125] and other texts on stochastic optimal
control—Davis [40] contains a reasonably accessible treatment and a good intro-
duction to the stochastic process literature.

There was a great deal of interest in the late 1950s and early 1960s in the
stability of feedback systems containing nonlinear elements. These problems were
approached using frequency domain (function analytic) methods, Lyapunov stabil-
ity theory and input-output (operator theoretic) analysis. The papers of Sandberg
[187, 186, 188, 189] and Zames [224, 225, 226] are regarded as providing the general
framework for the small gain theorem and in developing its application to specific
problems of interest in the literature. Of these, Zames provides the more accessible
account. The book by Willems [210] also considers the stability of feedback systems.
Our treatment of nonlinear system stability follows the text by Desoer and Vidya-
sagar [47], in which a unified approach to the input-output stability of nonlinear
feedback systems based on the small gain theorem is presented. The relationships
between the small gain theorem, the passivity theorem, the Popov criterion and the
circle criterion are explored in detail.

The book by Safonov [177] develops a general framework for considering the sta-
bility of feedback loops containing sector bounded relations, which includes passive
and small gain systems, and does not require that the exogenous signals enter the
loop in a linear manner. Stability theorems that allow structural and size constraints
to be imposed on the systems comprising the closed loop have been developed by
Doyle [51] and Safonov [178].

The positive real lemma (see Problem 3.25), which is equivalent to the bounded
real lemma, originates from the Problem of Lur’e, which concerns a feedback loop
containing a linear time-invariant system and a memoryless nonlinearity. Popov
[165] provided a frequency domain criterion for the stability of the closed loop—the
closed loop is globally asymptotically stable if a certain transfer function is posi-
tive real. He also showed that the existence of a Lyapunov function that was “a
quadratic form plus an integral of the nonlinearity” and which ensured the global
asymptotic stability of the closed loop implied his positive real condition. The
questions which remained were (a) does Popov’s positive real condition imply the
existence of a Lyapunov function of the desired form? (b) how can the Lyapunov
function be constructed? Yakubovic̆ [219] and Kalman [107] solved these prob-
lems by developing a state-space characterization of positive real transfer functions,
which is known as the positive real lemma—the term “lemma” derives from Kal-
man, who called the result the Main Lemma. The positive real lemma showed
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that the frequency domain criterion of Popov was equivalent to the existence of a
Lyapunov function of the desired form and provided an “effective procedure” for
computing the Lyapunov function. This work was the first example of an approach
to feedback synthesis that is now known as “H∞ control”. The design specifica-
tion (global asymptotic stability) was converted into a frequency response criterion
(Popov’s positive real criterion) and a state-space synthesis procedure (the positive
real lemma) was developed.

The multivariable extension of the positive real lemma was stated without proof
by Kalman [108], and was established in its full generality by Anderson [9]. The most
complete treatment of the positive real lemma, the bounded real lemma and also the
characterization of allpass systems (the lossless bounded real lemma) can be found
in the text on network analysis and synthesis by Anderson and Vongpanitlerd [14].

3.9 Problems

Problem 3.1.
1. Show that f(t) = tα, t > 0, is in L2[0, T ] if and only if α > − 1

2 . Show that f
is not in L2[0,∞) for any α.

2. Show that g(t) = (t + 1)α, t > 0, is in L2e for any α. Show that g is in
L2[0,∞) if and only if α < − 1

2 .

Problem 3.2. Show that for any differentiable matrix function X(t),

d

dt
X−1(t) = −X−1(t)

( d

dt
X(t)

)
X−1(t)

for all t for which the inverse exists.

Problem 3.3. Suppose Φ(t, τ) is the transition matrix associated with A(t).
That is,

d

dt
Φ(t, τ) = A(t)Φ(t, τ), Φ(τ, τ) = I.

1. Show that Φ satisfies the functional equation Φ(t2, t1) = Φ(t2, τ)Φ(τ, t1) for
any t1, t2 and τ .

2. Show that Φ(t, τ) is nonsingular and that Φ(τ, t) = Φ−1(t, τ).
3. Show that

d

dτ
Φ(t, τ) = −Φ(t, τ)A(τ).

Problem 3.4.
1. Consider the frequency domain signal f(s) = 1

s−a , a < 0. Show that, for
α ≥ 0,

1

2π

∫ ∞

−∞
f∗(α + jω)f(α + jω) dω =

1

2(α − a)
.

Conclude that ‖f‖2 = 1√
−2a

.
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2. Consider the time-domain signal f(t) = eat, t ≥ 0 and a < 0. Use Theo-
rem 3.1.1 to show that f ∈ L2[0,∞) and ‖f‖2 = 1√

−2a
.

Problem 3.5. Suppose QA + A′Q + C ′C = 0.
1. Show that A asymptotically stable implies that Q ≥ 0.
2. Show that Q ≥ 0 implies that every unstable mode of A is unobservable.

Problem 3.6. Consider two systems G1 and G2 defined by

ẋi(t) = Ai(t)xi(t) + Bi(t)wi(t)

zi(t) = Ci(t)xi(t) + Di(t)wi(t)

for i = 1, 2. In the following, the time dependence of the matrices is not shown
explicitly.

1. Assuming that the dimensions of w1 and w2 and the dimensions of z1 and z2

are equal, show that the system z = (G1 + G2)w has realization




A1 0 B1

0 A2 B2

C1 C2 D1 + D2



 .

2. Assuming the dimension of z1 is equal to the dimension of w2, show that the
system z = (G2G1)w has realization




A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1



 .

3. Show that if D1(t) is nonsingular on the time interval of interest, then the
inverse system G−1

1 has realization

[
A1 − B1D

−1
1 C1 B1D

−1
1

− D−1
1 C1 D−1

1

]
=

[
A1 B1

0 I

] [
I 0
C1 D1

]−1

.

4. Suppose
[

G1

G2

]
s
=




A B
C1 D1

C2 D2





with D1 nonsingular on the time interval of interest. Show that the system
G2G

−1
1 has realization

[
A − BD−1

1 C1 BD−1
1

C2 − D2D
−1
1 C1 D2D

−1
1

]
=

[
A B
C2 D2

] [
I 0
C1 D1

]−1

.

Problem 3.7. Let G have realization
(
A(t), B(t), C(t),D(t)

)
.
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1. Show that if D(t) is nonsingular on [0, T ] then there exist constants ε1 > 0
and ε2 > 0 such that

ε1‖w‖2,[0,T ] ≤ ‖z‖2,[0,T ] ≤ ε2‖w‖2,[0.T ],

in which z = Gw, for all w ∈ L2[0, T ].
2. Show that when the system is time-invariant, the result holds for the space

L2[0,∞) if the transfer function matrix is such that G and G−1 ∈ H∞.

Problem 3.8. Let G be a time-invariant system with realization (A,B,C,D).
Suppose that D satisfies (3.2.14) and that there is a Q such that (3.2.12) and (3.2.13)
hold.

1. Show that

G(s)∗G(s) = I − (s + s̄)B′(s̄I − A′)−1Q(sI − A)−1B.

Conclude that if Q ≥ 0, then G(s)∗G(s) ≤ I for all Re(s) ≥ 0.
2. Show that there exist matrices Be and De such that the system Ge with

realization

Ge
s
=

[
A B Be

C D De

]

is square and allpass. Do not assume that Q is nonsingular.

Problem 3.9. For a given pair (A,C), suppose every purely imaginary mode of
A is unobservable through C. If V is a basis for the space spanned by the imaginary
axis modes of A, show that there exists a Q = Q′ such that QV = 0 and

QA + A′Q + C ′C = 0.

Problem 3.10. Consider the memoryless system
(
fw

)
(t) = f

(
w(t)

)
, in which f

is a real valued function of a real variable.
1. Find a function f that is not differentiable everywhere for which γ(f) is finite.
2. Show that if f is differentiable, then γ(f) = supx | df

dx |. What can you say if
f is differentiable except at isolated points?

3. Suppose γ
(
f

)
< 1. Graphically explain why the equation w = fw always

has a solution.

Problem 3.11.
1. Show that trace(XY ′) = trace(Y ′X) for any matrices X and Y of the same

dimension.
2. Show that

trace(XX ′) =
∑

i,j

x2
ij ,

in which xij is the i, j element of X.

3. Show that
√

trace(XX ′) defines a norm on the space of matrices.
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Problem 3.12. Find transfer functions g and h such that ‖hg‖2 > ‖g‖2‖h‖2.

Problem 3.13.
1. Suppose that B : S 7→ S is allpass. Show that ‖GB‖ = ‖G‖, in which ‖ · ‖

is the appropriate induced norm.
2. Suppose that A is allpass. Show that ‖AG‖2 = ‖G‖2 for any system G.

Problem 3.14. Show that a transfer function matrix Z defines an incrementally
strictly passive system with finite incremental gain if and only if Z ∈ H∞ and

Z(s) + Z∗(s) ≥ 2εI > 0 for all Re(s) > 0. (3.9.1)

Transfer function matrices that are analytic in Re(s) > 0 and satisfy (3.9.1) are
called strictly positive real.15

Problem 3.15. Suppose Z ∈ H∞. Show that Z is strictly positive real if and
only if

Z(jω) + Z∗(jω) ≥ 2εI > 0 for all ω.

Problem 3.16.
1. Suppose Z is strictly positive real. Show that Z(s) is nonsingular for any

Re(s) ≥ 0
2. Suppose Z = D + C(sI − A)−1B in which A is asymptotically stable. Show

that if Z is strictly positive real then A − BD−1C is asymptotically stable.

Problem 3.17. Consider a system G with realization
(
A(t), B(t), C(t),D(t)

)
.

Show that if
(
I + D(t)

)
is nonsingular on the time interval of interest, then the

system (I − G)(I + G)−1 has realization

[
A − B(I + D)−1C B(I + D)−1

− 2(I + D)−1C (I − D)(I + D)−1

]
.

Problem 3.18. Consider the feedback loop of Figure 2.8. Assume that G and
K are linear, that the nominal (∆1 = 0) closed loop is internally stable and that
γ
(
GK(I − GK)−1

)
< ∞.

1. Show that the actual closed loop is stable if

γ
(
∆1

)
γ
(
GK(I − GK)−1

)
< 1.

2. Suppose now that ∆1 is incrementally strictly passive and has finite incre-
mental gain. Determine an incremental gain condition that ensures the actual
closed loop is internally stable.

Problem 3.19. (Structured uncertainty) Consider the feedback loop in
Figure 3.9.

15The condition that Z is real is assumed—only real systems are considered in this book.
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Figure 3.9: Feedback system.

Suppose that ∆ is stable and block diagonal:

∆1 =




∆1 0 0

0
. . . 0

0 0 ∆n


 ,

and denote this set of stable block-diagonal ∆’s by U .
1. Show that the feedback system is internally stable if G is stable and

γ(∆)min
D

γ(DGD−1) < 1, (3.9.2)

in which the minimum is taken over the set D defined by

D =
{
D : D and D−1 are linear, stable and D∆ = ∆D for all ∆ ∈ U

}
.

2. Suppose the ∆ ∈ U are linear, in addition to being stable and block diagonal,
and that each ∆i is square. Determine the set D.
(Hint: DX = XD for all p× p matrices X with p ≥ 2 if and only if D = αI.)

Problem 3.20. Show that the equation

QA + A′Q + C ′C = 0

has a unique solution if and only if λi(A) + λj(A) 6= 0 for any i, j.

Problem 3.21. A Hamiltonian matrix is any real 2n × 2n matrix

H =

[
H11 H12

H21 H22

]

such that SH is symmetric, in which S =

[
0 −In

In 0

]
.

1. Show that the eigenvalues of H are symmetric about the imaginary axis.
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2. Suppose X is a 2n × n real matrix such that

HX = XΛ, (3.9.3)

in which Λ is an n × n real matrix with Re

(
λi(Λ)

)
< 0 for all i. Show that

X ′SX = 0.
3. Suppose X =

[
X ′

1 X ′
2

]′
is a 2n × n real matrix satisfying (3.9.3), with

Reλi(Λ) < 0 for all i, such that X1 is nonsingular. Show that P = X2X
−1
1 is

symmetric and satisfies

PH11 + H ′
11P + PH12P − H21 = 0

H11 + H12P = X1ΛX−1
1 .

Problem 3.22. Suppose H(t) is a (time-varying) Hamiltonian matrix (see
Problem 3.21) and that Φ(t, τ) is the transition matrix associated with H(t). That
is

d

dt
Φ(t, τ) = H(t)Φ(t, τ), Φ(τ, τ) = I.

Let Σ be any n× n matrix such that X1(t) = Φ11(t, T ) + Φ12(t, T )Σ is nonsingular
for t ∈ [0, T ] and define

P (t) = X2(t)X
−1
1 (t),

in which X2(t) = Φ21(t, T ) + Φ22(t, T )Σ.
1. Show that

−Ṗ = PH11 + H ′
11P + PH12P − H21, P (T ) = Σ.

2. Show that P (t) is a continuous function of Σ.

Problem 3.23. Suppose A is asymptotically stable and Π is any solution to
(3.7.17).

1. If (A,C) is observable, show that Π is nonsingular.
2. Suppose A + γ−1BB′Π is asymptotically stable. Show that ker Π is the

unobservable subspace of (A,C).
3. Conclude that if A+γ−1BB′Π is asymptotically stable, then Π is nonsingular

if and only if (A,C) is observable.

Problem 3.24. Suppose P (t) is a solution to the Riccati differential equation
(3.7.14) and that Π = limt→−∞ P (t) exists.

1. Show that
(
Π−P (t)

)
x = 0 for some t ≤ T if and only if

(
Π−P (t)

)
x = 0 for

all t ≤ T.
2. Show that there exists a constant nonsingular matrix M such that

M ′(Π − P (t)
)
M =

[
Π1 − P1(t) 0

0 0

]
,

in which Π1 − P1(t) is nonsingular.
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3. Show that A + γ−2BBΠ is asymptotically stable.

Problem 3.25. (The positive real lemma) Suppose Z = D + C(sI − A)−1B
in which A is asymptotically stable. Show that Z is strictly positive real (see
Problem 3.14) if and only if R = D + D′ > 0 and there exists a P satisfying

P (A − BR−1C) + (A − BR−1C)′P + PBR−1B′P + C ′R−1C = 0 (3.9.4)

such that A − BR−1(C − B′P ) is asymptotically stable and P ≥ 0.
(Hint: If Z is strictly positive real, then ‖(I − Z)(I + Z)−1‖∞ < 1. Apply the

bounded real lemma to obtain P . The identity

I − (I + D′)−1(I − D′)(I − D)(I + D)−1 = 2(I + D′)−1(D + D′)(I + D)−1

makes the calculations fairly easy.)

Problem 3.26. (Spectral factorization) Consider a transfer function matrix
Φ ∈ RL∞.

1. Show that if
Φ = W∼W , (3.9.5)

in which W and W−1 are elements of RH∞, then Φ = Φ∼ and Φ(jω) > 0
for all ω. Show that when W exists, it is unique up to multiplication by an
orthogonal matrix.

2. Show that Φ = Φ∼ and Φ(jω) > 0 for all ω if and only if

Φ = Z + Z∼

for some strictly positive real transfer function matrix Z.
(Hint: consider a partial fraction expansion of Φ.)

3. Suppose that Φ = Z + Z∼, in which Z is strictly positive real. Let Z =
D +C(sI −A)−1B in which A is asymptotically stable. Show that a solution
to (3.9.5) such that W and W−1 ∈ RH∞ is given by

W = W + L(sI − A)−1B, (3.9.6)

in which W is nonsingular and

W ′W = D + D′

W ′L = C − B′P

and P is the stabilizing solution to (3.9.4).
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Linear Fractional

Transformations

4.1 Introduction

Linear fractional transformations (LFTs) occur in many areas of network and system
theory.1 Several examples relevant to H∞ optimal control and model reduction
spring to mind: (1) The transformation z = 1+s

1−s , which maps the left-half plane
into the unit disc, is used in the study of discrete time systems and is frequently
referred to as the bilinear transformation. (2) The closely related transformation
P = (I −S)(I +S)−1, which relates a positive real transfer function matrix P and
a bounded real transfer function matrix S, is used in passive circuit theory. (3) The
transfer function g = as+b

cs+d represents a first-order system such as a phase-lead or
phase-lag controller. First-order systems of this type are often used as weighting
functions in H∞ control system design. (4) Every stabilizing controller for a stable
plant may be parametrized by the formula K = Q(I + GQ)−1, in which Q is
stable, but otherwise arbitrary. This formula is a linear fractional transformation
between stable transfer function matrices and stabilizing controllers. (5) Closed-
loop operators that are important in the design of control systems, such as the
sensitivity operator (I − GK)−1 and and the complementary sensitivity operator
GK(I − GK)−1, are linear fractional in character. (6) We will show that all
solutions to the H∞ control problem and all solutions to the optimal Hankel norm
model reduction problem are described by linear fractional transformations.

To set the scene for our study of LFTs, we will briefly review some of the

1Linear fractional transformations are also known as bilinear transformations.
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properties of the first order rational fraction

ξ =
as + b

cs + d
. (4.1.1)

Each of the coefficients is a complex number, and s and ξ are complex variables.

1. Under the assumption that ad − bc 6= 0, it is well known that (4.1.1) maps
circles or straight lines in the s-plane into circles or straight lines in the ξ-
plane.

2. By writing ξ = ξ1/ξ2, with ξ1 and ξ2 defined by
[

ξ1

ξ2

]
=

[
a b
c d

] [
s
1

]
,

we may represent (4.1.1) in terms of a matrix of coefficients. The coefficient
matrix is unique up to multiplication by a complex number.

3. The composition of two LFTs is another LFT. Suppose that w = w1/w2 where
[

w1

w2

]
=

[
a b
c d

] [
z1

z2

]

and that z = z1/z2 where
[

z1

z2

]
=

[
α β
γ δ

] [
s
1

]
.

Then w is given in terms of s by
[

w1

w2

]
=

[
a b
c d

] [
α β
γ δ

] [
s
1

]
.

This shows that the set of LFTs of the type given in (4.1.1) is closed under
the composition operation and that compositions of LFTs may be constructed
from the product of their coefficient matrices.

4. Compositions of LFTs are associative because matrix multiplication is.

5. The identity transformation exists and its coefficient matrix is the identity
matrix.

6. The inverse transformation exists if the coefficient matrix is nonsingular and
is given by

1

ad − bc

[
d −b
−c a

]
,

which is the inverse of the coefficient matrix associated with (4.1.1).

7. It follows from Items 3, 4, 5 and 6 that nonsingular LFTs form a group under
composition.
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Alternative forms of LFT

The LFT given in (4.1.1) has a useful alternative representation. In the case that
d 6= 0, we have that

ξ =
as + b

cs + d

= bd−1 + (a − bd−1c)s(1 + d−1cs)−1d−1. (4.1.2)

This is the form we will usually use for LFTs, because it corresponds naturally to
input-output block diagram representations of control systems. To see this, consider

rr P

s

z

y

w

u

¾ ¾

¾

-

Figure 4.1: Lower linear fractional transformation.

the feedback configuration in Figure 4.1, which is defined by the equations

[
z
y

]
= P

[
w
u

]
=

[
p11 p12

p21 p22

] [
w
u

]
(4.1.3)

u = sy. (4.1.4)

Eliminating u and y we obtain the relationship

z

w
= p11 + p12s(1 − p22s)

−1p21

between w and z. Comparing this with (4.1.2), we see that the ratio ξ = (z/w) in
Figure 4.1 is a linear fractional transformation of the variable s. The correspondence
between the coefficients a, b, c, d and P is given by

P =

[
bd−1 a − bd−1c
d−1 −d−1c

]
. (4.1.5)

We will use the notation

F`(P, s) = p11 + p12s(1 − p22s)
−1p21 (4.1.6)

for this form of LFT.
In the sequel, we will need generalizations of (4.1.6) of the form

F`(P ,K) = P 11 + P 12K(I − P 22K)−1P 21, (4.1.7)
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in which the P ij ’s and K are transfer function matrices or systems. The LFT is
called well-posed if the inverse (I − P 22K)−1 exists.2

By eliminating y and u from the feedback system defined by
[

z
y

]
=

[
P 11 P 12

P 21 P 22

] [
w
u

]

u = Ky,

which is illustrated in Figure 4.2, it is easily seen that z = F`(P ,K)w.

ss
P

K-

¾
¾¾

z w

uy

Figure 4.2: Linear fractional transformation on systems.

Most of the properties of LFTs of interest to us follow from routine applications
of the definition (4.1.7). These properties are explored in the exercises at the end
of the chapter which should, as always, be read as an integral part of the text.

4.1.1 The composition formula

The purpose of this section is to give a composition formula for the interconnection
of two LFTs in the framework of Figure 4.3. This formula will be extensively used
in what follows.

The interconnection given in Figure 4.3 is defined by the equations
[

z
y

]
=

[
P 11 P 12

P 21 P 22

] [
w
u

]

[
u
r

]
=

[
K11 K12

K21 K22

] [
y
v

]
.

Eliminating y and u, we obtain
[

z
r

]
= C`(P ,K)

[
w
v

]
, (4.1.8)

2The sense in which the inverse is required to exist is context dependent. In the case of state-
space systems, the LFT is well-posed if (I −P22K)−1 can be represented as a state-space system.
If we suppose that P and K are the transfer function matrices of (time-invariant) state-space

systems, well-posedness is equivalent to det
(
I − P22(∞)K(∞)

)
6= 0.
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Figure 4.3: The interconnection of two LFTs.

in which the composition operator C`(·, ·) is

C`(P ,K) =

[
F`(P ,K11) P 12ŜK12

K21SP 21 K22 + K21P 22ŜK12

]
, (4.1.9)

with S = (I − P 22K11)
−1 and Ŝ = (I − K11P 22)

−1.
Now suppose we close the loop between r and v in Figure 4.3 by v = F r. Then

we see that u = F`(K,F )y and that z = F`

(
P ,F`(K,F )

)
w. By (4.1.8), we also

have z = F`(C`(P ,K),F )w. That is,

F`

(
P ,F`(K,F )

)
= F`

(
C`(P ,K),F

)
. (4.1.10)

The cascade of two LFTs is another LFT involving the composition operator C`(·, ·).
By augmenting P , we may write the composition operator as a LFT, since

C`(P ,K) = F`







P 11 0 P 12 0
0 0 0 I

P 21 0 P 22 0
0 I 0 0


 ,

[
K11 K12

K21 K22

]

 . (4.1.11)

(The verification of this identity is left as an exercise). This means that the prop-
erties of LFTs carry over to the composition operator.

4.1.2 Interconnections of state-space LFTs

This section provides a state-space realization for interconnections of LFTs defined
by state-space realizations and considers some cancellation properties. We will
need these results during our development of a representation formula for all H∞
controllers in the output feedback case.
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Lemma 4.1.1 Consider the composition interconnection shown in Figure 4.3, in
which

P
s
=




A B1 B2

C1 0 D12

C2 D21 0



 and K
s
=




Ã B̃1 B̃2

C̃1 0 I

C̃2 I 0


 .

Then a state-space realization for the system R = C`(P ,K) :

[
w
v

]
7→

[
z
r

]
is

R
s
=




A + B2C̃1 B2C̃1 B1 B2

Ã + B̃1C2 − A − B2C̃1 Ã − B2C̃1 B̃1D21 − B1 B̃2 − B2

C1 + D12C̃1 D12C̃1 0 D12

C2 + C̃2 C̃2 D21 0


 .

Proof. To begin, we note that

ẋ = Ax + B1w + B2u

z = C1x + D12u

y = C2x + D21w

˙̃x = Ãx̃ + B̃1y + B̃2v

u = C̃1x̃ + v

r = C̃2x̃ + y.

Eliminating u and y from these equations gives

[
ẋ
˙̃x

]
=

[
A B2C̃1

B̃1C2 Ã

] [
x
x̃

]
+

[
B1 B2

B̃1D21 B̃2

] [
w
v

]

[
z
r

]
=

[
C1 D12C̃1

C2 C̃2

] [
x
x̃

]
+

[
0 D12

D21 0

] [
w
v

]
.

Changing variables we get

[
ẋ

˙̃x − ẋ

]
=

[
A + B2C̃1 B2C̃1

Ã + B̃1C2 − A − B2C̃1 Ã − B2C̃1

] [
x

x̃ − x

]

+

[
B1 B2

B̃1D21 − B1 B̃2 − B2

] [
w
v

]

[
z
r

]
=

[
C1 + D12C̃1 D12C̃1

C2 + C̃2 C̃2

] [
x

x̃ − x

]

+

[
0 D12

D21 0

] [
w
v

]
,

which completes the proof.
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The next result pins down the exact locations of any pole-zero cancellations that
may occur in LFTs involving time-invariant state-space systems.

Lemma 4.1.2 Let the (p1 +p2)× (m1 +m2) transfer function matrix P that maps[
w
u

]
to

[
z
y

]
be given by

[
P 11 P 12

P 21 P 22

]
s
=




A B1 B2

C1 D11 D12

C2 D21 D22



 ,

in which m2 ≤ p1 and p2 ≤ m1. Suppose that K maps y to u and that it has a
minimal realization

K
s
=

[
Ã B̃

C̃ D̃

]

satisfying the condition det(I − D22D̃) 6= 0 for a well-posed closed loop. Then

(a)

F`(P ,K)

s
=




A + B2D̃MC2 B2(I + D̃MD22)C̃ B1 + B2D̃MD21

B̃MC2 Ã + B̃MD22C̃ B̃MD21

C1 + D12D̃MC2 D12(I + D̃MD22)C̃ D11 + D12D̃MD21


 ,

in which M = (I − D22D̃)−1. This is referred to as the natural realization of
the LFT, since it results from the elimination of u and y.

(b) Every unobservable mode of the realization in (a) is a value of λ such that[
A − λI B2

C1 D12

]
has less than full column rank.

(c) Every uncontrollable mode of the realization in (a) is a value of λ such that[
A − λI B1

C2 D21

]
has less than full row rank.

Proof. The equations describing Rzw, the closed-loop system mapping w to z,
are

ẋ = Ax + B1w + B2u

z = C1x + D11w + D12u

y = C2x + D21w + D22u

˙̃x = Ãx̃ + B̃y

u = C̃x̃ + D̃y.
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Eliminating u and y from the above equations establishes the (a) part.
If λ is an unobservable mode of the closed-loop state-space model, there exists

a vector
[

w∗ u∗ ]∗ 6= 0 such that




A + B2D̃MC2 − λI B2(I + D̃MD22)C̃

B̃MC2 Ã + B̃MD22C̃ − λI

C1 + D12D̃MC2 D12(I + D̃MD22)C̃




[

w
u

]
= 0. (4.1.12)

Defining
y = D̃MC2w + (I + D̃MD22)C̃u

gives [
A − λI B2

C1 D12

] [
w
y

]
= 0.

The proof of the (b) part is completed by noting that
[

w∗ u∗ ]∗ 6= 0 implies that[
w∗ y∗ ]∗ 6= 0. Suppose for contradiction that

[
w∗ y∗ ]∗

= 0. This gives

(I + D̃MD22)C̃u = 0

⇒ C̃u = 0,

since the nonsingularity of M implies the nonsingularity of (I + D̃MD22). We also
get from (4.1.12) that

(Ã − λI)u = 0.

Taken together, these two conditions contradict the assumed minimality of the
realization of K. The validity of part (c) may be established by a dual sequence of
arguments.

4.2 LFTs in controller synthesis

Each of the controller synthesis problems considered in this book may be described
in the language of LFTs. The value of this observation lies in the fact that a single
theoretical framework may be used to solve a variety of optimization problems. We
illustrate this with an example of robust stability optimization.

Suppose a plant is described by a given transfer function matrix G and suppose
we seek a controller that stabilizes (G + A) for all model errors A : L2[0,∞) 7→
L2[0,∞) satisfying

γ(W−1
2 AW−1

1 ) ≤ 1,

in which γ(·) denotes the incremental gain. The weights W 1 and W 2 are transfer
function matrices that reflect a priori information about the modelling error.

If the weights W 1 and W 2 and their inverses are stable (i.e., W±1
1,2 ∈ H∞), we

conclude from Figure 4.4 and small gain considerations (see Theorem 3.6.1) that



4.2 LFTS IN CONTROLLER SYNTHESIS 139

a sufficient condition for the internal stability of the closed-loop system is that K

stabilizes the nominal loop and that

‖W 1K(I − GK)−1W 2‖∞ < 1.

ff

s s

s s
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K

W 2W 1

W−1
2 AW−1

1

-
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¾
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u y
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Figure 4.4: A frequency weighted robust stabilization problem.

To set this problem up in a LFT framework, we observe that
[

z
y

]
=

[
0 W 1

W 2 G

] [
w
u

]

and that
u = Ky.

Hence, setting

P =

[
0 W 1

W 2 G

]
,

we obtain
F`(P ,K) = W 1K(I − GK)−1W 2.

The synthesis problem is to find a controller K that stabilizes F`(P ,K) and satisfies
‖F`(P ,K)‖∞ < 1.

When solving these problems using a computer, we suppose that a state-space
realization of P will be supplied as data. The computer program will return a
state-space realization of the controller. If

G
s
=

[
A B

C D

]
, W 1

s
=

[
A1 B1

C1 D1

]
, W 2

s
=

[
A2 B2

C2 D2

]
,
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are state-space models of the plant and weights, then

P
s
=




A 0 0 0 B
0 A1 0 0 B1

0 0 A2 B2 0
0 C1 0 0 D1

C 0 C2 D2 D




is a state-space realization of P .
The robust stability problem is an example of a single-target problem, because

the aim is to find a controller that satisfies the single norm constraint ‖W 1K(I −
GK)−1W 2‖∞ < 1. Realistic design exercises will be more complex than this and
may require a stabilizing controller that satisfies multitarget objectives such as

∥∥∥∥
[

K

I

]
S

[
G I

]∥∥∥∥
∞

< 1,

in which S = (I − GK)−1. To set this problem up in an LFT framework, we use
the identity S = I + GKS to obtain

[
K

I

]
S

[
G I

]
=

[
0 0
G I

]
+

[
I
G

]
KS

[
G I

]
.

Comparing terms with

F`(P ,K) = P 11 + P 12K(I − P 22K)−1P 21,

we see that

P 11 =

[
0 0
G I

]
, P 12 =

[
I
G

]
,

P 21 =
[

G I
]
, P 22 = G.

Thus, if G = D + C(sI − A)−1B, we have

P
s
=




A
[

B 0
]

B
[

0
C

] [
0 0
D I

] [
I
D

]

C
[

D I
]

D


 .

Setting up design problems in the LFT framework is routine and the exercises
at the end of the chapter should provide the reader with sufficient practise.
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4.2.1 The generalized regulator problem

Consider the closed-loop system shown in Figure 4.5, in which P : L2e 7→ L2e is
causal and linearly connected in the sense that

[
z
y

]
=

[
P 11 P 12

P 21 P 22

] [
w
u

]
,

and K : L2e 7→ L2e, u = Ky, is a causal linear controller.
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Figure 4.5: The generalized regulator configuration.

The signal w of dimension l contains all exogenous inputs and model-error
outputs3, the signal u of dimension m is the controller output (the manipulated
variables) and the signal y of dimension q is the controller input signal (the measure-
ments, references and other signals that are available for on-line control purposes).
The signal z of dimension p is the objective.

We aim to select K so that the closed-loop system F`(P ,K) mapping w to
z is small in a suitable norm, subject to the constraint that the closed loop is
internally stable. Internal stability in this case (and in all cases involving LFTs)
means that z, u and y are in L2[0,∞) whenever w, v1 and v2 are in L2[0,∞) in
Figure 4.6. (The additional inputs v1 and v2 are needed to ensure that no unstable
cancellations occur.) Since the objective is to make z small, this problem is known
as the generalized regulator problem. The system P is known as the generalized
plant.

Although we have posed the problem in terms of a general linearly connected
system P , our main interest is focused on the case in which P is a state-space
system:

P
s
=




A B1 B2

C1 D11 D12

C2 D21 D22



 . (4.2.1)

That is, z and y are the solutions of ordinary linear differential equations driven by

3In the robust stability example, the signal w is the output of the the model error A, not an
exogenous input.
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Figure 4.6: Generalized regulator: Internal stability.

w and u: 


ẋ
z
y



 =




A B1 B2

C1 D11 D12

C2 D21 D22








x
w
u



 .

The dimension of the state vector x is n and the matrices in the realization (4.2.1)
have dimensions compatible with the appropriate signals w, u, z, y and x.4

The controller synthesis problem is to find a causal linear controller K : L2e 7→
L2e (if one exists) that:

1. Stabilizes the closed-loop operator F`(P ,K).

2. Enforces the norm bound

(a) ‖F`(P ,K)‖2 < γ or

(b) ‖F`(P ,K)‖∞ < γ.

The internal stability properties of the generalized regulator, including necessary
and sufficient conditions for the existence of a stabilizing controller, and a LFT
parametrizing all such controllers (when they exist), are given in Appendix A.

It is often convenient to assume that γ = 1 in the generalized regulator problem.
This may be done by considering the scaled problem F`(P̂ ,K), in which

P̂ =

[
γ−1P 11 γ−1P 12

P 21 P 22

]
.

In the case of the 2-norm objective in Item 2a, the signal w is a realization of a
unit variance white noise process and attainment of the objective ensures that the
average RMS power of z is less than γ. In general, no robust stability interpreta-
tion is possible. The LQG problem is the optimal version of this problem—find a
stabilizing K such that ‖F`(P ,K)‖2 is minimized. The term H2 control is used by
some authors for deterministic formulations of this problem.

4A is n × n, B1 is n × l, B2 is n × m, C1 is p × n, C2 is q × n, D11 is p × l, D12 is p × m, D21

is q × l and D22 is q × m.
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In the case of the objective ‖F`(P ,K)‖∞ < γ, we have that

‖z‖2 ≤ γ‖w‖2

for all w ∈ L2[0,∞), which corresponds to the interpretation of w as an exogenous
input. We also know that the closed-loop system in Figure 4.7, defined by

w = ∆z

z = F`(P ,K)w,

is internally stable for all ∆ : L2[0,∞) 7→ L2[0,∞) such that γ(∆) < γ−1.

ss

s s
P

K

∆

-

¾

-

¾

z w

uy

Figure 4.7: Generalized regulator with robustness interpretation.

Assumptions

In solving the generalized regulator problem, we shall make the following assump-
tions concerning the generalized plant in (4.2.1):

1. (A,B2, C2) is stabilizable and detectable.

2. rank(D12) = m and rank(D21) = q.

3. rank

[
jωI − A −B2

C1 D12

]
= m + n for all real ω.

4. rank

[
jωI − A −B1

C2 D21

]
= q + n for all real ω.

These four assumptions are standard technical requirements on the data. As we
proceed through the book, we will explain in detail why they are needed. Briefly,
Assumption 1 is necessary and sufficient for the existence of stabilizing controllers.
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Assumption 2 eliminates the possibility of singular problems. It is clear from Fig-
ure 4.5 that this assumption requires the dimension of z to be at least that of u,
while the dimension of w must be at least that of y. Put another way, we assume
that there are at least as many objectives as controls, and at least as many exoge-
nous inputs as measurements. Since no measurement is error free, and no control
action is costless, these are reasonable assumptions. Assumptions 3 and 4 are nec-
essary for the existence of stabilizing solutions to the Riccati equations that are
involved in the solution of the synthesis problem.

The solution of the synthesis problem for LFTs of this generality is intricate. A
particular concern is that the direct feedthrough terms D11 and D22 complicate the
calculations and formulas, distracting attention from the central ideas. Fortunately,
these terms may be eliminated by transforming the general problem description of
(4.2.1) into an equivalent problem of the form

P
s
=




∗ ∗ ∗
∗ 0 D̂12

∗ D̂21 0


 . (4.2.2)

A further simplification comes about if we scale the D12 and D21 entries so that
D̂∗

12D̂12 = Im and D̂21D̂
∗
21 = Iq.

The transformations that reduce the problem description in (4.2.1) to one of the
form (4.2.2) involve LFTs with constant (nondynamic) coefficient matrices. Essen-
tially, the reduction involves solving a nondynamic generalized regulator problem.
Although this exercise provides some insights into the solution of the general prob-
lem, it may be skipped on a first reading. The full dynamical implications of the
transformations will be picked up towards the end of this chapter.

Finite horizon synthesis problem

Although our main interest is in the infinite-horizon system norms ‖F`(P ,K)‖2,∞,
we shall also consider the finite-horizon controller synthesis problem, in which we
seek a causal, linear controller K : L2[0, T ] 7→ L2[0, T ] (if one exists) such that

1. ‖F`(P ,K)‖2,[0,T ] < γ or

2. ‖F`(P ,K)‖[0,T ] < γ.

Consideration of these finite-horizon objectives allows the synthesis equations and
ideas to be developed in an environment in which stability issues do not arise.
For the finite-horizon synthesis problem, we allow the matrices in the state-space
realization of the generalized plant P to be arbitrary continuous matrix valued
functions of appropriate dimensions, with D12(t) and D21(t) full column rank and
full row rank respectively for all times of interest.
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4.2.2 The full-information problem

The synthesis theory for the generalized regulator problem, even with the simplified
D-matrix in (4.2.2), is complex. In particular, the requirement that the controller
achieves the regulation objective on z while only having access to the measurement
y is a significant complication. In order to tackle the generalized regulator problem
in manageable steps, it is fruitful to assume that the controller has access to full
information rather than just the measurable outputs, enabling us to concentrate on
the conditions required to achieve the regulation objective on z. As we will show, the
process of reconstructing full information from the available output measurement
information is a dual problem that can then be dealt with separately. In the case
of the LQG problem, full information may be constructed using a Kalman filter,
while in the case of H∞ control an H∞ filter is required.

The configuration associated with the full-information problem is shown in Fig-
ure 4.8. In this diagram, the control signal is generated from both the state x and
the disturbance w by

u =
[

K1 K2

] [
x
w

]
. (4.2.3)

We assume that K1 and K2 are causal and linear.

P

K

z

x

w

uwr r r

¾ ¾

¾

-
-

Figure 4.8: The full-information configuration.

The full-information controller structure defines a LFT with special features we
will now study. Let us write down the equations that describe the situation so far.
As before, the state x of the generalized plant and the objective z are related to the
inputs w and u by

ẋ(t) = A(t)x(t) + B1(t)w(t) + B2(t)u(t), x(0) = 0, (4.2.4)

z(t) = C1(t)x(t) + D11(t)w(t) + D12(t)u(t). (4.2.5)

In the sequel, the time-dependence will not be shown explicitly. The controller
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input is

yFI =

[
x
w

]
(4.2.6)

instead of
y = C2x + D21w + D22u. (4.2.7)

Clearly, (4.2.6) is a special case of (4.2.7), since we obtain (4.2.6) by setting

C2 =

[
I
0

]
, D21 =

[
0
I

]
, D22 =

[
0
0

]
.

Because D21 does not have full row rank, the full-information problem does not
satisfy the assumptions required of the generalized plant in Section 4.2.1.

If the plant is open-loop stable, measuring the state is unnecessary, because by
exploiting state reconstruction within the controller via (4.2.4), any control signal
that can be generated by a full-information controller can also be generated by an
open-loop controller acting on w alone. To see how this idea generalizes to the
unstable plant case, we set

u = −Fx + û, (4.2.8)

in which F is an arbitrary state feedback law that stabilizes the system. This gives

ẋ = (A − B2F )x + B1w + B2û, x(0) = 0, (4.2.9)

together with

û =
[

K̂1 K2

] [
x
w

]
, (4.2.10)

where K̂1 = K1 +F . Since (4.2.9) describes a stable system, we can always replace
(4.2.10) with an equivalent open-loop control acting on w—this means that we can

set K̂1 ≡ 0 without loss of generality. This information redundancy has a number
of interesting consequences, which we will now investigate.

A parametrization of all control signals

In light of the redundant information structure of the full-information configuration,
we expect to be able to generate all possible control signals that could result from

uL = L1x + L2w (4.2.11)

by considering
u = K1x + (K2 + U)w, (4.2.12)

in which K =
[

K1 K2

]
as any given full-information controller and U ranges

over the class of causal linear systems.
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To see that this is indeed the case, suppose (4.2.11) is implemented, giving

ẋL = (A + B2L1)xL + (B1 + B2L2)w, x(0) = 0.

This differential equation describes a causal linear system W L mapping w 7→ xL.
Hence

uL = (L1W L + L2)w.

Setting x = xL in (4.2.12) gives

u = (K1W L + K2 + U)w.

In order to generate the control signal uL from (4.2.12), we simply set

U = (L1 − K1)W L + L2 − K2.

We conclude that all control signals that can be generated by full-information con-
trol laws can also be generated by

[
K1 K2 + U

]
= F`

([
K1 K2 I
0 I 0

]
,U

)
,

with U ranging over all causal linear systems.

A parametrization of a particular control signal

Suppose we have a full-information controller K =
[

K1 K2

]
that generates the

control signal

u =
[

K1 K2

] [
x
w

]
. (4.2.13)

We would like to find every other full-information controller that generates the same
control signal. Since any two controllers that generate the same control signal must
generate the same closed-loop system w 7→ z, this will also provide a parametrization
of all controllers that generate a given closed-loop.

Let x̂ be the solution to the differential equation

˙̂x = (A + B2K1)x̂ + (B1 + B2K2)w + B2r, x̂(0) = 0, (4.2.14)

in which r is given by
r = V (x − x̂),

with V an arbitrary causal linear system.
Since x̂(0) = x(0), we have r(0) = 0 for any V . As a consequence, x̂ ≡ x and

r ≡ 0 for all t ≥ 0. Therefore

u = K1x + K2w + r
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for all t ≥ 0. This gives

[
u

x − x̂

]
=

[
K1 K2 I
I −W 1 −W 2

] 


x
w
r



 (4.2.15)

r = V (x − x̂), (4.2.16)

in which W 1 is described by

˙̂x = (A + B2K1)x̂ + (B1 + B2K2)w,

while W 2 is described by

˙̂x = (A + B2K1)x̂ + B2r.

Setting

Ka =

[
K1 K2 I
I −W 1 −W 2

]
(4.2.17)

gives

u = F`(Ka,V )

[
x
w

]
(4.2.18)

=
[

K1 + Z K2 − ZW 1

] [
x
w

]
, (4.2.19)

in which
Z = V (I + W 2V )−1. (4.2.20)

The control signal u in (4.2.19) is identical to that resulting from (4.2.13) because
x = W 1w. Hence (4.2.18) generates a class of controllers that produce the same
control signal as (4.2.13). To see that this LFT actually captures them all as V

ranges over all causal linear systems, we observe that there is a one-to-one corre-
spondence between Z and V in (4.2.20). Thus, given an arbitrary Z, we can always
find a V that generates it. This shows that K1 + Z is arbitrary in (4.2.19) as V

varies, and we conclude that all the control laws that have the same control signal
as (4.2.13) are generated by (4.2.18).

A parametrization of all controllers

We will now find a representation formula for all full-information controllers by
combining the parametrization of all control signals with the parametrization of all
controllers that give rise to the same control signal. To carry out this concatenation,
we combine (4.2.15) with

r = V (x − x̂) + Uw.

This gives
u = F`(Kaa,

[
V U

]
), (4.2.21)



4.2 LFTS IN CONTROLLER SYNTHESIS 149

where

Kaa =




K1 K2 I
I −W 1 −W 2

0 I 0



 .

To see that [
L1 L2

]
= F`(Kaa,

[
V U

]
) (4.2.22)

generates all full-information control laws, we note that (4.2.22) can always be solved
for V and U because the (1, 2)- and (2, 1)-blocks of Kaa have causal inverses. That
is, there is a one-to-one correspondence between L1, L2 and V , U in (4.2.22).

Internal stability

We conclude this section by briefly mentioning the necessary and sufficient con-
ditions on V and U in (4.2.22) for an internally-stable closed loop. We suppose
now that all the systems involved are time-invariant in addition to being causal and
linear.

Suppose that K =
[

K1 K2

]
is a fixed internally-stabilizing controller. Since

the internal dynamics of V are unobservable at the output of the controller (any V

generates the same control signal!), it is necessary that V be stable in order that
the closed loop be internally stable. Since the parameter U defines an open-loop
map from w to r, it too must be stable if the closed loop is to be internally stable.
To see that the stability of V and U is sufficient for internal stability, one needs to
verify that the nine closed-loop transfer function matrices in mapping w, v1 and v2

to u, z and y =
[

x′ w′ ]′
in Figure 4.6 are stable for any stable

[
V U

]
pair.

These matters are considered in more detail in Appendix A.

Main points of the section

1. A large class of controller synthesis problems may be described in
terms of linear fractional transformations involving the controller
K and a generalized plant P .

2. The generalized plant is assumed to have a known state-space re-
alization and the aim is to synthesize an internally-stabilizing con-
troller that satisfies a norm constraint on the closed-loop operator.
We shall require either ‖F`(P ,K)‖2 < γ or ‖F`(P ,K)‖∞ < γ. By
dividing P 11 and P 12 by γ, these problems can always be scaled
so that γ = 1.

3. A number of technical assumptions concerning the state-space re-
alization of the generalized plant P are imposed.

4. The problem may be transformed to an equivalent problem in which
D11 = 0, D22 = 0 and D21D

′
21 = I and D′

12D12 = I. This sim-
plification is made using certain constant matrix LFTs, which are
explained in Section 4.6.
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5. The full-information problem is a feedback problem in which the
controller has access to the state x and to the exogenous input w.
This is a redundant information structure, because we can always
construct a copy of the state from the exogenous input, provided
we know the initial state. A consequence of this redundancy is that
any given control signal (and hence any given closed loop) can be
generated by many controllers.

6. All full-information controllers may be described in terms of a
pair of parameters. The U parameter is used to generate all full-
information control signals, while the V parameter is used to gen-
erate every controller that gives rise to the same control signal (and
consequently the same closed-loop operator). The closed loop will
be internally stable if and only if: (a) K is stabilizing; (b) U is
stable; and (c) V is stable.

4.3 Contractive LFTs

Contractive systems play an important role in the synthesis of controllers that
meet closed-loop norm objectives. The properties of these systems will be used
throughout the remainder of the book.

To begin our analysis of LFTs involving contractive systems, we deduce condi-
tions on the coefficients in the simple first-order fraction

ξ =
ξ1

ξ2
=

as + b

cs + d
(4.3.1)

such that the origin-centered unit disc is mapped into itself. If |s| ≤ 1, we seek
conditions on the coefficient set (a, b, c, d) such that |ξ| ≤ 1. Suppose

[
ξ1

ξ2

]
=

[
a b
c d

] [
s
1

]
.

Then

ξ̄2(|ξ|2 − 1)ξ2 =
[

ξ̄1 ξ̄2

] [
1 0
0 −1

] [
ξ1

ξ2

]

=
[

s̄ 1
]
S∗JS

[
s
1

]
,

in which

S =

[
a b
c d

]
and J =

[
1 0
0 −1

]
.

If the coefficient matrix S has the J-contractive property

S∗JS ≤ J, (4.3.2)
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we see that
ξ̄2(|ξ|2 − 1)ξ2 ≤ |s|2 − 1.

Thus |s| ≤ 1 implies |ξ| ≤ 1. The J-contractive property given in (4.3.2) therefore
implies that the LFT given in (4.3.1) maps the unit disc into itself.

The J-contractive property of S in (4.3.2) induces a similar contractive property
on the P matrix defined in (4.1.5). It follows by direct calculation that

S∗JS − J =

[
|a|2 − |c|2 − 1 āb − c̄d

b̄a − d̄c |b|2 + 1 − |d|2
]

=

[
ā 0
b̄ 1

] [
a b
0 1

]
−

[
c̄ 1
d̄ 0

] [
c d
1 0

]

=

[
c̄ 1
d̄ 0

]
(P ∗P − I)

[
c d
1 0

]
,

since

P =

[
a b
0 1

] [
c d
1 0

]−1

and d 6= 0 is assumed. This shows that

S∗JS ≤ J ⇔ P ∗P ≤ I.

If P ∗P ≤ I in Figure 4.1, it follows that

[
w̄ ū

]
(P ∗P − I)

[
w
u

]
≤ 0

for all w and u. This gives the inequality

|z|2 − |w|2 ≤ |u|2 − |y|2,

which can be thought of as a dissipation or passivity property.
These ideas can be generalized to include matrix and operator valued LFTs. We

first consider LFTs defined by constant matrices, in which stability is not an issue.
The case of LFTs defined by transfer function matrices will then be tackled.

4.3.1 Constant matrix case

The following theorem considers constant matrix LFTs of the form

F`

([
D11 D12

D21 D22

]
, F

)
= D11 + D12F (I − D22F )−1D21, (4.3.3)

in which F and the Dij ’s are complex constant matrices with D∗D ≤ I.

Theorem 4.3.1 Suppose D and F are complex matrices such that det(I−D22F ) 6=
0.
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(a) If ‖D‖ ≤ 1, then ‖F‖ ≤ 1 implies ‖F`(D,F )‖ ≤ 1.

(b) If D∗D = I, then F ∗F = I implies F∗
` (D,F )F`(D,F ) = I.

(c) If D∗D = I and ‖F`(D,F )‖ < 1, then D21 has full column rank.

(d) Suppose D∗D = I with D21 full row rank.

(i) ‖F`(D,F )‖ ≤ 1 if and only if ‖F‖ ≤ 1.

(ii) If ‖F`(D,F )‖ < 1 then ‖F‖ < 1 and D21 is nonsingular; if D21 is
nonsingular and ‖F‖ < 1, then ‖F`(D,F )‖ < 1.

(iii) F ∗F = I if and only if F∗
` (D,F )F`(D,F ) = I.

(iv) ‖F‖ > 1 if and only if ‖F`(D,F )‖ > 1.

Remark 4.3.1. Duals for the results in parts (b) and (c) may be found by noting
that

F∗
` (D,F ) = D∗

11 + D∗
21F

∗(I − D∗
22F

∗)−1D∗
12

= F`(D
∗, F ∗),

and then applying Theorem 4.3.1 to D∗ and F ∗.

Proof. Let [
z
y

]
=

[
D11 D12

D21 D22

] [
w
u

]
, u = Fy. (4.3.4)

Note that D∗D ≤ I is equivalent to ‖z‖2 + ‖y‖2 ≤ ‖w‖2 + ‖u‖2 for all w and u,
and that F ∗F ≤ I is equivalent to ‖u‖2 ≤ ‖y‖2 for all y. Also, ‖F`(D,F )‖ ≤ 1 is
equivalent to ‖z‖2 − ‖w‖2 ≤ 0 for all w.

(a) If ‖D‖ ≤ 1 and ‖F‖ ≤ 1, then ‖z‖2 − ‖w‖2 ≤ ‖u‖2 − ‖y‖2 ≤ 0 for all w.

Hence ‖F`(D,F )‖ ≤ 1.

(b) Since D∗D = I, we may use the partitions of

[
D∗

11 D∗
21

D∗
12 D∗

22

] [
D11 D12

D21 D22

]
= I

to prove that

I −F∗
` (D,F )F`(D,F )

= D∗
21(I − F ∗D∗

22)
−1(I − F ∗F )(I − D22F )−1D21. (4.3.5)

The result is now immediate.

(c) Immediate from (4.3.5).
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(d) We note that D∗D = I yields ‖z‖2 + ‖y‖2 = ‖w‖2 + ‖u‖2. Also, since
y = (I − D22F )−1D21w and D21 has full row rank, it follows that y ranges
over the domain of F as w ranges over the input space.

(i) (⇐) is just (a). If ‖F`(D,F )‖ ≤ 1, then ‖u‖2 − ‖y‖2 = ‖z‖2 − ‖w‖2 ≤ 0
for all w and hence also for all y, since D21 is full row rank. That is, ‖F‖ ≤ 1.
Alternatively, consider (4.3.5).

(ii) Since ‖z‖ < ‖w‖ for all w 6= 0, it follows that ‖u‖ < ‖y‖ for all y 6= 0 and
therefore that ‖F‖ < 1. D21 must be nonsingular by (c). Conversely, if D21

is nonsingular, ‖F‖ < 1 implies ‖u‖ < ‖y‖ for all y 6= 0, giving ‖z‖ < ‖w‖ for
all w 6= 0, which is equivalent to ‖F`(D,F )‖ < 1.

(iii)(⇒) This is just (b). (⇐) This follows from (4.3.5) and the fact that(I −
D22F )−1D21 has full row rank.

(iv) (⇒) Since u = Fy and since ‖F‖ > 1 there exists a û = F ŷ such
that ‖û‖ > ‖ŷ‖. Next, we observe that ŷ may be generated by setting ŵ =
DR

21(I − D22F )ŷ, in which (·)R denotes a right inverse. Since ‖ẑ‖2 − ‖ŵ‖2 =
‖û‖2 − ‖ŷ‖2 > 0 we conclude that ‖F`(D,F )‖ > 1.

(⇐) Since there exists a ŵ such that ‖ẑ‖ > ‖ŵ‖, we conclude that there exists
a ŷ such that ‖û‖ > ‖ŷ‖. The result now follows because u = Fy.

4.3.2 Dynamic matrix case

The aim of this section is to generalize the results of Theorem 4.3.1 to the case of
LFTs that involve transfer function matrices. The dynamic case is complicated by
the possibility of cancellation phenomena, stability questions and minimality issues.
Our first result is a generalization of Theorem 4.3.1.

Theorem 4.3.2 Suppose det
(
I − P 22(∞)K(∞)

)
6= 0.

(a) If ‖P ‖∞ ≤ 1, then ‖K‖∞ ≤ 1 implies that ‖F`(P ,K)‖∞ ≤ 1.

(b) If P∼P = I, then K∼K = I implies that F∼
` (P ,K)F`(P ,K) = I.

(c) If P∼P = I and ‖F`(P ,K)‖∞ < 1, then P 21(jω) has full column rank for
all real values of ω.

(d) Suppose P∼P = I with P 21(jω) full row rank for all real values of ω.

(i) ‖F`(P ,K)‖∞ ≤ 1 if and only if ‖K‖∞ ≤ 1.

(ii) If ‖F`(P ,K)‖∞ < 1 then ‖K‖∞ < 1 and P 21(jω) is nonsingular for all
real values of ω. If P 21(jω) is nonsingular for all real values of ω and
‖K‖∞ < 1 then ‖F`(P ,K)‖∞ < 1.

(iii) K∼K = I if and only if F∼
` (P ,K)F`(P ,K) = I.

(iv) ‖K‖∞ > 1 if and only if ‖F`(P ,K)‖∞ > 1.
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Proof.

(a) The condition det
(
I − P 22K(∞)

)
6= 0 is required to ensure well-posedness.

If [
z
y

]
=

[
P 11 P 12

P 21 P 22

] [
w
u

]
,

then ‖P ‖∞ ≤ 1 implies that ‖z‖2
2 − ‖w‖2

2 ≤ ‖u‖2
2 − ‖y‖2

2. Since u = Ky and
‖K‖∞ ≤ 1, we have ‖u‖2

2 ≤ ‖y‖2
2, which implies ‖z‖2

2 ≤ ‖w‖2
2.

(b) Since P∼P = I, we may use essentially the same calculations as those used
in the constant case to establish that

I −F∼
` (P ,K)F`(P ,K)

= P∼
21(I − K∼P∼

22)
−1(I − K∼K)(I − P 22K)−1P 21,

which completes the proof.

(c) Immediate from the above identity.

(d) Since P∼P = I, it follows that ‖z‖2
2 −‖w‖2

2 = ‖u‖2
2 −‖y‖2

2. Parts (i), (ii) and
(iii) follow in the same way as their constant counterparts.

(iv) (⇒) Since ‖K‖∞ > 1, there exists a frequency ω̂ such that ‖K(jω̂)‖2 > 1
and a ŷ such that ‖û‖2 > ‖ŷ‖2. Setting ŵ = P R

21

(
I − P 22K(jω̂)

)
ŷ gives

‖û‖2 > ‖ŷ‖2 and ‖ẑ‖2 > ‖ŵ‖2 and so ‖F`(P ,K)‖∞ > 1. (iv) (⇐) Since
there exists a ŵ such that ‖ẑ‖2 > ‖ŵ‖2, we conclude that there exists a ŷ
such that ‖û‖2 > ‖ŷ‖2 and therefore that ‖K‖∞ > 1.

If P∼P = I with P 21(jω) nonsingular for all real values of ω, it follows from
Theorem 4.3.2 Part d(ii) that ‖K‖∞ < 1 if and only if ‖F`(P ,K)‖∞ < 1. If we
suppose in addition that P is stable, then we would like to show that the stability
of K is equivalent to the internal stability of F`(P ,K).

Theorem 4.3.3 Suppose P ∈ RH∞, P∼P = I and that P−1
21 ∈ RH∞. The

following are equivalent:

1. There exists a K such that F`(P ,K) is well-posed, internally stable and
‖F`(P ,K)‖∞ < 1.

2. K ∈ RH∞ and ‖K‖∞ < 1.

Proof.

(2 ⇒ 1): Since ‖K‖∞ < 1 and ‖P 22‖∞ ≤ 1 it is clear that ‖P 22K‖∞ < 1 and that
the closed loop is well-posed. It follows from K ∈ RH∞ and the small gain theorem
that the closed loop is internally stable. The fact that ‖F`(P ,K)‖∞ < 1 follows
from Theorem 4.3.2 part (d)(ii).
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(1 ⇒ 2): ‖F`(P ,K)‖∞ < 1 ⇒ ‖K‖∞ < 1 by Theorem 4.3.2 part (d)(ii).
We now prove that K is stable using a Nyquist argument. Let K have nK poles

in the closed-right-half plane (CRHP) and note that none are on the imaginary
axis, since ‖K‖∞ < 1. We also note that ‖P 22‖∞ ≤ 1 and ‖K‖∞ < 1 implies that
det(I − εP 22K) 6= 0 on the imaginary axis, for all ε ∈ [0, 1]. The Nyquist contour
DR will consist of the imaginary axis from −jR to jR and a semicircular arc of
radius R in the right-half plane. The radius R is large enough to enclose all the
CRHP poles of K and all the CRHP zeros of det(I − εP 22K), ε ∈ [0, 1].

Because P ∈ RH∞ and P−1
21 ∈ RH∞, internal stability of the LFT is equivalent

to internal stability of the loop defined by

y = P 22u + v1, u = Ky + v2.

By the Nyquist theorem (Theorem 2.4.2) and the assumed internal stability of the
LFT, det

(
I − P 22K(s)

)
makes nK encirclements of the origin as s traverses DR.

To conclude that nK = 0, we argue that the number of encirclements of the origin
made by det

(
I − P 22K(s)

)
must be zero.

Let K = ND−1 be a coprime factorization over RH∞. That is, N and D are in
RH∞ and

[
N ′ D′ ]

has full rank in the closed-right-half plane (see Appendix A
for more details). The CRHP poles of K are the CRHP zeros of det(D). Since

det
(
I − εP 22K(s)

)
=

det
(
D(s) − εP 22N(s)

)

det
(
D(s)

) (4.3.6)

and det
(
I − εP 22K(s)

)
is nonzero s ∈ DR and ε ∈ [0, 1], it follows that Γε(s) =

det
(
D(s)− εP 22N(s)

)
is never zero for s ∈ DR and ε ∈ [0, 1]. Because Γε deforms

continuously from det
(
D(s)

)
to det

(
D(s) − P 22N(s)

)
as ε moves from 0 to 1, the

number of encirclements of the origin made by detD(s) is the same as the number
of encirclements of the origin made by det

(
D(s) − P 22N(s)

)
. Since det(D) ∈

RH∞ has nK zeros within DR, it follows that detD(s) and hence also det
(
D(s)−

P 22N(s)
)

makes nK encirclements of the origin. By (4.3.6), det
(
I − P 22K(s)

)

makes no encirclements of the origin as s traverses DR. That is, nK = 0 and we
conclude that K is stable.

It is possible to generalize this result to the case that P and K have a specific
number of left half-plane poles.

Lemma 4.3.4 Suppose P has state-space realization

P
s
=




A B1 B2

C1 0 D12

C2 D21 0



 .

Suppose also that:

1. The matrix A has exactly r eigenvalues in the open-left-half plane.
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2. The matrix A−B2D
−1
12 C1 has no eigenvalues in the closed-left-half plane and

3. The matrix A − B1D
−1
21 C2 has no eigenvalues in the closed-left-half plane.

If K has minimal state-space realization

K
s
=

[
Ã B̃

C̃ D̃

]
,

and ‖P 22K‖∞ < 1, then F`(P ,K) has exactly r+ l poles in the open-left-half plane
if and only if K has exactly l poles there.

Proof. Since the zeros of P 12 and P 21 are all in the open-right-half plane, we con-
clude from Lemma 4.1.2 that the open-left-half plane (OLHP) poles of F`(P , εK)
are the OLHP zeros of det(Acl(ε) − sI), in which

Acl(ε) =

[
A + εB2D̃C2 εB2C̃

B̃C2 Ã

]
.

After a “Schur complement” calculation, we get:

det(Acl(ε) − sI)

= det(Ã − sI) det(A − sI + εB2K(s)C2)

= det(Ã − sI) det(A − sI) det(I − ε(sI − A)−1B2K(s)C2)

= det(Ã − sI) det(A − sI) det
(
I − εC2(sI − A)−1B2K(s)

)

= det(Ã − sI) det(A − sI) det(I − εP 22K). (4.3.7)

Let DR be a contour consisting of the imaginary axis from −jωR to jωR and
a semicircular arc of radius R in the left-half plane, with R large enough for the
contour to enclose all the left-half-plane eigenvalues of A and Ã and all the left-half-
plane poles and zeros of det(I−εP 22K), ε ∈ [0, 1]. Furthermore, since ‖P 22K‖∞ <
1 and P and K have only a finite number of poles in the left-half plane, we can
choose R such that σ

(
P 22K(s)

)
< 1 for all s ∈ DR.

With DR as indicated above, we argue as follows. Since σ
(
P 22K(s)

)
< 1 for

all s ∈ DR, det(I − εP 22K) is never zero for s ∈ DR and ε ∈ [0, 1]. From (4.3.7)
we see that det(Acl(ε) − sI) deforms continuously as ε moves from zero to one
without touching the origin. This means that det(Acl(0)− sI) and det(Acl(1)− sI)
make the same number of encirclements of the origin as s traverses DR. Since
det(Acl(0)−sI) makes r+ l encirclements of the origin, det(Acl(1)−sI) also makes
r + l encirclements. We conclude that F`(P ,K) has r + l poles in the open-left-half
plane if and only if K has l poles there.
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Main points of the section

1. If P∼P ≤ I, then ‖F`(P ,K)‖∞ ≤ 1 whenever ‖K‖∞ ≤ 1.

2. If P ∈ RH∞, P−1
21 ∈ RH∞ and P∼P = I, then F`(P ,K) is

internally stable and satisfies ‖F`(P ,K)‖∞ < 1 if and only if K ∈
RH∞ and ‖K‖∞ < 1. This is sometimes known as “Redheffer’s
theorem”.

3. If ‖P 22K‖∞ < 1 and there are no left-half-plane pole-zero can-
cellations when F`(P ,K) is formed, then the number of open-left-
half-plane poles in F`(P ,K) is the sum of the number of open-left-
half-plane poles of P and K.

4.4 Minimizing the norm of constant LFTs

The task of our controller synthesis theory is to find necessary and sufficient condi-
tions for the existence of stabilizing controllers that satisfy a norm objective on a
linear fractional transformation. This section considers the constant matrix version
of the synthesis problem, which is the first step towards a general synthesis theory.
It is also of some pedagogical value, since the basic structure of the solution ap-
proach carries over to the dynamic case. The need to address stability phenomena
makes the dynamic case more complex.

Consider the constant matrix LFT

F`

([
D11 D12

D21 D22

]
, F

)
= D11 + D12F (I − D22F )−1D21,

in which F and the Dij ’s are complex constant matrices as in (4.3.3). Unless stated
otherwise, assume that (I − D22F )−1 exists.

We pose the following problem:

Given the matrix D =

[
D11 D12

D21 D22

]
, what is the minimum achievable

value of ‖F`(D,F )‖ and how do we select a constant matrix F such that
‖F`(D,F )‖ is minimized?

The norm is the norm induced by the Euclidean vector norm, i.e., ‖X‖ = σ(X).

If D12 and D21 are nonsingular, the problem is easily solved by finding an F̂

such that F`(D, F̂ ) = 0. Carrying out the necessary rearrangement gives

F̂ = −(D12 − D11D
−1
21 D22)

−1D11D
−1
21 .

If D21 is nonsingular and D12 has full column rank, the problem is harder and
the lowest achievable norm may be greater than zero. We may set Q = F (I −
D22F )−1D21 and consider the problem of minimizing ‖D11 +D12Q‖, because there
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is an invertible transformation between Q and F . Once we have a solution Q̂, say,
F̂ may be found by back substitution via

F̂ = F`

([
0 I

D−1
21 −D−1

21 D22

]
, Q̂

)
.

Lemma 4.4.1 Suppose D12 has full column rank and let R = D∗
12D12.

1. The following are equivalent:

(a) There exists a Q̂ such that

‖D11 + D12Q̂‖ ≤ γ; (4.4.1)

(b)
D∗

11(I − D12R
−1D∗

12)D11 ≤ γ2I; (4.4.2)

(c)

‖D̂∗
12D11‖ ≤ γ, (4.4.3)

in which D̂12 is any matrix such that
[

D̂12 D12

]
is nonsingular and

D̂∗
12

[
D̂12 D12

]
=

[
I 0

]
.

2. If the conditions in Item 1 hold, then Q̂ satisfies (4.4.1) if and only if

Q̂ = Θ11 + Θ12UΘ21, ‖U‖ ≤ γ, (4.4.4)

in which
Θ11 = −R−1D∗

12D11

and Θ12 and Θ21 are matrices which satisfy

Θ12Θ
∗
12 = R−1

Θ∗
21Θ21 = I − γ−2D∗

11(I − D12R
−1D∗

12)D11

= I − γ−2D∗
11D̂12D̂

∗
12D11.

Proof. By completing the square we have

(D11 + D12Q̂)∗(D11 + D12Q̂)

= D∗
11(I − D12R

−1D∗
12)D11 + (Q̂ − Θ11)

∗R(Q̂ − Θ11)

≥ D∗
11(I − D12R

−1D∗
12)D11.
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Hence (4.4.2) is necessary and is seen to be sufficient by setting Q̂ = Θ11. To

show that (4.4.2) and (4.4.3) are equivalent, we observe that
[

D̂12 D12Θ12

]
is

a unitary matrix, which gives

I =
[

D̂12 D12Θ12

] [
D̂∗

12

Θ∗
12D

∗
12

]

= D̂12D̂
∗
12 + D12R

−1D∗
12.

To show that (4.4.4) generates all solutions, note that the completion of squares
identity results in

γ2Θ∗
21Θ21 − (Q̂ − Θ11)

∗(Θ−1
12 )∗Θ−1

12 (Q̂ − Θ11) ≥ 0

for any Q̂ that satisfies (4.4.1). Consequently, there exists a matrix U with the

property U∗U ≤ I which satisfies Θ−1
12 (Q̂−Θ11) = γUΘ21 (note that if A∗A = B∗B

there exists a matrix U with the property U∗U = I such that UA = B; see also
Problem 9.1). Hence γ−1(D11 + D12Q̂) = F`(X, γ−1U), in which

X =

[
γ−1(D11 + D12Θ11) D12Θ12

Θ21 0

]
.

Since X∗X = I it follows from Theorem 4.3.1 that ‖D11 + D12Q̂‖ ≤ γ for any
‖U‖ ≤ γ, which is equivalent to (4.4.4).

If D12 is nonsingular and D21 has full row rank, we set Q = D12F (I −D22F )−1

and apply Lemma 4.4.1 to the problem of minimizing ‖D∗
11 + D∗

21Q
∗‖. The lowest

achievable value of ‖F`(D,F )‖ is given by ‖D11D̂
∗
21‖ where D̂21 is any matrix such

that
[

D̂′
21 D′

21

]
is nonsingular and

[
D̂21

D21

]
D̂∗

21 =

[
I
0

]
.

In the case that D12 has full column rank and D21 has full row rank, we are
faced with the problem of finding Q such that

‖D11 + D12QD21‖ ≤ γ, (4.4.5)

in which
Q = F (I − D22F )−1.

By considering ‖D11 + (D12Q)D21‖ and ‖D11 + D12(QD21)‖ separately, it is clear
that there exists a Q such that (4.4.5) holds only if

γ ≥ max{‖D11D̂
∗
21‖, ‖D̂∗

12D11‖}. (4.4.6)
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Surprisingly, it may be proved that

inf
Q

‖D11 + D12QD21‖ = max{‖D11D̂
∗
21‖, ‖D̂∗

12D11‖},

which is a special case of a more general result known as Parrott’s theorem. We
supply a proof of this and a formula for all solutions in Chapter 11.5 For the
purposes of our work here, it is enough for us to know that there exists an F such
that (4.4.5) is satisfied for any γ ≥ max{‖D11D̂

∗
21‖, ‖D̂∗

12D11‖}.

Main point of the section

We can solve the constant matrix optimization problem minF ‖F`(D,F )‖ and we
can find all F ’s that satisfy ‖F`(D,F )‖ ≤ γ. This solves the synthesis problem for
LFTs defined by constant matrices.

4.5 Simplifying constant LFTs

Consider the LFT

F`

([
D11 D12

D21 D22

]
, F

)
= D11 + D12F (I − D22F )−1D21, (4.5.1)

in which F and the Dij ’s are complex constant matrices as in (4.3.3). Unless stated
otherwise, we will assume that (I − D22F )−1 exists.

The aim of this section is to show that the LFT may be reduced to a simpler
LFT. Firstly, we will show that D12 and D21 can be orthogonalized using a simple
scaling on F . Secondly, we establish that D22 can be absorbed into F using a simple
change of variable. This means that we will be able to assume D22 = 0 without
loss of generality. Finally, we will show that when considering the minimization of
‖F`(D,F )‖, we may without loss of generality assume that D11 = 0.

Taken together, these steps may be used to show that

‖F`(D,F )‖ ≤ γ ⇔ ‖F`(D̂, F̂ )‖ ≤ γ,

in which

D̂ =

[
0 D̂12

D̂21 0

]
, D̂∗

12D̂12 = I and D̂21D̂
∗
21 = I.

5The reader may like to pursue the following argument. From (4.4.4), it follows that

‖D11 + D12QD21‖ ≤ γ ⇔ ‖Θ−1
12 (QD21 − Θ11)Θ−1

21 ‖ ≤ γ,

in which Θij are as defined in Lemma 4.4.1. Applying Lemma 4.4.1 to ‖D̂11 + D̂12(Θ−1
12 Q)∗‖, in

which D̂11 = −(Θ−1
12 Θ11Θ−1

21 )∗ and D̂12 = (D21Θ−1
21 )∗, we may obtain necessary and sufficient

conditions for the existence of Q satisfying ‖D11 + D12QD21‖ ≤ γ and a characterization of all
such Q. It requires some considerable effort, however, to deduce that the condition obtained by
this route is just (4.4.6).
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The value of this observation lies in the fact that F`(D̂, F̂ ) = D̂12F̂ D̂21 and

‖F`(D̂, F̂ )‖ ≤ γ if and only if ‖F̂‖ ≤ γ.

Scaling D12 and D21

If D12 and D21 have full column and row rank respectively, then there exist invertible
scaling matrices S1 and S2 such that

D̂12 = D12S1 and D̂21 = S2D21

satisfy D̂∗
12D̂12 = Im and D̂21D̂

∗
21 = Iq. These scaling matrices may be found from

singular value decompositions of D12 and D21. The scale factors may be absorbed
into the LFT by defining

D̂22 = S2D22S1 and F̂ = S−1
1 FS−1

2 ,

since this results in

F`

([
D11 D12

D21 D22

]
, F

)

= D11 + D12F (I − D22F )−1D21

= D11 + D̂12S
−1
1 FS−1

2 (I − S2D22S1S
−1
1 FS−1

2 )−1D̂21

= D11 + D̂12F̂ (I − D̂22F̂ )−1D̂21

= F`

([
D11 D̂12

D̂21 D̂22

]
, F̂

)
.

This shows that given the LFT F`

([
D11 D12

D21 D22

]
, F

)
, there is an equivalent LFT

F`

([
D11 D̂12

D̂21 D̂22

]
, F̂

)
such that D̂∗

12D̂12 = Im and D̂21D̂
∗
21 = Iq.

Setting D22 = 0

We will now show that the D22 term may always be set to zero by a change of
controller variable. Returning to (4.5.1), we observe that by setting

F̃ = F (I − D22F )−1,

we have

F`

([
D11 D12

D21 D22

]
, F

)
= F`

([
D11 D12

D21 0

]
, F̃

)
.

Since there is a one-to-one correspondence between F and F̃ if (I − D22F ) is non-

singular, any study of F`

([
D11 D12

D21 D22

]
, F

)
may be replaced by an equivalent

study of F`

([
D11 D12

D21 0

]
, F̃

)
.
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Removing the D11 term

The aim of this section is to show how a LFT with D11 6= 0 may be replaced with
an equivalent LFT with a zero D11 term. The equivalence is in terms of the two
LFTs satisfying certain norm requirements.

The procedure requires two steps. In the first, we introduce a loop shifting
transformation that minimizes the size of the D11 entry. The second step replaces
the LFT with the nonzero D11 entry with an equivalent LFT in which this term is
zero.

Consider Figure 4.9, in which F is a loop-shifting transformation and K is some
(possibly dynamic) controller. It follows by calculation that

f

f

ss D

F

F

K

¾ ¾

?

¾

-

-

6

-

¾

−

z

y

w

u ũ

K̃

Figure 4.9: Minimizing the norm of D11.

F`(D,K)

= D11 + D12K(I − D22K)−1D21

= D11 + D12(K̃ + F )
(
I − D22(K̃ + F )

)−1
D21,

in which K̃ = K − F

= D11 + D12[K̃ + F ](I − (I − D22F )−1D22K̃)−1(I − D22F )−1D21

= (D11 + D12F (I − D22F )−1D21)

+ D12(I − FD22)
−1K̃(I − (I − D22F )−1D22K̃)−1

×(I − D22F )−1D21
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= F`

([
F`(D,F ) D12(I − FD22)

−1

(I − D22F )−1D21 (I − D22F )−1D22

]
, K̃

)

= F`

([
D̄11 D̄12

D̄21 D̄22

]
, K̃

)
.

This shows that F`(D,K) can be replaced by F`(D̄, K̃) because K and K̃ are
interchangeable via K̃ = K − F .

Suppose that F has been selected to minimize ‖D̄11‖; as we have already shown,

minF ‖D̄11‖ = max(‖D11D̂
∗
21‖, ‖D̂∗

12D11‖). The removal of D̄11 may now be accom-
plished by introducing the matrix

Θ =

[
Θ11 Θ12

Θ21 Θ22

]

= γ−1

[
γ−1D̄11 (I − γ−2D̄11D̄

∗
11)

1/2

−(I − γ−2D̄∗
11D̄11)

1/2 γ−1D̄∗
11

]
(4.5.2)

in Figure 4.10, which has the property ΘΘ∗ = γ−2I for any γ ≥ ‖D̄11‖.6

s s
Θ

D̄

¾
¾

-
- -

¾̄z

ũ

w z

y

w̄

Figure 4.10: The removal of D11.

It follows from the composition formula (4.1.9) that the matrix mapping

[
w̄
ũ

]

to

[
z̄
y

]
is given by

D̂ =

[
0 = F`(Θ,D̄11) Θ12(I−D̄11Θ22)

−1D̄12

D̄21(I−Θ22D̄11)
−1Θ21 D̄22+D̄21Θ22(I−D̄11Θ22)

−1D̄12

]
,

which has the required property that D̂11 = 0.

6In order to establish this property, the square root of A must satisfy (A1/2)∗A1/2 = I rather
than A1/2A1/2 = I. By invoking the singular value decomposition (of A) it may be proved that
(I − AA∗)1/2A = A(I − A∗A)1/2.
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Since ΘΘ∗ = γ−2I, it follows from Theorem 4.3.1 that ‖F`(D̄, K̃)‖ ≤ γ if and

only if ‖F`(D̂, K̃)‖ ≤ γ−1, for any γ ≥ ‖D̄11‖. Thus the two LFTs F`(D̄, K̃) and

F`(D̂, K̃) are equivalent in terms of satisfying an upper bound on their respective
norms.

Main points of the section

We have discovered several properties of the constant LFT

F`

([
D11 D12

D21 D22

]
, F

)
.

1. There is no loss of generality in assuming that D∗
12D12 = Im and

D21D
∗
21 = Iq in the case that D12 has full column rank and D21

has full row rank. This is proved by a simple scaling argument.

2. There is no loss of generality in assuming that D22 = 0. This
property may be established by a simple loop shifting procedure.

3. When analyzing the problem ‖F`(D,F )‖ < γ, we may consider
an equivalent problem in which the D11-term is zero, provided γ
satisfies the necessary condition given in (4.4.6). The equivalence
is in terms of the satisfaction of a norm constraint. We warn the
reader that the transformations used to remove D11 do not preserve
traceF`(D,F )F`(D,F )′ and therefore cannot be used in the case of
2-norm optimization problems.

4.6 Simplifying the generalized plant

The aim of this section is to combine the results of Sections 4.5 into a loop shift-
ing and scaling procedure for generalized plant descriptions in controller synthesis
problems. As we have already mentioned, our future theoretical development is
simplified by the assumption that D11 = 0 and D22 = 0. This assumption also
leads to a major reduction in the complexity of all the central formulas for H∞ and
LQG control. A further simplification is achieved by scaling the problem so that
D12 and D21 are parts of orthogonal matrices.

Suppose we are given a generalized plant described by

P
s
=




A B1 B2

C1 D11 D12

C2 D21 D22



 (4.6.1)

and that the state-space data satisfies the following assumptions:

1. (A,B2, C2) is stabilizable and detectable.

2. rank(D12) = m and rank(D21) = q.
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3. rank

[
jωI − A −B2

C1 D12

]
= m + n for all real ω.

4. rank

[
jωI − A −B1

C2 D21

]
= q + n for all real ω.

The aim of the general scaling and loop shifting procedure is to replace (4.6.1)
with an equivalent problem of the form

P̂
s
=




Â B̂1 B̂2

Ĉ1 0 D̂12

Ĉ2 D̂21 0


 , (4.6.2)

in which the data satisfies the following similar assumptions:

1̂. (Â, B̂2, Ĉ2) is stabilizable and detectable.

2̂. D̂∗
12D̂12 = Im and D̂21D̂

∗
21 = Iq.

3̂. rank

[
jωI − Â −B̂2

Ĉ1 D̂12

]
= m + n for all real ω.

4̂. rank

[
jωI − Â −B̂1

Ĉ2 D̂21

]
= q + n for all real ω.

The scaling and loop shifting procedure may be broken down into four steps. In
the fifth step a controller is designed for the derived plant. The controller for the
original problem is then found by back substitution in the final step.

Step 1

The purpose of this step is to minimize ‖D̄11‖. Suppose F is a constant gain matrix
to be found and that P is given by (4.6.1). Now consider Figure 4.9 and suppose
that the constant D matrix is replaced by the transfer function matrix P . The
resulting setup appears in Figure 4.11. If

[
u2

y

]
=

[
P 11 P 12

P 21 P 22

] [
y2

u

]

with
u = Fy + ũ, (4.6.3)

then

[
u2

y

]
= F`








P 11 P 12 P 12

P 21 P 22 P 22

P 21 P 22 P 22



 , F




[

y2

ũ

]

=

[
P̄ 11 P̄ 12

P̄ 21 P̄ 22

] [
y2

ũ

]
.
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Figure 4.11: The loop transformation procedure.

Eliminating u from

ẋ = Ax + B1y2 + B2u

u2 = C1x + D11y2 + D12u

y = C2x + D21y2 + D22u
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using (4.6.3) yields a realization of P̄ =

[
P̄ 11 P̄ 12

P̄ 21 P̄ 22

]
:

P̄ =




A+B2F (I−D22F )−1C2 B1+B2F (I−D22F )−1D21 B2(I−FD22)

−1

C1+D12F (I−D22F )−1C2 D11+D12F (I−D22F )−1D21 D12(I−FD22)
−1

(I−D22F )−1C2 (I−D22F )−1D21 (I−D22F )−1D22





(4.6.4)

s
=




Ā B̄1 B̄2

C̄1 D̄11 D̄12

C̄2 D̄21 D̄22



 .

Observing that D̄11 = F`(D,F ), we select an F such that ‖D̄11‖ = γ0 where

γ0 = max{‖D̂∗
12D11‖, ‖D11D̂

∗
21‖}.

(The construction of such an F is considered in detail in Chapter 11—such an F
can also be constructed using Lemma 4.4.1). From now on, we suppose that such
an F has been found and implemented.

By considering the point s = ∞, we see that γ > γ0 is necessary for the existence
of K such that ‖F`(P ,K)‖∞ < γ. Also notice that ‖P̄ 11‖2 is infinite unless γ0 = 0.
It follows that

max{‖D̂∗
12D11‖, ‖D11D̂

∗
21‖} = 0

is necessary for the existence of a time-invariant state-space system K such that
‖F`(P ,K)‖2 < ∞. Consequently, D̄11 = 0 whenever a finite 2-norm solution exists.
Since the transformation of Step 2 does not preserve the 2-norm, it must be omitted
in the case of 2-norm optimization.

Step 2

(Infinity norm optimization only) In this step, we select the orthogonal Θ-matrix
in Figures 4.10 and 4.11 that enforces F`(Θ, D̄11) = 0. To do this, we define

[
Θ11 Θ12

Θ21 Θ22

]
= γ−1

[
γ−1D̄11 (I − γ−2D̄11D̄

∗
11)

1/2

−(I − γ−2D̄∗
11D̄11)

1/2 γ−1D̄∗
11

]
, (4.6.5)

which satisfies ΘΘ∗ = γ−2I and ‖Θ22‖2 < γ−1 for all γ > γ0. Since ‖y1‖2
2 −

γ−2‖u1‖2
2 = γ−2‖u2‖2

2 − ‖y2‖2
2 (see Figure 4.11 for a definition of the signals), we

conclude that ‖F`(P̂ ,K)‖∞ ≤ γ−1 if and only if ‖F`(P̄ ,K)‖∞ ≤ γ. Since Θ is
a constant matrix with ‖Θ22‖2 < γ−1, the small gain theorem may be used to

show that F`(P̂ ,K) is internally stable if and only if F`(P̄ ,K) is. From this we

conclude that P̂ and P̄ describe equivalent problems from an internal stability point
of view and from the perspective of satisfying an infinite norm condition. By direct
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computation, P̂ = C`(Θ, P̄ ) is given by the realization:




Ā+B̄1Θ22(I−D̄11Θ22)

−1C̄1 B̄1(I−Θ22D̄11)
−1Θ21 B̄2+B̄1Θ22(I−D̄11Θ22)

−1D̄12

Θ12(I−D̄11Θ22)
−1C̄1 0 Θ12(I−D̄11Θ22)

−1D̄12

C̄2+D̄21Θ22(I−D̄11Θ22)
−1C̄1 D̄21(I−Θ22D̄11)

−1Θ21 D̄22+D̄21Θ22(I−D̄11Θ22)
−1D̄12





=




Â B̂1 B̃2

Ĉ1 0 D̃12

C̃2 D̃21 D̂22


 , (4.6.6)

which has the desired property D̂11 = 0.

Step 3

In this step, we eliminate D̂22 by connecting −D̂22 in parallel with P̂ 22 as illustrated
in Figure 4.11.

Step 4

Select scaling matrices S1 and S2 so that D̂12 = D̃12S1 satisfies D̂∗
12D̂12 = Im, and

D̂21 = S2D̃21 satisfies D̂21D̂
∗
21 = Iq. The scaled generalized regulator problem data

becomes

P̂
s
=




Â B̂1 B̂2

Ĉ1 0 D̂12

Ĉ2 D̂21 0


 , (4.6.7)

in which B̂2 = B̃2S1 and Ĉ2 = S2C̃2. This completes the replacement of (4.6.1)
with (4.6.2).

Step 5

Compute K̃ for the scaled generalized regulator problem described by (4.6.7).
Chapters 5 to 8 will supply all the details about the construction of K̃.

Step 6

Reverse the loop shifting and scaling to obtain the controller K to be used with the
original problem characterized by P in (4.6.1). It follows from Figure 4.11 that

K = F`

([
F I

I −D̂22

]
, S2K̃S1

)
.

This is the end of the generalized regulator problem replacement and solution pro-
cedure.

Before leaving this section, we have to ensure that we do not destroy the proper-
ties of the original data given in (4.6.1) while passing to the derived problem given in
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(4.6.2) and (4.6.7). We have to show that provided γ is big enough, the realization
for P in (4.6.1) satisfies assumptions in Items 1 to 4 if and only if the realization

for P̂ given in (4.6.2) satisfies the assumptions in Items 1̂ to 4̂. In our analysis we
treat the transformation between P and P̄ first, and the transformation between
P̄ and P̂ second.

Lemma 4.6.1 The generalized regulator assumptions in Items 1 to 4 apply to re-
alization (4.6.1) if and only if they apply to realization (4.6.4).

Proof. The assumption in Item 1 follows from the fact that stabilizability and
detectability are invariant under output feedback. The assumption in Item 2 is
immediate from (4.6.4) since (I −FD22)

−1 exists. The assumptions in Items 3 and
4 are preserved because

[
sI − Ā −B̄2

C̄1 D̄12

]
=

[
sI − A −B2

C1 D12

] [
I 0

F (I − D22F )−1C2 (I − FD22)
−1

]

and
[

sI − Ā −B̄1

C̄2 D̄21

]
=

[
I −B2F (I − D22F )−1

0 (I − D22F )−1

] [
sI − A −B1

C2 D21

]
.

Lemma 4.6.2 Suppose there exists an internally-stabilizing controller such that
‖F`(P ,K)‖∞ < γ. Then:

1. (Â, B̂2, Ĉ2) is stabilizable and detectable.

2. rank (D12) = m ⇔ rank (D̂12) = m, and rank (D21) = q ⇔ rank (D̂21) = q.

3.

rank

[
jωI − A −B2

C1 D12

]
= rank

[
jωI − Â −B̂2

Ĉ1 D̂12

]
.

4.

rank

[
jωI − A −B1

C2 D21

]
= rank

[
jωI − Â −B̂1

Ĉ2 D̂21

]
.

Proof.

Item 1: Since ‖Θ22‖2 < γ−1, it follows from the small gain theorem that F`(P̂ ,K)

is internally stable. Since K is an internally-stabilizing controller for P̂ , it follows
that (Â, B̂2, Ĉ2) is stabilizable and detectable.

Item 2: This follows from the invertibility of Θ12 and Θ21, equation (4.6.4) and
equation (4.6.6).

Items 3 and 4: These follow from Lemma 4.6.1 and the identities:
[

sI − Â −B̂2

Ĉ1 D̂12

]
=

[
I −B̄1Θ22(I − D̄11Θ22)

−1

0 Θ12(I − D̄11Θ22)
−1

] [
sI − Ā −B̄2S1

C̄1 D̄12S1

]
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and
[

sI − Â −B̂1

Ĉ2 D̂21

]

=

[
sI − Ā −B̄1

S2C̄2 S2D̄21

] [
I 0

Θ22(I − D̄11Θ22)
−1C̄1 (I − Θ22D̄11)

−1Θ21

]
.

Finally, we remark that the loop shifting and scaling transformations described
in this section may be extended to the case of time-varying systems. For details,
see [130].

Main points of the section

1. The theory and equations associated with controller synthesis are
greatly simplified when D11 = 0 and D22 = 0.

2. The condition γ > max(‖D̂∗
12D11‖, ‖D11D̂

∗
21‖) is necessary for the

existence of K such that ‖F`(P ,K)‖∞ < γ. In this case, the
problem of finding K such that ‖F`(P ,K)‖∞ < γ may be replaced
by an equivalent problem of the form (4.6.2).

3. The condition max{‖D̂∗
12D11‖, ‖D11D̂

∗
21‖} = 0 is necessary for the

existence of K such that ‖F`(P ,K)‖2 < ∞. In this case, the
problem of finding K such that ‖F`(P ,K)‖2 < γ may be replaced
by an equivalent problem of the form (4.6.2).

4. The problem replacement procedure involves several changes of
variable, but is otherwise straightforward.

5. If a solution to the problem described by (4.6.1) and assumptions
in Items 1 to 4 exists, then a solution to the problem described by

(4.6.2) exists also. Under these conditions, assumptions in Items 1̂

to 4̂ are satisfied.

4.7 Notes and References

Linear fractional or bilinear transformations have a long history in complex analysis.
Reviews of this material can be found in many books that deal with conformal
mapping theory. A particularly good treatment of the classical properties of simple
bilinear transformations of the form

ξ =
as + b

cs + d
,

in which (a, b, c, d) are numbers, can be found in Nevanlinna and Paatero [157].
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Our main references for operator valued linear fractional transformations are
the papers of Redheffer [171, 170]. Reference [171] contains a number of interesting
results pertaining to the transformation

f(z) = u + rz(1 − wz)−1s,

in which (u, r, s,w,z) are operators defined on a Hilbert space and such that
∥∥∥∥
[

r u

w s

]∥∥∥∥ ≤ 1.

This paper also deals with the properties of the so called “star product”, which is of
great importance to us here. (It is, in essence, identical to the composition operator
C`(·, ·).) In his earlier paper [170], Redheffer studies linear fractional transformations
of the form

Ξ = U + SK(I − WK)−1R

in the context of Riccati equations. The objects (U,R, S,W,Z) are all n×n complex
matrices that are functions of the variables (x, y) with y real. Redheffer’s Theorem
IV is of some interest:

“Let U , R, S, W be complex n × n matrices such that S or R is non-
singular and such that the matrix

[
S U
W R

]

is dissipative (i.e., has norm ≤ 1). Then the matrix

U + SK(I − WK)−1R

is dissipative whenever K is dissipative. If the first matrix is not only
dissipative but unitary, then the second is unitary for all unitary K.”

There is a nice treatment of this type of result (in the unitary case) in Young’s
book [222].

Linear fractional transformations have been used in circuits and systems theory
for many decades. Examples that are of direct relevance to us can be found in
Safonov [177] and Zames [225, 226] in the context of conic sector stability theory
and Doyle [52] who popularized their use in the H∞ control. Another source for the
use of linear fractional transformations in H∞ is Safonov et at [181]. This paper
also discusses the use of bilinear transformations in the design of controllers that
ensure that a certain closed-loop operator lies in a sector [a, b]. Zames [225, 226]
shows that the transformation

S =

(
2/b

1 − a/b

)
T +

(
a/b + 1

a/b − 1

)
I

is a bijective map between T in sector [a, b] and ‖S‖∞ ≤ 1. If it is possible to find
a controller K in the figure below
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such that ‖S‖∞ ≤ 1, then T ∈ sector [a, b]. The linear fractional transformation Ξ
is given by

Ξ =

[ (
a/b+1
a/b−1

)
I

(
2/b

1−a/b

)
I

I 0

]
.

A summary of some of the results in this chapter can be found in Glover [74],
who used linear fractional transformations in his work on model reduction. The
loop shifting trick used to remove D11 first appeared in Safonov, Limebeer and
Chiang [183, 184], although the most comprehensive treatment of this material is
contained in Glover et al [78]. Parrott’s theorem [160], which plays a key role in the
loop shifting argument, can be used to solve the generalized regulator problem (see
Chapter 11). The books of Power [168] and Young [222] contain a clear and highly
readable treatment of Parrott’s theorem. Lemma 4.1.2, which pins down the can-
cellation locations in linear fractional transformations, first appeared in Limebeer
and Hung[134].

4.8 Problems

Unless stated otherwise, the following assumptions may be made in connection with
each of the problems:

1. Every transfer function matrix is an element of RL∞.

2. Every indicated inverse exists.

3. Every indicated LFT is well-posed.
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Problem 4.1.
1. Determine linear fractional transformations w = as+b

cs+d that: (a) map the
imaginary axis in the s-plane to the circle |1/(1−w)| = γ in the w-plane; (b)
map the imaginary axis in the s-plane to the circle |w/(1 − w)| = γ in the
w-plane.

2. With g = 1
s−1 , determine a stabilizing controller k such that q = gk satisfies:

(a) |1/
(
1 − q(jω)

)
| = γ for all ω; (b) |q(jω)/

(
1 − q(jω)

)
| = γ for all ω. In

each case, determine the greatest lower bound on the values of γ for which a
solution exists.

3. Repeat Exercise 2(a) for the plant g = 1
(s−1)2 . Note that in this case two

encirclements of the +1 point are required for closed-loop stability.

Problem 4.2. Consider the LFT F`

([
P 11 P 12

P 21 P 22

]
,K

)
. If P 12 has full

column rank for almost all s and P 21 has full row rank for almost all s, show that
F`(P ,K1) = F`(P ,K2) implies that K1 = K2.

Problem 4.3. If R = F`(P ,K), show that K = Fu(P−1,R). The “upper” LFT
Fu(P ,K) is defined by

Fu(P ,K) = P 22 + P 21K(I − P 11K)−1P 12,

in which

P =

[
P 11 P 12

P 21 P 22

]
.

Problem 4.4. Suppose Z = (I + S)(I − S)−1, in which (I − S)−1 is assumed to
exist for all Re(s) > 0. Show that

Z = F`

([
I I
2I I

]
,S

)
.

Problem 4.5. Suppose P and Θ are related by

[
Θ11 Θ12

Θ21 Θ22

]
=

[
P 12 − P 11P

−1
21 P 22 P 11P

−1
21

−P−1
21 P 22 P−1

21

]

=

[
P 11 P 12

I 0

] [
0 I

P 21 P 22

]−1

.

1. Verify that

F`(P ,K) = (Θ11K + Θ12)(Θ21K + Θ22)
−1.

2. Show that P∼P = I if and only if Θ∼JΘ = J , where J =

[
I 0
0 −I

]
.
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3. If P has realization

P
s
=




A B1 B2

C1 D11 D12

C2 D21 D22



 ,

show that Θ has realization

Θ
s
=




A − B1D
−1
21 C2 B2 − B1D

−1
21 D22 B1D

−1
21

C1 − D11D
−1
21 C2 D12 − D11D

−1
21 D22 D11D

−1
21

−D−1
21 C2 −D−1

21 D22 D−1
21


 .

Problem 4.6. Show that X satisfies the fixed point property

X = (−DX − C)(BX + A)−1

if and only if it satisfies the Riccati equation

0 = DX + XA + XBX + C.

Problem 4.7. Consider the interconnection

K

Φ

P ¾

-
-

¾

¾¾

¾ ¾

z w

vr

in which

P =

[
P 11 P 12

P 21 P 22

]
, K =

[
K11 K12

K21 K22

]
, Φ =

[
Φ11 ∗
∗ ∗

]
.

Show that [
z
r

]
=

[
F`

(
P ,F`(K,Φ11)

)
∗

∗ ∗

] [
w
v

]

where “*” denotes an irrelevant entry.

Problem 4.8. This problem is intended to illustrate various properties of the
inverses of LFTs of the type illustrated below:
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1. Find general formula for the mapping

[
w
v

]
7→

[
z
r

]
(i.e., verify the com-

position formula in equation (4.1.8)).
2. If P 12 and P 21 are invertible, show that P # given by

[
−(P 12 − P 11P

−1
21 P 22)

−1P 11P
−1
21 (P 12 − P 11P

−1
21 P 22)

−1

(P 21 − P 22P
−1
12 P 11)

−1 −P−1
21 P 22(P 12 − P 11P

−1
21 P 22)

−1

]

inverts P in the sense that C`(P ,P #) =

[
0 I
I 0

]
. Compare P # with a

partitioned formula for P−1.
3. If PP∼ = I with P 12 and P 21 invertible, show that

P # =

[
P∼

22 P∼
12

P∼
21 P∼

11

]
.

Problem 4.9. Consider the set P of nonsingular 2 × 2 block transfer function

matrices

[
P 11 P 12

P 21 P 22

]
, in which P 12 and P 21 are also nonsingular for almost all

values of s. The composition operator C`(·, ·) is a binary operation on P defined as

the 2 × 2 block matrix mapping
[

w′ v′ ]′ 7→
[

z′ r′
]′

in the figure below:

s s
P 1

P 2

¾
¾

-
- -

¾z

v

y u

r

w

1. If P 1 and P 2 are elements of P, show that C`(P 1,P 2) is also an element of
P; this is the closure property of P with respect to C`(·, ·).
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2. If P 1, P 2 and P 3 are elements of P, show that

C`(C`(P 1,P 2),P 3) = C`

(
P 1, C`(P 2,P 3)

)
,

which is the associativity property.
3. Show there exists an identity element P I ∈ P such that P = C`(P ,P I) and

P = C`(P I ,P ).
4. Show that for every element in P there exists an inverse P # ∈ P such that

P I = C`(P
#,P ) and P I = C`(P ,P #).

5. Conclude that P is a group with respect to C`(·, ·).
In the above calculations, assume that all the LFTs are well-posed. By including an

additional condition like

∥∥∥∥
[

P 11 P 12

P 21 P 22

]∥∥∥∥
∞

≤ 1, well-posedness would be assured.

Problem 4.10. Suppose G = D + C(sI − A)−1B and w = as+b
cs+d , in which

ad − bc 6= 0 and cA + dI is nonsingular.
1. Show that G(s) = Ĝ(w), in which Ĝ has realization (Â, B̂, Ĉ, D̂) given by

Â = (aA + bI)(cA + dI)−1

B̂ = (cA + dI)−1B

Ĉ = (ad − bc)C(cA + dI)−1

D̂ = D − cC(cA + dI)−1B.

(Hint: write G = F`(P, 1/s) in which P =

[
D C
B A

]
and 1/s = F`(R, 1/w)

for some matrix R and use the composition formula for LFTs)

2. Show that (Â, Ĉ) is observable if and only if (A,C) is observable and that

(Â, B̂) is controllable if and only if (A,B) is controllable.

Problem 4.11. Suppose we seek a stabilizing controller that satisfies

∥∥∥∥
[

W 1(I − GK)−1

W 2K(I − GK)−1

]∥∥∥∥
∞

< 1.

1. Show that the generalized plant for this problem is

P =




W 1 W 1G

0 W 2

I G





2. If

G
s
=

[
A B
C D

]
, W 1

s
=

[
A1 B1

C1 D1

]
, W 2

s
=

[
A2 B2

C2 D2

]
,



4.8 PROBLEMS 177

show that

P
s
=




A1 0 B1C B1 B1D
0 A2 0 0 B2

0 0 A 0 B
C1 0 D1C D1 D1D
0 C2 0 0 D2

0 0 C I D




.

Problem 4.12. Consider the block diagram given below:

f
ff s

Gd

R

K

Gt

F

6

?¾ ¾

?

? -----

¾

? y

n

d

r u

Show that




y

r − y
u



 = F`(




Gd 0 0 Gt

−Gd I 0 −Gt

0 0 0 I
I 0 0 0
0 I 0 0

Gd 0 I Gt




,
[

F R K
]
)




d
r
n



 .

Problem 4.13. If P ∈ RH∞ and K ∈ RH∞ such that ‖P 22K‖∞ < 1, show
that F`(P ,K) ∈ RH∞.

Problem 4.14. Consider the LFT described by F`(D, f), in which

D =




1 0 0
0 0 1
0 1 0



 .

1. Show that D′D = I.
2. Show that |f | < 1 does not imply that ‖F`(D, f)‖ < 1.
3. Show that |f | > 1 does imply that ‖F`(D, f)‖ > 1.
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Problem 4.15. Suppose

D =




I X
0 I
I X



 .

Show that there exists an F such that ‖F`(D,F )‖ ≤ γ if and only if γ ≥ 1/
√

σ(I + XX∗).

Determine an F̂ such that ‖F`(D, F̂ )‖ = 1/
√

σ(I + XX∗).

Problem 4.16. Suppose G = D + C(sI − A)−1B and γ > ‖D‖.
1. Show that ‖G‖∞ < γ if and only if ‖Ĝ‖∞ < γ, in which Ĝ = γF`(Θ, γ−1G)

and

Θ =

[
γ−1D (I − γ−2DD′)1/2

−(I − γ−2D′D)1/2 γ−1D′

]
.

2. Find a realization of Ĝ and show that it has the form

Ĝ
s
=

[
Â B̂

Ĉ 0

]
.

3. Show that A is asymptotically stable and ‖G‖∞ < γ if and only if Â asymp-

totically stable and ‖Ĝ‖∞ < γ.

Problem 4.17. Suppose G
s
=

[
A B

C D

]
has all its poles in the open unit disc.

If

∥∥∥∥
[

D C
B A

]∥∥∥∥ ≤ 1, show that ‖G‖∞ ≤ 1; in this case ‖ · ‖∞ = supθ,r≥1 ‖G(reiθ)‖.

Problem 4.18. Use the bilinear transformation z = (1 + s)/(1 − s) to derive the
discrete bounded real equations.

(Hint: show that if G(z) = D +C(zI −A)−1B, then Ĝ(s) = D̂ + Ĉ(sI − Â)−1B̂
where

Â = (I + A)−1(A − I)

B̂ =
√

2(I + A)−1B

Ĉ =
√

2C(I + A)−1

D̂ = D − C(I + A)−1B.

Then substitute into the continuous bounded real equations.)

Problem 4.19. Suppose G(z) has all its poles in the open unit disc. If ‖G‖∞ =

supθ,r≥1 ‖G(reiθ)‖ < 1, show that it has a realization such that

∥∥∥∥
[

D C
B A

]∥∥∥∥ ≤ 1.

(Hint: use the discrete bounded real equations derived in the previous question.)
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LQG Control

5.1 Introduction

The aim of this chapter is to clarify the connections between H∞ optimal control
and its Linear Quadratic Gaussian (LQG) counterpart. Although there are many
excellent texts on LQG theory, we will re-examine this topic to emphasize points of
contact between the two theories and to make comparisons between the structure
of the two types of controller. It also allows us to develop some ideas, such as the
parametrization of all controllers achieving prescribed performance objectives, in a
familiar environment. Our solution of the LQG control problem follows standard
lines of argument, exploiting the famous separation principle.

In order to establish the structural aspects of the solution before tackling any
internal stability questions, we consider the finite-horizon optimization problem
first. The infinite-horizon case can then be considered as a limiting case of the
finite-horizon solution.

The finite-horizon problem

We consider the plant described by the time-varying state-space system

ẋ(t) = A(t)x(t) + B1(t)w(t) + B2(t)u(t), x(0) = 0, (5.1.1)

z(t) = C1(t)x(t) + D12(t)u(t) (5.1.2)

y(t) = C2(t)x(t) + D21(t)w(t). (5.1.3)

The time dependence of the matrices and signals will not always be shown explicitly
in what follows. We assume that u is an m-vector of control inputs, w is an l-
vector of external disturbance inputs, z is a p-vector of objectives, y is a q-vector

179
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of controller inputs (measurements) and x is the n-dimensional state vector. It is
assumed that p ≥ m, that l ≥ q and also that D12 and D21 satisfy

D′
12D12 = Im and D21D

′
21 = Iq (5.1.4)

for all times of interest. This simplified plant may be considered instead of (4.2.1) by
assuming that the loop shifting and scaling transformations described in Section 4.6
have been carried out.

We seek a causal, linear controller u = Ky such that the finite-horizon 2-norm
of the closed-loop system Rzw mapping w to z is minimized. Since

‖Rzw‖2,[0,T ] = E
{

1

T

∫ T

0

z′z dt

} 1
2

,

we are seeking a controller that minimizes the average RMS power in z when the
input w is a unit intensity white noise.

We will also describe all controllers that satisfy ‖Rzw‖2,[0,T ] ≤ γ, when they
exist—i.e., when γ is not less than the minimum.

The infinite-horizon problem

In the infinite-horizon problem, we assume that the plant description (5.1.1) to
(5.1.3) is time-invariant and we seek an internally-stabilizing, causal, linear and
time-invariant controller u = Ky that minimizes

‖Rzw‖2 = lim
T→∞

E
{

1

T

∫ T

0

z′z dt

} 1
2

.

In order that an internally-stabilizing controller exists, it is necessary to assume
that (A,B2) is stabilizable and that (A,C2) is detectable (see Appendix A). We
also assume that (5.1.4) holds and that

rank

[
A − jωI B2

C1 D12

]
= n + m for all real ω (5.1.5)

rank

[
A − jωI B1

C2 D21

]
= n + q for all real ω. (5.1.6)

The reasons for these assumptions will become apparent during the solution process.
We will also describe all internally-stabilizing, causal, linear and time-invariant

controllers that satisfy ‖Rzw‖2 ≤ γ.

Measurement feedback and full information

The LQG control problem may be tackled in several separate steps, because any
measurement feedback controller is also a full-information controller:

u = Ky
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=
[

KC2 KD21

] [
x
w

]
.

Therefore, as a stepping stone to the solution of the measurement feedback problem,
we look for a control law based on full information that minimizes ‖Rzw‖2,[0,T ] or
‖Rzw‖2.

The Kalman filter allows us to reconstruct usable state and disturbance esti-
mates from the measurements (5.1.3), enabling us to solve the measurement feed-
back synthesis problem, which is our main interest.

5.2 Full information

Consider the plant described by (5.1.1) and (5.1.2). In the finite-horizon case, we
seek a causal, linear, full-information controller

u =
[

K1 K2

] [
x
w

]
(5.2.1)

that minimizes ‖Rzw‖2,[0,T ]. The system Rzw mapping w to z is shown in block
diagram form in Figure 5.1.

P

K

z

x

w

uwr r r

¾ ¾

¾

-
-

Figure 5.1: The full-information configuration.

In the infinite-horizon case, we seek an internally-stabilizing, causal, linear, time-
invariant controller of the form (5.2.1) that minimizes ‖Rzw‖2.

If z is given by (5.1.2), then z′z contains cross terms between u and x that
complicate the formulas. To avoid this, we consider the simplified system

ẋ = Ax + B1w + B2u, x(0) = 0 (5.2.2)

z =

[
Cx
Du

]
, (5.2.3)



182 LQG CONTROL

in which D′D ≡ I. This gives z′z = x′C ′Cx + u′u. Considering the simplified
objective (5.2.3) does not result in a loss of generality, because (5.1.2) can be reduced
to the form of (5.2.3) by a standard change of control variable (which is given by
ũ = u + D′

12C1x). This extension is considered in Section 5.2.3.

5.2.1 The finite-horizon case

Consider the time-varying linear system described by (5.2.2) and (5.2.3). We seek
to minimize

‖Rzw‖2
2,[0,T ] = E

{
1

T

∫ T

0

z′z dt

}

= E
{

1

T

∫ T

0

x′C ′Cx + u′u dt

}

over the class of causal, linear, full-information controllers.
From standard texts on LQG theory, the solution to this problem is the memo-

ryless, linear, state-feedback controller

u = −B′
2Px, (5.2.4)

in which P is the solution to the Riccati equation

−Ṗ = PA + A′P − PB2B
′
2P + C ′C, P (T ) = 0. (5.2.5)

Before proving that this is indeed the solution, we consider a closely related
deterministic problem.

LQ optimal control

Consider the problem of minimizing the cost function

Jt(K, xt, T,∆) =

∫ T

t

z′z dτ + x′(T )∆x(T ), (5.2.6)

in which ∆ ≥ 0 and z is given by

ẋ = Ax + B2u, x(t) = xt,

z =

[
Cx
Du

]

with D′D = I for all times of interest. The minimization is over the class of causal,
linear, full-information controllers. If the Riccati equation

−Ṗ = PA + A′P − PB2B
′
2P + C ′C, P (T ) = ∆, (5.2.7)
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has a solution on [t, T ], we obtain

Jt(K, xt, T,∆) − x′
tP (t)xt

=

∫ T

t

z′z +
d

dt
(x′Px) dτ, since P (T ) = ∆,

=

∫ T

t

x′C ′Cx + u′u + (Ax + B2u)′Px + x′P (Ax + B2u) + x′Ṗ x dτ

=

∫ T

t

u′u + u′B′
2Px + x′PB2u + x′PB2B

′
2Px dτ, by (5.2.7),

=

∫ T

t

(u + B′
2Px)′(u + B′

2Px) dτ.

This calculation is known as “completing the square” and it shows that

Jt(K, xt, T,∆) = x′
tP (t)xt +

∫ T

t

(u + B′
2Px)′(u + B′

2Px) dτ (5.2.8)

for any K. It is now immediate that the optimal controller K∗ is

u∗ =
[
−B′

2P 0
] [

x
w

]

= −B′
2Px,

and the optimal cost is

Jt(K
∗, xt, T,∆) = x′

tP (t)xt. (5.2.9)

Non-negativity of P : Since Jt(K, xt, T,∆) ≥ 0 for any K and any xt, we must
have x′

tP (t)xt ≥ 0 for any xt. Hence P (t) ≥ 0 for all t ≤ T for which a solution
exists.

Existence of P : We now show that a solution to the Riccati equation (5.2.7)
always exists by showing that P (t) is bounded above for any finite t ≤ T . This
shows that the Riccati equation has no finite escape time.1

Since K∗ is minimizing, its associated cost must not exceed that of the zero
controller. That is,

x′
tP (t)xt = Jt(K

∗, xt, T,∆)

≤ Jt(0, xt, T,∆)

= ‖z̃‖2
2,[t,T ] + x̃′(T )∆x̃(T ), (5.2.10)

1A differential equation is said to have a finite escape time if the solution is unbounded on a
finite time interval.
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in which

˙̃x = Ax̃, x̃(t) = xt,

z̃ = Cx̃.

By Theorem 3.1.1, the right-hand side of (5.2.10) is finite for any t ≤ T and any xt.
Indeed, it is equal to x′

t

(
Q(t) + Φ′(T, t)∆Φ(T, t)

)
xt, in which Q is the observability

gramian satisfying the linear differential equation

−Q̇ = QA + A′Q + C ′C Q(T ) = 0,

and Φ(·, ·) is the transition matrix associated with A. The Riccati equation (5.2.7)
therefore has no finite escape time and we conclude that a solution exists for all
finite t ≤ T .

Solution of the full-information problem

We now verify that u∗ = −B′
2Px, with P satisfying (5.2.5), is indeed the optimal,

full-information controller.
Consider any full-information controller described by a time-varying state-space

system:

ξ̇ = Fξ + G1x + G2w, ξ(0) = 0, (5.2.11)

u = Hξ + J1x + J2w. (5.2.12)

If this controller is combined with the system described by (5.2.2) and (5.2.3), we
see that the closed-loop system Rzw is given by

˙̃x = Ãx̃ + B̃w (5.2.13)

z = C̃x̃ + D̃w,

in which x̃ =
[

x′ ξ′
]′

and

Ã =

[
A + B2J1 B2H

G1 F

]
, B̃ =

[
B1 + B2J2

G2

]
, (5.2.14)

and

C̃ =

[
C 0

DJ1 DH

]
, D̃ =

[
0

DJ2

]
. (5.2.15)

By Theorem 3.3.1, ‖Rzw‖2,[0,T ] < ∞ if and only if DJ2 ≡ 0. Thus J2 ≡ 0 in any
controller that achieves a finite cost, since D′D ≡ I. Theorem 3.3.1 then gives

‖Rzw‖2
2,[0,T ] =

1

T

∫ T

0

trace(B̃′Q̃B̃) dt, (5.2.16)

in which
− ˙̃Q = Ã′Q̃ + Q̃Ã + C̃ ′C̃, Q̃(T ) = 0.
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Now consider the matrix

P̃ =

[
P 0
0 0

]
,

in which P is the solution to (5.2.5) and P̃ has the same dimensions as Q̃. A
straightforward calculation shows that

− d

dt
(Q̃ − P̃ ) = (Q̃ − P̃ )Ã + Ã′(Q̃ − P̃ )

+

[
(J1 + B′

2P )′

H ′

] [
J1 + B′

2P H
]
. (5.2.17)

Since (Q̃− P̃ )(T ) = 0, Q̃− P̃ is the observability gramian of (Ã,
[

J1 + B′
2P H

]
)

and we conclude that Q̃(t)− P̃ (t) ≥ 0 for all t ≤ T . As equality can be achieved by
setting J1 ≡ −B′

2P and H ≡ 0, the minimum cost is

min
K

‖Rzw‖2,[0,T ] =

{
1

T

∫ T

0

trace(B′
1PB1) dt

} 1
2

(5.2.18)

and the unique optimal controller K∗ is

u∗ =
[
−B′

2P 0
] [

x
w

]
. (5.2.19)

(If H ≡ 0, the values of F , G1 and G2 are irrelevant.)

Remark 5.2.1. We have only shown that (5.2.18) is the minimal cost for con-
trollers that can be described by state-space systems. That is, causal, linear sys-
tems that are finite dimensional. Since the minimizing controller (over this class)
has state dimension zero, it is unlikely that a lower cost could be achieved by an
infinite-dimensional controller.

All controllers with prescribed performance

We now obtain a parametrization of all controllers leading to

‖Rzw‖2,[0,T ] ≤ γ (5.2.20)

for any γ that is not less than the right-hand side of (5.2.18).
Our interest in this problem is motivated by the fact that when we re-impose

the restriction that the controller must be a measurement feedback controller, the
minimum cost that can be obtained may be larger than the right-hand side of
(5.2.18).
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Consider any controller described by (5.2.11) and (5.2.12), with J2 ≡ 0. By
Theorem 3.3.1 and (5.2.17),

1

T

∫ T

0

trace
(
B̃′(Q̃ − P̃ )B̃

)
dt = ‖U‖2

2,[0,T ],

in which U is the system with realization (Ã, B̃,
[

J1 + B′
2P H

]
), which is the

system that maps w to u − u∗. From (5.2.16) and the identity

B̃′Q̃B̃ = B̃′(Q̃ − P̃ )B̃ + B′
1PB1,

we see that

‖Rzw‖2
2,[0,T ] = ‖U‖2

2,[0,T ] +
1

T

∫ T

0

trace(B′
1PB1) dt. (5.2.21)

Because of (5.2.21), it is convenient to parametrize an arbitrary full-information
controller in terms of system U that maps w to u − u∗. To do this, we write the
controller equations (5.2.11) and (5.2.12), with J2 ≡ 0, as

d

dt

[
x̂
ξ

]
= Ã

[
x̂
ξ

]
+ B̃w +

[
0

G1

]
(x − x̂),

[
x̂(0)
ξ(0)

]
=

[
0
0

]
,

u = −B′
2Px +

[
J1 + B′

2P H
] [

x̂
ξ

]
+ (J1 + B′

2P )(x − x̂),

This representation has the form

u = −B′
2Px + r (5.2.22)

r = Uw + V (x − x̂). (5.2.23)

Since x̂ ≡ x (see (5.2.13)), x̂ is a copy of the system state. Therefore, as V is driven
by the zero signal, it has no effect on the control signal or the closed-loop system
Rzw.

Since the controller was arbitrary, the systems U and V in the above may be
any causal, linear systems. Notice too, that for u written in the form (5.2.22), the
state x satisfies

ẋ = (A − B2B
′
2P )x + B1w + B2r.

We therefore generate all controllers from the LFT defined by the equations




˙̂x
u[
w

x − x̂

]


 =




A − B2B
′
2P

[
0 B1

]
B2

0
[
−B′

2P 0
]

I[
0
−I

] [
0 I
I 0

] [
0
0

]







x̂[
x
w

]

r




(5.2.24)

r =
[

U V
] [

w
x − x̂

]
, (5.2.25)



5.2 FULL INFORMATION 187

f

f

f

f

f

s

s

s

−B′
2P

V

U

B1

B2

∫

A

−B′
2P

¾¾
6

-

?

6
¾

?

- - ? -

¾

?¾
6

¾

¾

66

w

u x

−

x̂

u∗

r

Figure 5.2: All full-information controllers.

which are shown in block diagram form in Figure 5.2. The fact that this LFT has
invertible (1, 2)- and (2, 1)-blocks confirms that it captures all the full-information
controllers.

From (5.2.21), the controller has the prescribed performance (5.2.20) if and only
if

‖U‖2
2,[0,T ] +

1

T

∫ T

0

trace(B′
1PB1) dt ≤ γ2. (5.2.26)

Remark 5.2.2. We conclude from (5.2.21) that the cost of any full-information
controller K is given by

‖Rzw‖2
2,[0,T ] = ‖U‖2

2,[0,T ] +
1

T

∫ T

0

trace(B′
1PB1) dt,

in which U is the system that maps w to the difference between the control signal
generated by K and the optimal control signal u∗. This fact is crucial in the solution
of the measurement feedback problem.
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Remark 5.2.3. In our later work on the Kalman filter, which is a dual problem
to the optimal control problem, it is of interest to know which full-information
controllers do not use the state. Examining (5.2.22) and (5.2.23), we see that u
does not depend on x if and only if V = B′

2P . All full-information controllers that
do not make use of the state are therefore generated by




x̂
u
w



 =




A − B2B

′
2P B1 B2

−B′
2P 0 I

0 I 0








x̂
w
r



 (5.2.27)

r = Uw (5.2.28)

and the performance (5.2.20) is achieved if and only if U satisfies (5.2.26).

Main points of the section

1. The 2-norm of the closed-loop system ‖Rzw‖2,[0,T ] is minimized
by the state-feedback control law u∗ = −B′

2Px, in which P is
the solution of the Riccati equation (5.2.5); the solution to this
equation always exists.

2. The 2-norm of the optimal closed loop is given by

‖Rzw‖2,[0,T ] =

{
1

T

∫ T

0

trace(B′
1PB1) dt

} 1
2

.

3. All controllers that satisfy ‖Rzw‖2,[0,T ] ≤ γ are generated by the
formulas (5.2.24) and (5.2.25), in which

‖U‖2
2,[0,T ] +

1

T

∫ T

0

trace(B′
1PB1) dt ≤ γ2.

The system U maps w to u− u∗ and generates all closed loop sys-
tems. The system V , on the other hand, has no effect on the control
signal or the closed loop, but is required in order to parametrize
all controllers.

5.2.2 The infinite-horizon case

Most problems of practical interest require a closed-loop system that is internally
stable as well as optimal. In order to determine the optimal, stabilizing controller,
we consider the limit T → ∞ in the finite-horizon problem. In this work, we
assume that the plant is described by the time-invariant state-space system (5.2.2)
and (5.2.3).

In order that a stabilizing controller exists, it is necessary that (A,B2) is stabi-
lizable (see Appendix A). We will therefore assume this from now on.
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We expect that the optimal controller will be the controller u∗ = −B′
2Px, in

which P is a solution to the algebraic Riccati equation

PA + A′P − PB2B
′
2P + C ′C = 0. (5.2.29)

This controller results in the closed-loop dynamics ẋ = (A−B2B
′
2P )x+B1w, so we

must choose a solution such that A−B2B
′
2P is asymptotically stable. In order that

such a solution exists, it is also necessary to assume that (A,C) has no unobservable
modes on the imaginary axis. To see this, suppose that

Ax = jωx, Cx = 0.

Multiplying (5.2.29) on the left by x∗ and on the right by x results in B′
2Px = 0,

giving (A − B2B
′
2P )x = jωx.

The standard assumptions:

The pair (A,B2) is stabilizable and the pair (A,C) has no unobservable
mode on the imaginary axis.

The standard assumptions are necessary for the existence of a stabilizing controller
of the form u = −B′

2Px, with P a solution to (5.2.29). We show that they are
sufficient by considering the LQ optimization problem on the finite horizon [0, T ]
and letting T → ∞.

LQ optimal control

Consider the problem of minimizing the cost function

J(K, x0) = lim
T→∞

{∫ T

0

z′z dτ + x′(T )∆x(T )

}
(5.2.30)

subject to

ẋ = Ax + B2u, x(0) = x0,

z =

[
Cx
Du

]
,

in which D′D = I and (A,B2, C) satisfy the standard assumptions. The minimiza-
tion is over all stabilizing, casual, linear, time-invariant full-information controllers
K. We will see that the standard assumptions are necessary and sufficient for a
minimum to exist.

Let P (t, T,∆) denote the solution to Riccati differential equation

−Ṗ = PA + A′P − PB2B
′
2P + C ′C, P (T ) = ∆. (5.2.31)
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(The notation P (t, T,∆) is used to flag the fact that P (t) satisfies the terminal
constraint P (T ) = ∆.)

In order that P (t, T,∆) converges to the stabilizing solution to the algebraic
Riccati equation, it is important to choose the terminal condition correctly. To
see this, we simply note that if C = 0 and ∆ = 0, then the solution to the Ric-
cati equation is identically zero, which is a stabilizing solution if and only if A is
asymptotically stable.

Choice of ∆: Suppose we select any ∆ ≥ 0 such that

∆A + A′∆ − ∆B2B
′
2∆ + C ′C ≤ 0 (5.2.32)

and (
A,

[
C
∆

])
is detectable. (5.2.33)

To see that such a choice is possible, let F be any matrix such that A−B2F is
asymptotically stable and let ∆ ≥ 0 be the unique solution to

∆(A − B2F ) + (A − B2F )′∆ + C ′C + F ′F = 0. (5.2.34)

We may rewrite this equation as

∆A + A′∆ − ∆B2B
′
2∆ + C ′C = −(F − B′

2∆)′(F − B′
2∆),

which shows that ∆ satisfies (5.2.32). Now suppose that Ax = λx, Cx = 0 and
∆x = 0. Multiplying (5.2.34) on the left by x∗ and on the right by x results in
Fx = 0. This means that λx = (A − B2F )x and we conclude that Re(λ) < 0 or
x = 0, since (A−B2F ) is assumed to be asymptotically stable. That is, ∆ satisfies
(5.2.33).

Monotonicity of P (t, T,∆): The inequality (5.2.32) results in P (t, T,∆) being
a monotonically nonincreasing function of T . To see this, differentiate (5.2.31) to
obtain

−P̈ = Ṗ (A − B2B
′
2P ) + (A − B2B

′
2P )′Ṗ .

Hence
Ṗ (t) = Φ(t, T )Ṗ (T )Φ′(t, T ),

in which Φ is the transition matrix associated with −(A − B2B
′
2P )′. Since

−Ṗ (t, T,∆)|t=T = ∆A + A′∆ − ∆B2B
′
2∆ + C ′C,

we conclude that Ṗ (t, T,∆) ≥ 0 whenever the terminal condition ∆ satisfies (5.2.32).
This establishes that P (t, T,∆) is monotonically nondecreasing as a function of t.
But, by time-invariance, P (t, T +τ,∆) = P (t−τ, T,∆) and it follows that P (t, T,∆)
is monotonically nonincreasing as a function of T .
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Boundedness of P (t, T,∆): From the discussion of the finite-horizon LQ prob-
lem, P (t, T,∆) ≥ 0 for all t ≤ T , since ∆ ≥ 0. Furthermore, by the monotonicity
property, P (t, T,∆) ≤ ∆ for all t ≤ T . That is, P (t, T,∆) is uniformly bounded.

Existence of a steady-state solution: P (t, T,∆) is a monotonic and uniformly
bounded function of T . Therefore, Π(t) = limT→∞ P (t, T,∆) exists.

To see that Π(t) is constant, we observe that

Π(t1) = lim
T→∞

P (t1, T,∆)

= lim
T→∞

P (t2, T + t2 − t1,∆), by time-invariance,

= Π(t2).

To see that Π satisfies (5.2.29), we make use of the fact that a solution the
differential equation (5.2.31) depends continuously on the terminal condition ∆.
Therefore

Π = lim
T→∞

P (t, T,∆)

= lim
T→∞

P
(
t, T1, P (T1, T,∆)

)

= P
(
t, T1, lim

T→∞
P (T1, T,∆)

)
by continuity

= P (t, T1,Π).

That is, Π is a solution to the Riccati equation (5.2.31) with terminal condition Π.
Noting that Π̇ = 0, we see that Π satisfies

ΠA + A′Π − ΠB2B
′
2Π + C ′C = 0. (5.2.35)

Stability of A − B2B
′
2P (0, T,∆): Because of the choice of ∆, the control law

u(t) = −FT x(t), in which
FT = B′

2P (0, T,∆), (5.2.36)

is stabilizing, for any finite T . This is seen by employing the “fake algebraic Riccati
technique” introduced by Poubelle et al [167].

Write the Riccati equation (5.2.31) as

PT (A − B2FT ) + (A − B2FT )′PT + F ′
T FT + C ′C + ṖT = 0, (5.2.37)

in which PT = P (0, T,∆) and ṖT = d
dtP (t, T,∆)|t=0. Since PT ≥ 0 and ṖT ≥ 0, we

conclude from Theorem 3.1.1 that any unstable mode of A−B2FT is unobservable

through
[

F ′
T C ′ ṖT

]′
. To conclude that A − B2FT is asymptotically stable,

we must show that there can in fact be no such unstable, unobservable mode.
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Suppose that λ and x satisfy

(A − B2FT )x = λx, Re(λ) ≥ 0,




FT

C

ṖT



x = 0.

Multiplying (5.2.37) on the left by x∗ and on the right by x gives (λ +
λ̄)x∗PT x = 0, and we see that either λ + λ̄ = 0 or PT x = 0. In the case
that λ = jω, we note that FT x = 0 is equivalent to B′

2PT x = 0 and
multiplying (5.2.37) on the right by x results in

A′PT x = −jωPT x.

Since (A,B2) is stabilizable, PT x = 0. Hence P (t, T,∆)x is a solution
to α̇ = 0, α(0) = 0, giving P (t, T,∆)x = 0 for all t ≤ T . Setting t = T ,
we see that ∆x = 0, and combining this with Ax = λx and Cx = 0 we
obtain 


A − λI

C
∆



x = 0.

From (5.2.33), we have that x = 0, which shows that A − B2FT has no

unstable mode that is unobservable through
[

F ′
T C ′ ṖT

]′
.

We conclude that A − B2FT is asymptotically stable.

Π is stabilizing: Now limT→∞(A−B2FT ) = A−B2B
′
2Π. Since FT is continuous

in T and the eigenvalues of a matrix are continuous functions of the entries, we
conclude that Re

(
λi(A − B2B

′
2Π)

)
≤ 0 for all i. To see that equality cannot hold,

suppose (A − B2B
′
2Π)x = jωx. Multiplying (5.2.35) on the left by x∗ and on the

right by x results in ‖B2Πx‖2 + ‖Cx‖2 = 0. Hence Cx = 0 and B′
2Πx = 0, giving

Ax = jωx. We conclude that x = 0 by invoking the assumption that (A,C) has no
unobservable modes on the imaginary axis.

Remark 5.2.4. In the above, the assumption that (A,C) has no unobservable
modes on the imaginary axis was not invoked until the very last sentence. In
particular, the controller u = −FT x, with FT given by (5.2.36), is stabilizing for
any finite T ≥ 0, irrespective of whether (A,C) has unobservable modes on the
imaginary axis or not. From Theorem 3.1.1, this controller has the cost

‖z‖2
2 = x′

0P (0, T,∆)x0. (5.2.38)

It follows from “completing the square” with Π = limT→∞ P (0, T,∆) that

‖z‖2
2 = ‖u + B′

2Πx‖2
2 + x′

0Πx0, (5.2.39)
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for any controller that stabilizes the system. Hence ‖z‖2
2 ≥ x′

0Πx0 for any stabilizing
controller. Since P (0, T,∆) → Π, (5.2.38) implies that

inf
K stabilizing

‖z‖2 =
√

x′
0Πx0. (5.2.40)

By (5.2.39), the only control that could achieve the infimal cost is u = −B′
2Πx,

which is a stabilizing controller if and only if (A,C) has no unobservable mode
on the imaginary axis. We therefore conclude that the standard assumptions are
necessary and sufficient for the existence of a stabilizing controller that minimizes
‖z‖2.

Solution of the full-information problem

The preceding discussion of the LQ optimal control problem shows that, under the
standard assumptions, a stabilizing solution P to the algebraic Riccati equation
(5.2.29) exists. It also shows that the controller u∗ = −B′

2Px is optimal with
respect to the performance index ‖z‖2. In this section, we show that the controller
u∗ = −B′

2Px is also the optimal stabilizing, full-information controller for the
performance index ‖Rzw‖2.

Consider any full-information controller described by a time-invariant, state-
space system:

ξ̇ = Fξ + G1x + G2w, ξ(0) = 0, (5.2.41)

u = Hξ + J1x + J2w. (5.2.42)

Assume that (F,
[

G1 G2

]
) is stabilizable and that (F,H) is detectable, which

does not restrict the class of controllers in any way.
As before, the closed loop is described by

x̃ = Ãx̃ + B̃w

z = C̃x̃ + D̃w,

in which x̃ =
[

x′ ξ′
]′

and Ã, B̃, C̃ and D̃ are given in (5.2.14) and (5.2.15).

The controller is internally stabilizing if and only if Ã is asymptotically stable
(see Lemma A.4.1), and ‖Rzw‖2 < ∞ if and only if, in addition, J2 = 0. Theo-
rem 3.3.1 then gives

‖Rzw‖2
2 = trace(B̃′Q̃B̃),

in which
Ã′Q̃ + Q̃Ã + C̃ ′C̃ = 0.

Now consider the matrix

P̃ =

[
P 0
0 0

]
,
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in which P is the stabilizing solution to (5.2.29) and P̃ has the same dimensions as
Q̃. As before,

(Q̃ − P̃ )Ã + Ã′(Q̃ − P̃ ) +

[
(J1 + B′

2P )′

H ′

] [
J1 + B′

2P H
]

= 0.

Thus Q̃ − P̃ is the observability gramian of (Ã,
[

J1 + B′
2P H

]
) and hence Q̃ −

P̃ ≥ 0, since Ã is asymptotically stable. As equality can be achieved by setting
J1 = −B′

2P and H = 0, we conclude that the minimum cost is

min
K

‖Rzw‖2 =
√

trace(B′
1PB1) (5.2.43)

and the unique controller that achieves this minimum cost is

u∗ =
[
−B′

2P 0
] [

x
w

]
. (5.2.44)

Remark 5.2.5. As before, we have only shown that (5.2.43) is the minimal cost
for controllers that can be described by time-invariant state-space systems.

All full-information controllers with prescribed performance

By reviewing the arguments presented in the finite-horizon case, noting that Ã is
asymptotically stable for any internally-stabilizing controller, we conclude that all
full-information controllers are generated by the LFT

K = F`(Ka,
[

U V
]
), (5.2.45)

in which

Ka
s
=




A − B2B
′
2P

[
0 B1

]
B2

0
[
−B′

2P 0
]

I[
0
−I

] [
0 I
I 0

] [
0
0

]


 . (5.2.46)

This LFT captures all the stabilizing full-information controllers as U and V range
over H∞ because its (1, 2)- and (2, 1)-blocks and their inverses are in H∞, since
they all have A−B2B

′
2P as their A-matrix. Moreover, the LFT (5.2.45) generates

controllers that satisfy ‖Rzw‖2 ≤ γ if and only if

‖U‖2
2 + trace(B′

1PB1) ≤ γ2.

5.2.3 Inclusion of cross terms

In the introduction to the full information problem, we mentioned that the objective

z = C1x + D12u
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could be replaced by one of the form (5.2.3) by the change of control variable
ũ = u + D′

12C1x. This follows from the identity

z′z = (C1x + D12u)′(C1x + D12u)

= x′C ′
1(I − D12D

′
12)C1x + (u + D′

12C1x)′(u + D′
12C1x).

Since ‖D12‖ = 1, we have that C ′
1(I − D12D

′
12)C1 ≥ 0. Setting

ũ = u + D′
12C1x

Ã = A − B2D
′
12C1

C̃ ′C̃ = C ′
1(I − D12D

′
12)C1

results in

ẋ = Ãx + B1w + B2ũ

z̃ =

[
C̃x
ũ

]
,

and we have z̃′z̃ = z′z.
It follows that the solution to a problem containing cross terms may be obtained

by considering this simplified structure. In particular, the optimal controller for the
finite horizon [0, T ] is

u∗ = −Fx, F = D′
12C1 + B′

2X,

in which X is the solution to the Riccati differential equation

−Ẋ = XÃ + Ã′X − XB2B
′
2X + C̃ ′C̃, X(T ) = 0.

In the infinite-horizon case, the optimal controller is

u∗ = −Fx, F = D′
12C1 + B′

2X,

in which X is the stabilizing solution to the algebraic Riccati equation

XÃ + Ã′X − XB2B
′
2X + C̃ ′C̃ = 0.

Such a solution exists if and only if the standard assumptions hold; that is (Ã, B2)
must be stabilizable and (Ã, C̃) must have no unobservable modes on the imaginary
axis. Since stabilizability is invariant under state feedback, (Ã, B2) is stabilizable if
and only if (A,B2) is stabilizable. The condition that (Ã, C̃) has no unobservable
mode on the imaginary axis is equivalent to the condition that

rank

[
A − jωI B2

C1 D12

]
= n + m (5.2.47)

(i.e., full column rank) for all real ω.
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To see this equivalence, note that

[
A − jωI B2

C1 D12

] [
x
u

]
= 0 (5.2.48)

only if u = −D′
12C1x, since D′

12D12 = I. Now

[
A − jωI B2

C1 D12

] [
I 0

−D′
12C1 I

]
=

[
Ã − jωI B2

(I − D12D
′
12)C1 D12

]
.

Hence Ãx = jωx and C̃x = 0 if and only if

[
x
u

]
=

[
I

−D′
12C1

]
x

satisfies (5.2.48).
The formulas for all the controllers that achieve prescribed objectives may be

obtained by replacing B′
2P with F , giving




˙̂x
u[
w

x − x̂

]


 =




A − B2F
[

0 B1

]
B2

0
[
−F 0

]
I[

0
−I

] [
0 I
I 0

] [
0
0

]







x̂[
x
w

]

r




r =
[

U V
] [

w
x − x̂

]
.

Main points of the section

1. A stabilizing solution to the algebraic Riccati equation (5.2.29) ex-
ists if and only if (A,B2) is stabilizable and (C,A) has no unobserv-
able mode on the imaginary axis. This solution may be obtained as
the limit of a solution to a Riccati differential equation, provided
the terminal condition is chosen with care.2

2. The 2-norm of the closed-loop system ‖Rzw‖2 is minimized, over
the class of controllers that are internally stabilizing, by the state-
feedback control law u∗ = −B′

2Px. The matrix P is the stabilizing
solution of the algebraic Riccati equation (5.2.29).

3. The 2-norm of the optimal closed loop is given by

‖Rzw‖2 =
√

trace(B′
1PB1).

2An exercise at the end of the chapter shows that any nonnegative definite terminal condition
will do if (A, C) is detectable.
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4. All stabilizing, full-information controllers satisfying ‖Rzw‖2 ≤ γ
are generated by the LFT (5.2.45), in which U and V ∈ H∞ with

‖U‖2
2 + trace(B′

1PB1) ≤ γ2.

The system U maps w to u − u∗. The system V has no effect on
the control signal or the closed loop; its only role is to parametrize
all stabilizing controllers.

5. The effect of cross terms is easily accounted for by a change of
control variable.

5.3 The Kalman filter

All the work we presented in Section 5.2 relies on the controller having perfect
knowledge of the disturbance input and the state. Since the problem we want to
solve has (5.1.3) as the only measurement, we need to find some way of estimating
the states and the disturbances from the measurements y. As is well known, the
Kalman filter is the optimal solution to this problem.

5.3.1 The finite-horizon case

Consider the time-varying signal generator

ẋ(t) = A(t)x(t) + B(t)w(t), x(0) = 0, (5.3.1)

y(t) = C(t)x(t) + D(t)v(t), (5.3.2)

in which DD′ = I for all times of interest.
We seek a causal, linear filter F such that ẑ = F y is an optimal estimate of

z = Lx, with L a continuous matrix valued function (which may be the identity).
We take optimality to mean that the 2-norm ‖R‖2,[0,T ] is minimized, with R :[

w′ v′ ]′ 7→ ẑ − z. By the definition of the 2-norm of a system, this means that
we are minimizing

‖R‖2,[0,T ] = E
{

1

T

∫ T

0

(ẑ − Lx)′(ẑ − Lx) dt

} 1
2

(5.3.3)

when
[

w′ v′ ]′
is a unit intensity white noise. Note that (5.3.3) is just the average

RMS power of the estimation error.
It is well known that the estimate of Lx that is optimal in the above sense is

Lx̂, in which x̂ is the optimal estimate of x; this fact will be proved, not assumed.
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The filtering problem in question may be considered as the LFT problem




ẋ

ẑ − z
y



 =




A
[

B 0
]

0

− L
[

0 0
]

I

C
[

0 D
]

0







x[
w
v

]

ẑ


 , x(0) = 0, (5.3.4)

ẑ = F y. (5.3.5)

The optimal filter and optimal cost

Recall that the 2-norm of a system and the 2-norm of its adjoint are equal. Recall
also that the adjoint of F`(P ,K) is F`(P

∼,K∼), in which (·)∼ denotes the adjoint.
Therefore, minimizing ‖R‖2,[0,T ] is equivalent to minimizing ‖R∼‖2,[0,T ], in which
R∼ is generated by the LFT




d
dτ p(τ)
z̃(τ)
w̃(τ)



 =




A′(τ) −L′(τ) C ′(τ)[
B′(τ)

0

] [
0
0

] [
0

D′(τ)

]

0 I 0







p(τ)
w̃(τ)
ũ(τ)



 (5.3.6)

ũ = F∼w̃, (5.3.7)

in which τ is the time-to-go variable τ = T − t associated with the adjoint system
and p(τ)|τ=0 = 0. We note also that F is causal if and only if F∼ is causal in τ .

This is a control problem in which the controller F∼ only has access to the
exogenous signal w̃, rather than to p and w̃. From our discussion of the full-
information problem in Section 4.2.2, we know that for the purpose of achieving
particular closed loops or control signals, knowledge of w̃ is equivalent to knowledge
of p and w̃, since we can always replace p in any full-information controller for the
adjoint system with a copy generated from w̃ by

d

dτ
p̂(τ) = A′(τ)p̂(τ) − L′(τ)w̃(τ) + C ′ũ(τ), p̂(τ)|τ=0 = 0.

With this comment in mind, it is immediate that the optimal controller for the
adjoint problem is ũ∗(τ) = −C(τ)Q(τ)p̂(τ), in which

− d

dτ
Q(τ) = Q(τ)A′(τ) + A(τ)Q(τ) − Q(τ)C ′(τ)C(τ)Q(τ) + B(τ)B′(τ),

with the terminal condition Q(τ)|τ=T = 0. The optimal cost is

‖R∼‖2,[0,T ] =

{
1

T

∫ T

0

trace
(
L(τ)Q(τ)L′(τ)

)
dτ

} 1
2

.
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Substituting ũ∗ into the equation defining the duplicate adjoint state, we see
that the adjoint of the optimal filter is given by

d

dτ
p̂(τ) = (A′ − C ′CQ)(τ)p̂(τ) − L′(τ)w̃(τ), p̂(τ)|τ=0 = 0,

ũ∗(τ) = −C(τ)Q(τ)p̂(τ).

Hence, the optimal filter is given by

˙̂x(t) = (A − QC ′C)(t)x̂(t) + Q(t)C ′(t)y(t), x̂(0) = 0, (5.3.8)

= A(t)x̂(t) + Q(t)C ′(t)
(
y(t) − C(t)x̂(t)

)
(5.3.9)

ẑ(t) = L(t)x̂(t), (5.3.10)

in which

Q̇(t) = Q(t)A′(t)+A(t)Q(t)−Q(t)C ′(t)C(t)Q(t)+B(t)B′(t), Q(0) = 0. (5.3.11)

Since the Riccati equation (5.3.11) does not depend on L, the optimal estimate of
Lx is indeed Lx̂, with x̂ being the optimal estimate of x. The matrix QC ′ is known
as the Kalman filter gain and y − Cx̂, which drives the filter, is the innovations
process. The optimal cost is given by

‖R‖2,[0,T ] = E
{

1

T

∫ T

0

(ẑ − Lx)′(ẑ − Lx) dt

} 1
2

=

{
1

T

∫ T

0

trace(LQL′) dt

} 1
2

. (5.3.12)

Optimal terminal state estimation

The Kalman filter is most widely known for its role as a terminal-state estimator.
That is, it is the filter that minimizes

E
{(

x̂(T ) − x(T )
)(

x̂(T ) − x(T )
)′}

,

rather than (5.3.3), given the observations y(τ), τ ≤ T . A proof of this optimality
property is requested in Problem 5.13.

All filters with prescribed performance

The filtering problem does not have a degenerate information structure and its
adjoint is a full-information problem in which the controller (the adjoint of the
filter) does not have access to the state. All such controllers achieving a given
performance level were parametrized in Remark 5.2.3.
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Applying this parametrization to the adjoint problem associated with the Kal-
man filter, we obtain




˙̂x
ẑ
η



 =




A − QC ′C QC ′ 0

L 0 I
−C I 0








x̂
y
r





r = Uη.

Again, the fact that the (1, 2)- and (2, 1)-blocks of this LFT are invertible confirms
that this LFT captures all filters.

It is interesting to note that U has no effect on x̂, which therefore remains the
optimal state estimate; it just degrades our estimate of Lx from Lx̂ to Lx̂ + Uη,
in which η = y − Cx̂ is the innovations process. That is, we obtain all filters that
satisfy

E
{

1

T

∫ T

0

(ẑ − Lx)′(ẑ − Lx) dt

} 1
2

≤ γ

by letting
ẑ = Lx̂ + Uη,

in which x̂ is the optimal state estimate estimate, η is the innovations process and

‖U‖2
2,[0,T ] +

1

T

∫ T

0

trace(LQL′) dt ≤ γ2. (5.3.13)
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Figure 5.3: All filters.
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Filter with control signal

Suppose we have the signal generator

ẋ = Ax + Bw + B2u

y = Cx + v,

in which u is a known signal—we have in mind the situation in which u is a control
signal. Consider the filter

˙̂x = Ax̂ + QC ′(y − Cx̂) + B2u, (5.3.14)

in which Q is the solution to (5.3.11). Then x̂ − x satisfies

d

dt
(x̂ − x) = A(x̂ − x) + QC ′(y − Cx̂) − Bw,

which is independent of u, and we conclude that x̂ generated by (5.3.14) is the
optimal estimate of x.

5.3.2 The infinite-horizon case

We are now in a position to extend the optimal state estimation results to the
infinite horizon case. As always, we limit our attention to the case when the signal
generator given by (5.3.1) and (5.3.2) is time-invariant. We seek to minimize

‖R‖2 = lim
T→∞

E
{

1

T

∫ T

0

(ẑ − Lx)′(ẑ − Lx) dt

} 1
2

.

Naturally, we expect that the optimal filter will be

˙̂x = Ax̂ + QC ′(y − Cx̂) (5.3.15)

ẑ = Lx̂, (5.3.16)

in which Q is the stabilizing solution to the Riccati equation

AQ + QA′ − QC ′CQ + BB′ = 0; (5.3.17)

the solution Q is stabilizing if λi(A − QC ′C) < 0. We note that such a Q exists
if and only if (A,C) is detectable and (A,B) has no uncontrollable modes on the
imaginary axis, which we now assume.

Because filtering is an open-loop problem, the LFT defining the filtering problem
in (5.3.4) and (5.3.5) is not stabilizable in the sense of the internal stability of
LFT’s defined in Section 4.2.1, except when A is asymptotically stable. However,
this definition is inappropriate to the filtering applications we are now considering.
We do not care what happens to the state, only that our estimate of it is good.
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Therefore, the notion of stability that is appropriate is that the filter should be
stable and that the system R that maps the driving noise(s) to the estimation error
should also be stable. This will ensure that the estimation error tends to zero for
any L2[0,∞) driving noise(s). Since A−QC ′C is asymptotically stable, the Kalman
filter is stable. Subtracting (5.3.1) from (5.3.15) gives

d

dt
(x̂ − x) = (A − QC ′C)(x̂ − x) − Bw + QC ′Dv

and it follows that the system R :
[

w′ v′ ]′ 7→ (x̂ − x) is also stable. Therefore,
the Kalman filter possesses the desired stability properties.

Since the adjoint problem defined by (5.3.6) and (5.3.7) satisfies the assump-
tions of the infinite-horizon, full-information control problem, we conclude that the
Kalman filter is indeed the optimal filter, and that the optimal cost is

‖R‖2 =
√

trace(LQL′). (5.3.18)

All stable filters with prescribed performance

‖R‖2 ≤ γ

are generated by
ẑ = Lx̂ + U(y − Cx̂),

in which x̂ is the optimal state estimate, and U ∈ H∞ with

‖U‖2
2 + trace(LQL′) ≤ γ2. (5.3.19)

Main points of the section

1. The adjoint of the filtering problem is a full-information control
problem in which the controller does not have access to the state.

2. The optimal estimate of Lx is Lx̂, in which x̂ is the optimal estimate
of x generated by the Kalman filter.

3. The Kalman filter is

˙̂x = Ax̂ + QC ′(y − Cx), x̂(0) = 0,

in which Q is the solution to the Riccati equation (5.3.11). In
the case of an infinite horizon, Q is the stabilizing solution to the
algebraic Riccati equation (5.3.17).

4. All filters with prescribed performance γ are obtained by setting
ẑ = Lx̂ + Uη, in which η = y −Cx̂ is the innovations process, and
U satisfies (5.3.13) in the case of a finite horizon or (5.3.19) in the
case of an infinite horizon.
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5.4 Measurement feedback

We now consider the problem of real interest, in which the controller must generate
the control signal according to u = Ky. Again, we begin with the finite-horizon
problem.

5.4.1 The finite-horizon case

We consider the time-varying plant

ẋ = Ax + B1w + B2u, x(0) = 0, (5.4.1)

z = C1x + D12u (5.4.2)

y = C2x + D21w, (5.4.3)

in which D′
12D12 = I and D21D

′
21 = I for all times of interest.

Our aim is to find a controller u = Ky that minimizes ‖Rzw‖2,[0,T ]. As usual,
Rzw is the closed-loop system mapping w to z.

The solution is based on the fact that any measurement feedback controller is
also a full-information controller, since

Ky =
[

KC2 KD21

] [
x
w

]
.

It follows that the cost of any measurement feedback controller is

‖Rzw‖2
2,[0,T ] = ‖U‖2

2,[0,T ] +
1

T

∫ T

0

trace(B′
1PB1) dt, (5.4.4)

with U being the system that maps w to u − u∗ and u∗ = −Fx being the opti-
mal, full-information controller. (Equation (5.4.4) is a copy of equation (5.2.21).)
Therefore, the measurement feedback controller that minimizes ‖Rzw‖2,[0,T ] is the
optimal estimator of u∗ = −Fx given the measurements y. This is known as the
separation principle. It is now immediate that the optimal controller is

˙̂x = Ax̂ + H(y − C2x̂) + B2u

u = −Fx̂,

in which F = D′
12C1 + B′

2X and H = B1D
′
21 + Y C ′

2. The matrices X and Y are
the solutions to the Riccati differential equations

−Ẋ = XÃ + Ã′X − XB2B
′
2X + C̃ ′C̃, X(T ) = 0,

Ẏ = ĀY + Y Ā′ − Y C ′
2C2Y + B̄B̄′, Y (0) = 0,

in which

Ã = A − B2D
′
12C1, C̃ ′C̃ = C ′

1(I − D12D
′
12)C1, (5.4.5)

Ā = A − B1D
′
21C2, B̄B̄′ = B1(I − D′

21D21)B
′
1. (5.4.6)
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(These formulas result from including cross terms in z′z and correlated process and
measurement noise—see Section 5.2.3.)

The optimal cost is

‖Rzw‖2,[0,T ] =

{
1

T

∫ T

0

(
trace(B′

1XB1) + trace(FY F ′)
)
dt

} 1
2

,

which is just the square root of the sum of the square of the optimal, full-information
cost and the square of the cost of optimally estimating the optimal, full-information
controller −Fx.

All full-information controllers that achieve the performance level

‖Rzw‖2,[0,T ] ≤ γ (5.4.7)

are generated by using a suboptimal estimator of −Fx. From the parametrization
of all filters achieving specified performance and (5.4.4), it is evident that the control
is

u = −Fx̂ + Q(y − C2x̂),

in which

‖Q‖2
2,[0,T ] +

1

T

∫ T

0

(
trace(B′

1XB1) + trace(FY F ′)
)
dt ≤ γ2. (5.4.8)

In LFT form, all measurement feedback controllers with performance level (5.4.7)
are generated by




˙̂x
u
η



 =




A − B2F − HC2 H B2

−F 0 I
−C2 I 0








x̂
y
r



 (5.4.9)

r = Qη, (5.4.10)

in which Q satisfies (5.4.8). The nonsingularity of the (1, 2)- and (2, 1)-blocks of
this LFT confirms that we capture all measurement feedback controllers as Q varies
(without restriction on its norm). This parametrization of all controllers is shown
in block diagram form in Figure 5.4.

Remark 5.4.1. Notice that the cost of estimating u∗ = −Fx is zero if Y ≡ 0.
This happens when B̄B̄′ ≡ 0. Since B̄B̄′ = B1(I − D′

21D21)B
′
1, we see that this

occurs when D21 is an orthogonal matrix—the identity, for example. We conclude
that when y = C2x + w, the additional cost of measurement feedback over full
information is zero. This is essentially because the filter

˙̂x = Ax̂ + B1ŵ + B2u, x̂(0) = 0,

ŵ = y − C2x̂

reconstructs w and x perfectly from the measurements y.
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Figure 5.4: All measurement feedback controllers.

5.4.2 The infinite-horizon case

In the infinite-horizon case, we assume that the plant is described by (5.4.1) to
(5.4.3) with all the matrices of the realization constant. We also assume that (A,B2)
is stabilizable and that (A,C2) is detectable. These are necessary conditions for the
existence of a stabilizing controller (see Appendix A). Our last assumption is that
the full-rank-on-the-axis conditions (5.1.5) and (5.1.6) hold. These assumptions
are equivalent to (Ã, C̃) having no unobservable mode on the imaginary axis and
(Ā, B̄) having no uncontrollable mode on the imaginary axis (see Section 5.2.3).
The matrices Ã, C̃, Ā and B̄ are defined by (5.4.5) and (5.4.6) as before. Under
these assumptions, the algebraic Riccati equations

XÃ + Ã′X − XB2B
′
2X + C̃ ′C̃ = 0 (5.4.11)

ĀY + Ā′Y − Y C ′
2C2Y + B̄B̄′ = 0 (5.4.12)

have stabilizing solutions.
As in the finite-horizon case, the identity

Ky =
[

KC2 KD21

] [
x
w

]

means that any stabilizing measurement feedback controller is also a stabilizing
full-information controller. Hence

‖Rzw‖2
2 = ‖U‖2

2 + trace(B′
1XB1)
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for some U ∈ H∞. As before, U is the system mapping w to u − u∗. The signal
u∗ = −Fx, with F = D′

12C1 + B′
2X, is the optimal, full-information controller.

The optimal, measurement feedback controller is therefore the best stable esti-
mator of u = −Fx. It is given by

˙̂x = Ax̂ + H(y − C2x̂) + B2u

u = −Fx̂,

in which H = B1D
′
21 + Y C2. The optimal cost is

‖Rzw‖2,[0,T ] =
√

trace(B′
1XB1) + trace(FY F ′).

All measurement feedback controllers that achieve the performance level

‖Rzw‖2 ≤ γ (5.4.13)

are generated by



˙̂x
u
η



 =




A − B2F − HC2 H B2

−F 0 I
−C2 I 0








x̂
y
r





r = Qη,

in which Q ∈ H∞ satisfies

‖Q‖2
2 + trace(B′

1XB1) + trace(FY F ′) ≤ γ2.

Notice that the inverses of the (1, 2)- and (2, 1)-blocks of this LFT are in H∞, since
their A-matrices are A−B2F and A−HC2 respectively, confirming that we capture
all internally-stabilizing controllers as Q ∈ H∞ is varied (without restriction on its
norm). See Appendix A for more details.

Main points of the section

1. Any measurement feedback controller is also a full-information con-
troller.

2. The optimal, measurement feedback controller is an optimal esti-
mator of the optimal, ful-information control.

3. The optimal 2-norm with measurement feedback is given by

‖Rzw‖2,[0,T ] =

{
1

T

∫ T

0

(
trace(B′

1XB1) + trace(FY F ′)
)
dt

} 1
2

in the case of a finite horizon, or by

‖Rzw‖2 =
√

trace(B′
1XB1) + trace(FY F ′)
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in the case of an infinite horizon. In these expressions, F is the
optimal state-feedback gain and X and Y are the stabilizing solu-
tions to the Riccati equations defining the optimal, full-information
controller and the Kalman filter respectively.

4. In the infinite-horizon case, it is assumed that the plant is time-
invariant and satisfies:

(i) (A,B2) stabilizable.

(ii) rank

[
A − jωI B2

C1 D12

]
= n + m for all real ω.

(iii) (A,C2) is detectable.

(iv) rank

[
A − jωI B1

C2 D21

]
= n + q for all real ω.

5. All measurement feedback controllers that achieve a given perfor-
mance level ‖Rzw‖2,[0,T ] ≤ γ or ‖Rzw‖2 ≤ γ are obtained by
adding Qη to the optimal control. The signal η is the innovations
process and Q is a causal linear system that satisfies

‖Q‖2
2,[0,T ] +

1

T

∫ T

0

(
trace(B′

1XB1) + trace(FY F ′)
)
dt ≤ γ2

in the case of a finite horizon, or Q ∈ H∞ such that

‖Q‖2
2 + trace(B′

1XB1) + trace(FY F ′) ≤ γ2

in the case of an infinite horizon.

6. If Q ∈ H∞ is allowed to vary without restriction on its norm, we
capture all internally-stabilizing controllers.

5.5 Notes and References

This chapter considers only a fraction of what is known about LQ optimal control,
Kalman filtering and LQG control. Indeed, the volume of work on these subjects is
so vast that it would be a considerable task to provide a comprehensive guide to the
literature. A bibliography of LQG control compiled by Mendel and Gieseking [149]
in 1971 lists 73 books, 452 journal papers and numerous conference papers, reports
and theses.

Most of our knowledge of the subject originates from the texts by Anderson and
Moore [11, 12], Kwakernaak and Sivan [125], Brockett [33] and Davis [40]. These
texts contain extensive bibliographies.

The seminal papers on optimal estimation are Kalman [106] and Kalman and
Bucy [110]. Wonham [213] is regarded as having proved the LQG separation theo-
rem.
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The parametrization of all control signals and filters that achieve a prescribed
performance level is a relatively recent addition to LQG theory introduced by Doyle,
Glover, Khargonekar and Francis [54].

A special issue of the IEEE Transactions on Automatic Control was devoted
to LQG control in 1971 [17]. It contains expository articles by Athans [16] and
Luenberger [141]; the paper by Willems [211] on the connections between Riccati
equations, optimal control and factorization theory; and the paper by Rosenbrock
and Moran [173], which takes a critical view of optimal control.

We conclude with a quotation from Athans’ editorial in the special issue [15]:

“It appears that the most pressing issue is related to the modelling issue;
namely, how accurate should the plant model be? how accurate should
the model of uncertainties be? and how should the performance index
be defined to consolidate design specifications and model inaccuracy.
Furthermore, how can one guarantee the relative insensitivity of the
final control system right from the start?”

5.6 Problems

Problem 5.1. Suppose

ẋ(t) = Ax + Bu, x(0) = x0,

and

J(x0, u) =

∫ T

0

x′C ′Cx + u′u dt.

Show that J(x0, u) is convex in u.

Problem 5.2. Consider the system

ẋ = Ax + Bu, x(0) = x0,

z =

[
Cx
Du

]

with D′D = I and the cost functional

J(u, x0) =

∫ T

0

z′z dt.

1. Suppose an optimal control u∗ exists that minimizes J(u, x0) and let x∗ be the
corresponding optimal state trajectory. If the optimal control is perturbed
to u = u∗ + εũ, where ũ is an arbitrary function of time and ε is an arbitrary
number, show that the state trajectory is perturbed to x = x∗ + εx̃, in which

x̃(t) =

∫ t

0

Φ(t, τ)Bũ dτ,
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with Φ(·, ·) the transition matrix associated with A.
2. Show that

J(u, x0) =

∫ T

0

(x∗′

C ′Cx∗ + (u∗)′u∗)dt

+2ε

∫ T

0

(x̃′C ′Cx∗ + ũ′u∗)dt

+ε2
∫ T

0

(x̃′C ′Cx̃ + ũ′ũ)dt.

3. Use the fact that u∗ minimizes J(u, x0), to show that

∫ T

0

(x̃′C ′Cx∗ + ũ′u∗)dt = 0.

4. Using your answers to Parts (1), (2) and (3), show that

∫ T

0

ũ′(B′λ + u∗)dt = 0, (5.6.1)

with

λ(t) =

∫ T

t

Φ′(τ, t)C ′Cx∗dτ.

Conclude that u∗ = −B′
2λ (almost everywhere) from the fact that (5.6.1)

must hold for any ũ ∈ L2[0, T ].3

5. Show that
λ̇ = −A′λ − C ′Cx∗ λ(T ) = 0.

Hence show that x∗ and λ satisfy the two-point-boundary-value problem (TP-
BVP)

[
ẋ∗

λ̇

]
=

[
A −BB′

−C ′C −A′

] [
x∗

λ

]
,

[
x∗(0)
λ(T )

]
=

[
x0

0

]
.

6. If Φ(t, T ) is the transition matrix associated with the TPBVP, show that

λ(t) = Φ21(t, T )Φ−1
11 (t, T )x∗(t)

= P (t)x∗(t).

Show that the inverse always exists!
7. By differentiating P , show that

−Ṗ = A′P + PA − PBB′P + C ′C

with terminal condition P (T ) = 0. Conclude that the optimal control is given
by u = −B′Px.

3This deduction is known as the Fundamental Lemma of the calculus of variations.
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Problem 5.3. Suppose that the standard assumptions on (A,B2, C) are satisfied.
Let P be the stabilizing solution to (5.2.29) and let P̄ be any other solution. Show
that

(P − P̄ )(A − B2B
′
2P ) + (A − B2B

′
2P )′(P − P̄ ) + (P − P̄ )B2B

′
2(P − P̄ ) = 0

and conclude that P ≥ P̄ . Show that when (A,C) is detectable, P̄ ≥ 0 implies
P̄ = P .4

Problem 5.4. Consider the loop-gain transfer function B′
2P (sI − A)−1B2, in

which P is the stabilizing solution to (5.2.29).
1. Show that

(
I + B′

2(−sI − A′)−1PB2

)(
I + B′

2P (sI − A)−1B2

)

= I + B′
2(−sI − A′)−1C ′C(sI − A)−1B2.

This equation is known as the “return-difference equality”.
Let W = I + B′

2P (sI − A)−1B2 . Draw a block diagram that contains
three signal paths having transfer function matrix S = W−1 or −S. (Hint:
Anderson and Moore [11], pages 66–71.) Give three reasons for calling S the
sensitivity operator associated with the controller u = −B′

2Px. Show that
‖S‖∞ ≤ 1 follows from the return-difference equality.

2. The return-difference equality can also be written as W∼W = G∼G, in
which

G =

[
C(sI − A)−1B2

I

]
.

Show that GW−1 ∈ H∞ and that GW−1 is allpass. Conclude that
(
GW−1(s)

)∗(
GW−1(s)

)
≤ I, for all Re(s) ≥ 0.

3. Show that a state-feedback controller u = −Kx is optimal with respect to
some performance index of the form

∫ ∞
0

(x′C ′Cx + u′u) dt if and only if

(
I + K(sI − A)−1B2

)∼(
I + K(sI − A)−1B2

)
≥ I

and A−B2K is asymptotically stable. (Hint: Use the bounded real lemma.)
This question, known as the inverse problem of optimal control, was consid-
ered in Kalman [109]. See also Anderson and Moore [11, 13].

4. Suppose that the input u is scalar, making B2 = b2 a vector. Show that

|1 + b′2P (jωI − A)−1b2| ≥ 1.

Conclude that the closed-loop system, with u = −b′2Px, has a guaranteed
phase margin of ±60◦, an arbitrarily large gain marin and a gain-reduction
tolerance of up to 50%.

4The literature often speaks of the unique positive solution to the LQ Riccati equation; it is
only unique when (A, C) is detectable, in which case it is the stabilizing solution.
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Problem 5.5. Consider the exponentially weighted performance index

J =

∫ ∞

0

e2αt(x′C ′Cx + u′u) dt,

in which ẋ = Ax + B2u.
1. Show that the optimal (minimizing) controller is u = −B′

2Pαx, in which Pα

is the stabilizing solution to the Riccati equation

Pα(αI + A) + (αI + A)′Pα − PαB′
2B

′
2Pα + C ′C = 0.

Under what assumptions does Pα exist?
2. Show that the closed-loop poles are all in the half-plane Re(s) < −α. This is

known as the regulator with prescribed degree of stability.
(Hint: Consider the change of variable x̃(t) = eαtx(t).)

Problem 5.6. Suppose

ẋ = Ax + B1w + B2u

z =

[
Cx
Du

]
,

with D′D = I and (A,B2) stabilizable.
1. If u = −Kx and A − B2K is asymptotically stable, show that ‖Rzw‖2

2 =
trace(B′

1QB1), in which Q is the unique nonnegative definite solution to

(A − B2K)′Q + Q(A − B2K) + C ′C + K ′K = 0. (5.6.2)

2. Show that

(A − B2K)′(Q − P ) + (Q − P )(A − B2K) + (K − B′
2P )′(K − B′

2P ) = 0,

in which P the stabilizing solution to (5.2.29) and conclude that (Q−P ) ≥ 0.
3. Prove that ‖Rzw‖2 is minimized by setting K = B′

2P , and that the norm of
the associated closed loop is ‖Rzw‖2

2 = trace(B′
1PB1).

Problem 5.7. If
A′P + PA + S = 0

and
AQ + QA′ + R = 0,

verify that trace(QS) = trace(PR).

Problem 5.8. Show that ∆1 ≥ ∆2 ≥ 0 implies P (t, T,∆1) ≥ P (t, T,∆2) for all
t ≤ T .
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Problem 5.9. Consider the Riccati equation (5.2.31) with terminal condition
∆ ≥ 0. If (A,B2) is stabilizable and ∆ is such that

∆A + A′∆ − ∆B2B
′
2∆ + C ′C (5.6.3)

is semidefinite, show that P (t, T,∆) is monotonic, Π = limT→∞ P (t, T,∆) exists, is
constant and satisfies (5.2.29).

Problem 5.10. Suppose (A,B2, C) is stabilizable and detectable.
1. Show that P (t, T, 0) converges to the stabilizing solution to (5.2.29).
2. Show that for any Γ ≥ 0, there exists a ∆ ≥ Γ such that (5.6.3) is nonpositive

definite.
3. Conclude that Π = limT→∞ P (t, T,Γ) is the stabilizing solution of the alge-

braic Riccati equation for any Γ ≥ 0.

Problem 5.11. (Receding horizon control) Suppose

ẋ = Ax + Bu

z =

[
Cx
Du

]

with D′D = I. The receding horizon performance index is

J(u, t, t + T, xt) =

∫ t+T

t

z′z dτ + x′(t + T )∆x(t + T )

and the optimal control is therefore u∗
T = −FT x, in which FT (t) = B′

2P (t, t +
T,∆). Observe that the optimal receding horizon feedback gain FT is constant if
the problem data are constant. We will now make this assumption and assume that
the standard assumptions hold. Consider the decomposition

∫ ∞

t

z′z dτ =

∫ t+T

t

z′z dτ +

∫ ∞

t+T

z′z dτ.

If a controller is stabilizing, we must have

∫ ∞

t+T

z′z dτ ≥ x′(t + T )Px(t + T ),

in which P is the stabilizing solution to (5.2.29). Therefore, in order that the con-
troller that minimizes J(u, t, t+T,∆) is stabilizing, ∆ must represent a conservative
estimate of

∫ ∞
t+T

z′z dτ . That is, ∆ ≥ P .
Fallacious conjecture: FT is stabilizing if and only if ∆ ≥ P , in which P is

the stabilizing solution to (5.2.29).
Give a counter-example that shows this conjecture is indeed fallacious. This

fallacy provides a warning against simply choosing a very large ∆.
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(The arguments in the text show that FT is stabilizing if and only if ∆ ≥ P and
d
dtP (t, T,∆)|t=0 ≥ 0 by exploiting the “fake algebraic Riccati technique” introduced
by Poubelle et al [167] , which is simply the identity

PT (A − B2B
′
2FT ) + (A − B2B

′
2FT )′PT + PT B2B

′
2PT + C ′C + RT = 0,

in which PT = P (0, T,∆) and RT = Ṗ (t, T,∆)|t=0.)
For more details on receding horizon LQ control and related matters see Bit-

mead, Gevers and Wertz [29].

Problem 5.12. Consider the signal generator

ẋ = Ax + Bw, x(0) = 0,

y = Cx + Dv,

in which
[

w′ v′ ]′
is a unit intensity white noise. Show that the innovations

process η = y − Cx̂ in the Kalman filter is white and has unit intensity.
(Hint: Show that the system A mapping

[
w′ v′ ]′

to η satisfies AA∼ = I.)

Problem 5.13. Consider the signal generator

ẋ = Ax + Bw, E{x(0)} = 0, E{x(0)x′(0)} = P0

y = Cx + Dv,

in which
[

w′ v′ ]′
is a unit intensity white noise that is independent of x(0).

Show that the Kalman filter

˙̂x = Ax̂ + QC ′(y − Cx̂), x̂(0) = 0,

with
Q̇ = AQ + QA′ − QC ′CQ + C ′C, Q(0) = P0,

minimizes E
{(

x̂(t) − x(t)
)(

x̂(t) − x(t)
)′}

given y(σ), σ ∈ [0, t], over the class of

causal, linear (finite-dimensional) filters. Show that Q(t) is the optimal state error
variance at time t.

(Hint: Write an arbitrary filter as

d

dt

[
x̃
ξ

]
=

[
A − QC ′C 0

0 F

] [
x̃
ξ

]
+

[
QC ′

G

]
y

x̂ =
[

H1 H2

] [
x̃
ξ

]
+ Jy.

Work out E
{(

x̂(t) − x(t)
)(

x̂(t) − x(t)
)′}

in terms of a matrix P̃ that is the solution

to a controllability type Lyapunov equation.)
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Problem 5.14. Consider the LQG problem defined by

[
ẋ1

ẋ2

]
=

[
1 1
0 1

] [
x1

x2

]
+

√
σ

[
1 0
1 0

]
w +

[
0
1

]
u

z =

[ √
ρ(x1 + x2)

u

]

y =
[

1 0
] [

x1

x2

]
+

[
0 1

]
w.

1. Show that the optimal controller is given by

k =
αβ(1 − 2s)

s2 + (α + β − 2)s + 1 + αβ

with
α = 2 +

√
4 + ρ ; β = 2 +

√
4 + σ.

(This solution was quoted in Example 2.1.2.)
2. What is the optimal cost? How does it vary with σ and ρ?



6

Full-Information H∞
Controller Synthesis

6.1 Introduction

We begin our attack on the problem of finding controllers that meet H∞ norm
objectives by analyzing the full-information problem described in Section 4.2.2. In
the full-information problem, the controller has access to both the state x and the
exogenous input w as shown in Figure 6.1.

P

K

z

x

w

uwr r r

¾ ¾

¾

-
-

Figure 6.1: The full-information configuration.
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The controller K is required to be causal and linear1, and generates the control
signal u according to

u = K

[
x
w

]
. (6.1.1)

The state x is the solution to the linear differential equation

ẋ = Ax + B1w + B2u, x(0) = 0. (6.1.2)

We consider the objective signal

z = C1x + D12u, (6.1.3)

in which D′
12D12 = I for all times of interest. Recall that we may consider the ob-

jective (6.1.3) instead of z = C1x+D11w+D12u by assuming that loop-shifting and
scaling transformations that remove D11 and scale D12 have already been carried
out. These transformations are described in Section 4.6. As noted in Chapter 5, a
standard change of control variable (ũ = u+D′

12C1x) reduces (6.1.3) to an objective
of the form

z =

[
Cx
Du

]
, (6.1.4)

in which D′D = I. We develop our results for the objective (6.1.4) in preference
to (6.1.3) because the elimination of cross terms between u and x in z′z simplifies
the resulting formulas. The manipulations required to extend the results to the
objective (6.1.3) are described in Section 5.2.3—Problem 6.1 requests the reader to
fill in the details.

In the first instance, we confine our attention to the finite time horizon prob-
lem, which allows us to establish the key structural features of the solution while
postponing the need to address internal stability issues. We show that the full-
information H∞ controller synthesis problem has a solution if and only if a certain
Riccati differential equation has a solution. Unlike the situation in LQ control, the
H∞ Riccati equation does not have a solution if the performance level γ is selected
too low.

By considering the limit as the horizon length passes to infinity, we show that
the infinite-horizon, full-information H∞ controller synthesis problem has a solution
if and only if the corresponding algebraic Riccati equation has a stabilizing solution
that is nonnegative definite. This is markedly different from the situation in LQ
control, where, provided the standard assumptions hold, the Riccati equation always
has a nonnegative definite, stabilizing solution.

The finite-horizon problem

In the case of a finite time horizon, the plant (6.1.2) and (6.1.4) may be time-varying
and we seek a causal, linear, full-information controller such that the closed-loop

1We will see that nonlinear controllers offer no advantage over linear ones when controlling
linear plants.
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system Rzw in Figure 6.1 satisfies

∫ T

0

(z′z − γ2w′w) dt + x′(T )∆x(T ) ≤ −ε‖w‖2
2,[0,T ] (6.1.5)

for all w ∈ L2[0, T ] and some ε > 0. The matrix ∆ is assumed to be nonnegative
definite and (6.1.5) ensures that

‖Rzw‖[0,T ] < γ, (6.1.6)

in which ‖ · ‖[0,T ] is the L2[0, T ] induced norm. Conversely, (6.1.6) implies that
(6.1.5) holds for some ε > 0 and some ∆ ≥ 0.

When controllers satisfying the objective (6.1.5) exist, we would like a parame-
trization of them all.

The terminal state penalty term will be used to ensure that a stabilizing control
law is obtained when we consider the limit T → ∞.

The infinite-horizon problem

In the infinite-horizon case, the plant described by (6.1.2) and (6.1.4) is assumed
to be time-invariant. In this case, we seek a causal, linear and stabilizing full-
information controller such that the closed-loop system Rzw satisfies

‖Rzw‖∞ < γ. (6.1.7)

The objective (6.1.7) can be written in the equivalent form

‖z‖2
2 − γ2‖w‖2

2 ≤ −ε‖w‖2
2 (6.1.8)

for all w ∈ L2[0,∞) and some ε > 0. Again, we would like a parametrization of all
controllers that satisfy (6.1.7), when they exist.

In order that a stabilizing controller exists, it is necessary to assume that the
pair (A,B2) is stabilizable (see Appendix A). We will also make the assumption
that the pair (A,C) has no unobservable mode on the imaginary axis. These are
the assumptions we made in the infinite-horizon, LQG full-information problem. As
we will see in Section 6.3.4, the assumption that (A,C) has no unobservable mode
on the imaginary axis involves no loss of generality.

6.2 The finite-horizon case

In this section, we consider the time-varying system (6.1.2) and (6.1.4), with D′D =
I for all times of interest. The control signal is generated by a full-information
controller (6.1.1), in which K is causal and linear. We denote this set of control
laws by K. Our objective is to determine when there is a K ∈ K such that (6.1.5)
is satisfied for all w ∈ L2[0, T ] and to parametrize all such controllers when they
exist. We assume that ∆ ≥ 0 and that γ > 0.
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6.2.1 Connection to differential games

The problem we are faced with is closely related to a linear quadratic differential
game. We may think of the designer and nature as playing a game in which the
designer’s goal is to choose a K ∈ K such that (6.1.5) is satisfied, while nature’s
aim is to foil the designer’s strategy by choosing a maximally malevolent w.

Specifically, define the performance index

J(K, w, T,∆) =

∫ T

0

(z′z − γ2w′w) dt + x(T )′∆x(T ), (6.2.1)

in which K is a controller, w is a disturbance and ∆ is an arbitrary nonnegative
definite matrix. If the designer chooses K ∈ K and nature chooses w ∈ L2[0, T ], the
cost to the designer is J(K, w, T,∆) while the payoff to nature is also J(K, w, T,∆).
Thus the designer wishes to minimize J(K, w, T,∆) and nature wishes to maximize
it.

The game has a saddle point if there exists a pair (K∗, w∗) such that for all
w ∈ L2[0, T ] and all K ∈ K the inequalities

J(K∗, w, T,∆) ≤ J(K∗, w∗, T,∆) ≤ J(K, w∗, T,∆) (6.2.2)

hold. We may think of K∗ as the “best” controller in K, while w∗ is the “worst”
exogenous input in L2[0, T ].

The existence of a saddle point is a necessary condition for the existence of a

controller that satisfies (6.1.5). To see this, suppose K̂ ∈ K satisfies (6.1.5). Then

J(K̂, w, T,∆) ≤ 0 for all w ∈ L2[0, T ]. Also, J(K, 0, T,∆) = 0 for any K ∈ K,

since x(0) = 0 and K

[
0
0

]
= 0. Thus

J(K̂, w, T,∆) ≤ J(K̂, 0, T,∆) ≤ J(K, 0, T,∆)

for all w ∈ L2[0, T ] and all K ∈ K. It is clear from the second inequality that

w∗ = 0 is the worst disturbance. We therefore conclude that the pair (K̂, 0) is a

saddle point whenever K̂ satisfies (6.1.5).
We may therefore determine a candidate controller by examining the first-order

necessary conditions for the existence of a saddle point. Since this analysis is only
provided for motivational purposes, we will only consider the case of open-loop
controls. Nevertheless, a feedback controller with the correct properties will be
given once the central Riccati equation of H∞ control has been found.

6.2.2 First-order necessary conditions

Suppose there exists a control signal u∗ and a disturbance w∗ satisfying the saddle
point inequalities in (6.2.2). Let x∗ denote the state trajectory associated with u∗

and w∗, which satisfies

ẋ∗ = Ax∗ + B1w
∗ + B2u

∗, x∗(0) = 0. (6.2.3)



6.2 THE FINITE-HORIZON CASE 219

We consider the optimization problems associated with the two inequalities in
(6.2.2) in turn by invoking standard procedures from the calculus of variations.

The minimization problem

Suppose that w ≡ w∗ is fixed and that u∗ is perturbed to u = u∗ + ηũ, in which η
is some number. This produces a corresponding perturbation in the state described
by

ẋ = Ax + B1w
∗ + B2u, x(0) = 0.

Subtracting (6.2.3), we see that

x = x∗ + ηx̃, 0 ≤ t ≤ T,

in which x̃ satisfies
˙̃x = Ax̃ + B2ũ, x̃(0) = 0.

Thus

x̃(t) =

∫ t

0

Φ(t, τ)B2ũ dτ, (6.2.4)

in which Φ(·, ·) is the transition matrix corresponding to A. Direct substitution into
the value function J in (6.2.1) gives

J(u,w∗, T,∆)

=

∫ T

0

(x∗′C ′Cx∗ + u∗′u∗ − γ2w∗′w∗) dt + x∗′(T )∆x∗(T )

+2η

{∫ T

0

(x̃′C ′Cx∗ + ũ′u∗) dt + x̃′(T )∆x∗(T )

}

+η2

{∫ T

0

(x̃′C ′Cx̃ + ũ′ũ) dt + x̃′(T )∆x̃(T )

}
.

Since u∗ is minimizing, changing the control cannot decrease the value function
J(u,w∗, T,∆). Therefore, as a function of η, J(u,w∗, T,∆) must take on its mini-
mum value at η = 0. Since the cost function is quadratic in η, with a minimum at
η = 0, the coefficient of the linear term must be zero. That is,

∫ T

0

(x̃′C ′Cx∗ + ũ′u∗) dt + x̃′(T )∆x∗(T ) = 0. (6.2.5)

Substituting (6.2.4) into (6.2.5) and interchanging the order of integration gives

∫ T

0

ũ′(B′
2λ + u∗) dt = 0, (6.2.6)
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in which λ is the adjoint variable defined by

λ(t) =

∫ T

t

Φ′(τ, t)C ′Cx∗dτ + Φ′(T, t)∆x∗(T ). (6.2.7)

Since ũ is arbitrary, we conclude that

u∗ = −B′
2λ, 0 ≤ t ≤ T, (6.2.8)

by invoking the Fundamental Lemma of the calculus of variations.

The maximization problem

Suppose now that u = u∗ is fixed and that w∗ is perturbed to

w = w∗ + ηw̃ 0 ≤ t ≤ T. (6.2.9)

The signal w̃ is an arbitrary L2[0, T ] function and η is an arbitrary constant. The
perturbation in w produces a perturbation in x:

x = x∗ + ηx̃ 0 ≤ t ≤ T.

Here, x̃ is a function that is determined by w̃, u∗ and the system dynamics. Sub-
tracting (6.2.3) from (6.1.2), we obtain

˙̃x = Ax̃ + B1w̃, x̃(0) = 0,

giving

x̃(t) =

∫ t

0

Φ(t, τ)B1w̃dτ, (6.2.10)

in which Φ(·, ·) is the transition matrix corresponding to A. Substitution into (6.2.1)
gives

J(u∗, w, T,∆)

=

∫ T

0

(x∗′C ′Cx∗ + u∗′u∗ − γ2w∗′w∗) dt + x∗′(T )∆x∗(T )

+2η

{∫ T

0

(x̃′C ′Cx∗ − γ2w̃′w∗) dt + x̃′(T )∆x∗(T )

}

+η2

{∫ T

0

(x̃′C ′Cx̃ − γ2w̃′w̃) dt + x̃′(T )∆x̃(T )

}
.

Since w∗ is maximizing, changing the input to that given in (6.2.9) cannot increase
J(u∗, w, T,∆). Therefore, as before, the coefficient of the term linear in η must be
zero. That is,

∫ T

0

(x̃′C ′Cx∗ − γ2w̃′w∗) dt + x̃′(T )∆x∗(T ) = 0. (6.2.11)
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Substituting (6.2.10) into (6.2.11) and interchanging the order of integration gives

∫ T

0

w̃′(B′
1λ − γ2w∗) dt = 0, (6.2.12)

in which λ is the adjoint variable defined by (6.2.7). Since (6.2.12) must be true for
all w̃, we conclude that

w∗ = γ−2B′
1λ. (6.2.13)

The two-point-boundary-value problem

We may summarize our findings so far by assembling the dynamics of the saddle-
point state trajectory and the dynamics associated with the adjoint variable into a
two-point-boundary-value problem (TPBVP) that represents both optimal control
problems.

Differentiating (6.2.7) with respect to t gives

λ̇(t) = −A′λ − C ′Cx∗, λ(T ) = ∆x∗(T ), (6.2.14)

and combining this with (6.2.3), (6.2.8) and (6.2.13) yields

[
ẋ∗

λ̇

]
=

[
A −(B2B

′
2 − γ−2B1B

′
1)

−C ′C −A′

] [
x∗

λ

]
, (6.2.15)

with boundary condition

[
x∗(0)
λ(T )

]
=

[
0

∆x∗(T )

]
. (6.2.16)

What has been shown is that control signal u∗ and the exogenous input w∗ associ-
ated with any saddle-point strategy must be given by

u∗ = −B′
2λ

w∗ = γ−2B′
1λ,

in which λ is a solution to the TPBVP. Note, however, that these are necessary
conditions—we have not shown that a saddle-point strategy exists.

The TPBVP always has a solution, namely the trivial solution x∗ ≡ 0 and λ ≡ 0.
Whether or not there are also other solutions in addition to the trivial one turns
out to be a crucial question to which we shall return.

6.2.3 The Riccati equation

Although we have obtained formulas for u∗ and w∗, we have not exhibited a full-
information control law K∗. To do this, we show that x∗ and λ may be related by
the solution of a Riccati equation.
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Let Φ(t, T ) be the transition matrix corresponding to (6.2.15):

d

dt
Φ(t, T ) = HΦ(t, T ), Φ(T, T ) = I, (6.2.17)

in which

H =

[
A −(B2B

′
2 − γ−2B1B

′
1)

−C ′C −A′

]
.

Then [
x∗(t)
λ(t)

]
=

[
Φ11(t, T ) Φ12(t, T )
Φ21(t, T ) Φ22(t, T )

] [
x∗(T )
λ(T )

]
. (6.2.18)

By eliminating x∗(T ) and λ(T ) in (6.2.18) using the boundary condition λ(T ) =
∆x∗(T ), one obtains

λ(t) = P (t)x∗(t),

with
P (t) =

(
Φ21(t, T ) + Φ22(t, T )∆

)(
Φ11(t, T ) + Φ12(t, T )∆

)−1
,

provided the indicated inverse exists for all times in [t, T ]. We now have that

u∗ = −B′
2P (t)x∗

=
[
−B′

2P (t) 0
] [

x∗

w∗

]

and therefore that
K∗ =

[
−B′

2P (t) 0
]

(6.2.19)

is a candidate control law.
Using the result of Problem 3.22, it is easily verified that P is the solution to

the Riccati differential equation

−Ṗ = A′P + PA − P (B2B
′
2 − γ−2B1B

′
1)P + C ′C, P (T ) = ∆. (6.2.20)

Notice that we can only write the control law as u∗ = −B′
2Px∗ if the Riccati

equation has a solution, which is equivalent to the nonsingularity of Φ11(t, T ) +
Φ12(t, T )∆ on the time interval [0, T ]. If we set γ−2 = 0, (6.2.20) reduces to the
LQ Riccati equation (5.2.31), which always has a solution. Hence we expect that
the Riccati equation (6.2.20) will have a solution for γ sufficiently large. Indeed, if
we reconsider the cost function given in (6.2.1) for a minute, we see that increasing
γ has the effect of paralyzing nature—any activity by the w-player will reduce the
payoff function. In the limit as γ → ∞, the w-player is completely removed from
the game and the optimization criterion reduces to one of minimizing

J =

∫ T

0

z′z dt + x′(T )∆x(T ),

which is the cost function associated with LQ control.
Our aim in the remainder of this section is to show that the Riccati equation

(6.2.20) has a solution on [0, T ] if and only if there exists a full-information control
law satisfying the objective (6.1.5).
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6.2.4 Sufficiency: completing the square

Assuming the Riccati equation (6.2.20) has a solution on the time interval [0, T ],
we show that the full-information control law (6.2.19) satisfies the objective (6.1.5).

Theorem 6.2.1 Suppose the Riccati differential equation (6.2.20) has a solution
on [0, T ]. Then

u∗ = −B′
2Px (6.2.21)

w∗ = γ−2B′
1Px (6.2.22)

results in
J(K, w, T,∆) = ‖u − u∗‖2

2,[0,T ] − γ2‖w − w∗‖2
2,[0,T ] (6.2.23)

for any controller K and any input w. If u = u∗, then the objective (6.1.5) is
satisfied for some ε > 0. We also have ‖Rzw‖[0,T ] < γ, which means that the full-
information control law (6.2.21) is a solution to the full-information H∞ controller
synthesis problem on the time horizon [0, T ].

Proof. Since P (T ) = ∆ and x(0) = 0, we have for any u and w that

J(K, w, T,∆) =

∫ T

0

(
z′z − γ2w′w +

d

dt
(x′Px)

)
dt.

Since
d

dt
(x′Px) = ẋ′Px + x′Ṗ x + x′P ẋ,

we may substitute for ẋ and Ṗ from the state dynamics and the Riccati differential
equation to obtain

J(K, w, T,∆)

=

∫ T

0

(
x′C ′Cx + u′u − γ2w′w + (x′A′ + w′B′

1 + u′B′
2)Px

+ x′Ṗ x + x′P (Ax + B1w + B2u)
)
dt

=

∫ T

0

(
x′(C ′C + A′P + PA + Ṗ )x + u′u − γ2w′w

+ (w′B′
1 + u′B′

2)Px + x′P (B1w + B2u)
)
dt

=

∫ T

0

(
x′P (B2B

′
2 − γ−2B1B

′
1)Px + u′u − γ2w′w

+ (w′B′
1 + u′B′

2)Px + x′P (B1w + B2u)
)
dt

=

∫ T

0

(u + B′
2Px)′(u + B′

2Px) dt

− γ2

∫ T

0

(w − γ−2B′
1Px)′(w − γ−2B′

1Px) dt

= ‖u − u∗‖2
2,[0,T ] − γ2‖w − w∗‖2

2,[0,T ],
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with u∗ and w∗ as in (6.2.21) and (6.2.22), which establishes (6.2.23).
To prove that this implies the objective (6.1.5) is satisfied, let L be the system

that maps w 7→ (w − w∗) when u = u∗. Direct substitution shows that L has
realization

ẋ = (A − B2B
′
2P )x + B1w (6.2.24)

w − w∗ = −γ−2B′
1Px + w. (6.2.25)

Setting K = K∗ (i.e., u = u∗) in (6.2.23), we have

J(K∗, w, T,∆) = −γ2‖w − w∗‖2
2,[0,T ]

= −γ2‖Lw‖2
2,[0,T ]

≤ −ε‖w‖2
2,[0,T ]

for some positive constant ε (ε = γ2/‖L−1‖2
[0,T ]). The fact that ε > 0 is a conse-

quence of the fact that L−1 is given by a state-space system, so its induced norm
is finite. We conclude also that ‖Rzw‖[0,T ] < γ, since ∆ ≥ 0.

P is nonnegative definite

Suppose (6.2.20) has a solution on the interval [0, T ]. Define

Jt(K, w, T,∆) =

∫ T

t

(z′z − γ2w′w) dτ + x′(T )∆x(T ),

and complete the square to obtain

Jt(K, w, T,∆) = x′(t)P (t)x(t) + ‖u − u∗‖2
2,[t,T ] − γ2‖w − w∗‖2

2,[t,T ].

Consequently

x′(t)P (t)x(t) = Jt(K
∗, 0, T,∆) + γ2‖w∗‖2

2,[t,T ]. (6.2.26)

Since Jt(K
∗, 0, T,∆) ≥ 0 for all t, and since (6.2.26) is true for every x(t), it follows

that P (t) ≥ 0 for all t ∈ [0, T ].2

6.2.5 Necessity

Our discussion of the connection between H∞ control and differential games showed
that any controller that satisfies the objective (6.1.5) must be a saddle point for
a differential game. By analyzing the first-order necessary conditions for a saddle
point, we obtained a two-point-boundary-value problem; any saddle-point strategy
is given by u∗ = −B′

2λ, w∗ = γ−2B′
1λ, in which the adjoint variable λ is a solution

2Just think of x(t) as an arbitrary initial condition for the optimization interval [t, T ].
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to the TPBVP. We then showed that λ could be related to x provided the Riccati
differential equation (6.2.20) has a solution on [0, T ]. By completing the square, we
then showed that the existence of a solution to the Riccati differential equation did
indeed provide a sufficient condition for the existence of the full-information H∞
control problem. It remains for us to show that the existence of a solution to the
Riccati differential equation (6.2.20) is also necessary for the the existence of the
full-information H∞ control problem.

To see that Riccati differential equations of this type do not always have a
solution, consider the following example:

Example 6.2.1. Suppose

ẋ = w + u

z =

[
x
u

]
.

The associated Riccati equation is

−ṗ = 1 − p2(1 − γ−2), p(T ) = δ. (6.2.27)

In the case that γ > 1, the solution to (6.2.27) is given by

p(τ) =
δ − β−1 tanh(βτ)

1 − δβ tanh(βτ)

= β−1 tanh(tanh−1(δβ) − βτ),

in which β =
√

1 − γ−2 and τ = t − T . Since tanh(·) lies between −1 and 0 for
all negative arguments, p(τ) is bounded for all t ≤ T and δ ≥ 0. When γ = 1,
p(τ) = δ − τ , which is finite for finite t and T .

In the case that γ < 1, the solution to (6.2.27) is

p(τ) =
δ − φ−1 tan(φτ)

1 + δφ tan(φτ)

= φ−1 tan(tan−1(δφ) − φτ),

in which φ =
√

γ−2 − 1. In this case, there will be a finite escape time when

π

2
= tan−1(δφ) − τφ

for the first time. That is, when

τ∗(γ, δ) =

{
2 tan−1(δφ)−π

2φ if δ > 0
−π
2φ if δ = 0.
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A small calculation shows that the escape time will occur in the interval [0, T ] (i.e.,
τ ≥ −T ) when γ ≤ 1√

( π
2T

)2+1
. This shows that a controller exists for any

γ > γ∗(T ) =
1√

( π
2T )2 + 1

.

In the limit as T → ∞, γ∗(T ) → 1. This is the least value of γ for which the
infinite-horizon problem has a solution. 5

We shall prove that the Riccati differential equation (6.2.20) has a solution when-
ever the full-information H∞ control problem has a solution. Our proof requires us
to return to the question of whether the two-point-boundary-value problem (6.2.15)
has any nontrivial solutions. This question can be rephrased in terms of the ex-
istence conjugate points, which are used in the classical theory of the calculus of
variations.

Conjugate points:

Two times t0, tf with t0 ≤ tf are conjugate points of the TPBVP
(6.2.15) if there is a nontrivial solution to (6.2.15) such that x(t0) = 0
and λ(tf ) = ∆x(tf ) for a given fixed ∆.

This is slightly more general than the usual requirement that λ(tf ) = 0, which is
only of interest when ∆ = 0. The next example illustrates the conjugate point
properties of the TPBVP.

Example 6.2.2. The TPBVP associated with (6.2.27) is given by

[
ẋ

λ̇

]
=

[
0 γ−2 − 1
−1 0

] [
x
λ

]
.

In the case that γ < 1 and δ = 0, the TPBVP has a general solution of the form

λ(τ) =
−A sin(φτ)

φ
, x(τ) = A cos(φτ)

in which τ = t − T and φ =
√

γ−2 − 1. If τ∗ = −π/2φ, we have

λ(τ∗) = Aφ−1, x(τ∗) = 0,
λ(0) = 0, x(0) = A.

This shows that t0 = T − π/2φ and tf = T are conjugate points. 5

Lemma 6.2.2 Let Φ(t, τ) be the transition matrix associated with the TPBVP
(6.2.15). The matrix Φ11(t0, tf ) + Φ12(t0, tf )∆ is singular if and only if t0 and
tf are conjugate points.
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The Riccati equation (6.2.20) has a solution on [0, T ] provided Φ11(t, T )+Φ12(t, T )∆
is nonsingular for all t ∈ [0, T ], since

P (t) = (Φ21(t, T ) + Φ22(t, T )∆)(Φ11(t, T ) + Φ12(t, T )∆)−1.

We conclude from this lemma that the Riccati equation (6.2.20) has a solution on
[0, T ] if there is no t ∈ [0, T ] for which t and T conjugate points.

Proof. Suppose t0 and tf are conjugate points. Then there exists a nontrivial
solution to (6.2.15) such that x(t0) = 0 and λ(tf ) = ∆x(tf ). Hence

[
x(t)
λ(t)

]
=

[
Φ11(t, tf ) Φ12(t, tf )
Φ21(t, tf ) Φ22(t, tf )

] [
I
∆

]
x(tf ) (6.2.28)

and we note that x(tf ) must be nonzero, because x and λ are not identically zero
and Φ(t, tf ) is nonsingular for all t, tf . Since x(t0) = 0, we have

0 =
(
Φ11(t0, tf ) + Φ12(t0, tf )∆

)
x(tf ),

which means that Φ11(t0, tf ) + Φ12(t0, tf )∆ is singular.
Now suppose that Φ11(t0, tf ) + Φ12(t0, tf )∆ is singular. Then there exists a

g 6= 0 such that
0 =

(
Φ11(t0, tf ) + Φ12(t0, tf )∆

)
g.

By considering the solution to the final value problem (6.2.28) with x(tf ) = g, we
see that x(t0) = 0 and λ(tf ) = ∆x(tf ) and also that x(t) is not identically zero.
Hence t0 and tf are conjugate points.

From time to time, we will need the fact that the TPBVP

[
ẋ

λ̇

]
=

[
A −BB′

−C ′C −A′

] [
x
λ

]
,

[
x(t0)
λ(tf )

]
=

[
0

∆x(tf )

]
, (6.2.29)

which arises in standard LQ optimal control enjoys a “no conjugate point” prop-
erty. By setting γ−2 = 0 in (6.2.15), we see from Lemma 6.2.2 that this is just a
restatement of the fact that the Riccati equation (5.2.31) associated with the LQ
optimal control problem always has a solution.

Lemma 6.2.3 Let t0 ≤ tf be any two time points and let ∆ ≥ 0. The unique
solution to the TPBVP (6.2.29) is the trivial solution x(t) ≡ 0, λ(t) ≡ 0.

Proof. Let x and λ be any solution to (6.2.29). Then

d

dt
(λ′x) = λ̇′x + λ′ẋ

= −λ′BB′λ − x′C ′Cx.



228 FULL-INFORMATION H∞ CONTROLLER SYNTHESIS

Integrating from t0 to tf gives

x′(tf )∆x(tf ) = −
∫ tf

t0

(λ′BB′λ + x′C ′Cx)dτ.

Since x′(tf )∆x(tf ) ≥ 0, we must have

B′λ = 0, Cx = 0, ∆x(tf ) = 0.

Consequently ẋ = Ax with x(t0) = 0 and λ̇ = −A′λ with λ(tf ) = 0 and we conclude
that the trivial solution is the only solution to (6.2.29).

We are now ready to prove the main result of this section.

Theorem 6.2.4 Consider the linear system (6.1.2) with output (6.1.4) and cost

(6.2.1) with ∆ ≥ 0. If there exists a controller K̂ ∈ K such that

J(K̂, w, T,∆) ≤ −ε‖w‖2
2,[0,T ] (6.2.30)

for all w ∈ L2[0, T ] and some ε > 0, then t ∈ [0, T ] and T are not conjugate points.
Consequently, the matrix Φ11(t, T ) + Φ12(t, T )∆ is nonsingular for all t ∈ [0, T ]

and the Riccati differential equation (6.2.20) has a solution on [0, T ].

Proof. Choose an arbitrary t∗ ∈ [0, T ]. To show that t∗ and T cannot be conjugate
points, we must show that the trivial solution is the only solution to (6.2.15) that
has the property [

x(t∗)
λ(T )

]
=

[
0

∆x(T )

]
. (6.2.31)

Let x∗, λ be any solution to (6.2.15) satisfying (6.2.31). Define the truncated
cost function

Jt∗(K, w, T,∆) =

∫ T

t∗
(z′z − γ2w′w) dt + x′(T )∆x(T ).

For any input w such that w(t) = 0 for t < t∗, we obtain u(t) = 0 and x(t) = 0

for t < t∗. This is because x(0) = 0 and K

[
0
0

]
= 0 for K ∈ K. Consequently,

w(t) = 0 for t ≤ t∗ implies that

J(K, w, T,∆) = Jt∗(K, w, T,∆).

We now show that u∗ = −B′
2λ solves the open-loop minimization problem

min
u

∫ T

t∗
(x̃′C ′Cx̃ + u′u − γ2w∗′w∗) dt + x′(T )∆x(T ), (6.2.32)
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subject to
˙̃x = Ax̃ + B1w

∗ + B2u, x̃(t∗) = 0, (6.2.33)

in which w∗ = γ−2B′
1λ. The tilde is used to distinguish between the state trajectory

in (6.2.15), the state trajectory resulting from K̂ and the state trajectory associated
with the minimization problem in (6.2.32), which may be analyzed in exactly the
same manner as the analysis associated with minimizing the right-hand inequality
in (6.2.2). The solution may be summarized as

uopt = −B′
2p, (6.2.34)

with
−ṗ = A′p + C ′Cx̃, p(T ) = ∆x̃(T ). (6.2.35)

The details are requested as an exercise. Combining this with (6.2.33) gives the
following TPBVP

[
˙̃x
ṗ

]
=

[
A −B2B

′
2

−C ′C −A′

] [
x̃
p

]
+

[
B1w

∗

0

]
,

[
x̃(t∗)
p(T )

]
=

[
0

∆x̃(T )

]
.

Using w∗ = γ−2B′
1λ and subtracting (6.2.15) gives

[
˙̃x − ẋ

ṗ − λ̇

]
=

[
A −B2B

′
2

−C ′C −A′

] [
x̃ − x
p − λ

]
,

[
(x̃ − x)(t∗)
(p − λ)(T )

]
=

[
0

∆(x̃ − x)(T )

]
,

which has the unique solution x̃ − x ≡ 0, p − λ ≡ 0 by Lemma 6.2.3. Thus
uopt = u∗ = −B′

2λ is the solution of the minimization problem (6.2.32).
The cost of the minimizing control u∗ = −B′

2λ is zero, since
∫ T

t∗

(
x∗′C ′Cx∗ + u∗′u∗ − γ2w∗′w∗) dt + x∗′(T )∆x∗(T )

=

∫ T

t∗

(
x∗′C ′Cx∗ + λ′B2B

′
2λ − γ−2λ′B1B

′
1λ +

d

dt
(x∗′λ)

)
dt

=

∫ T

t∗

(
−x∗′(λ̇ + A′λ) − λ′(ẋ − Ax) +

d

dt
(x∗′λ)

)
dt

= 0.

Furthermore, since u∗ is the solution to the minimization problem (6.2.32), we have

Jt∗(K̂, w∗, T,∆) ≥ min
u

∫ T

t∗
(x̃′C ′Cx̃ + u′u − γ2w∗′w∗) dt + x′(T )∆x(T )

=

∫ T

t∗
(x∗′C ′Cx∗ + u∗′u∗ − γ2w∗′w∗) dt + x∗(T )′∆x∗(T )

= 0.
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But
Jt∗(K̂, w∗, T,∆) = J(K̂, w, T,∆) ≤ −ε‖w‖2

2,[0,T ]

for all w ∈ L2[0, T ] that satisfy w(t) = 0 for t < t∗. Since this holds for the
particular input

w =

{
w∗(t) t ≥ t∗

0 0 ≤ t < t∗,

we must have w∗(t) = 0 for all t ∈ [t∗, T ]. This reduces the TPBVP (6.2.15) to the
TPBVP

[
ẋ∗

λ̇

]
=

[
A −B2B

′
2

−C ′C −A′

] [
x∗

λ

]
,

[
x∗(t∗)
λ(T )

]
=

[
0

∆x∗(T )

]
.

We now conclude that λ and x∗ are identically zero from Lemma 6.2.3.
Since we have shown that any solution to (6.2.15) that satisfies (6.2.31) must

be trivial, we conclude that t∗ and T are not conjugate points. Since t∗ was chosen
arbitrarily, we conclude that t∗ and T cannot be conjugate points for any t∗ ∈ [0, T ]
when there exists a controller K satisfying (6.2.30).

Theorems 6.2.1 and 6.2.4 combined state that there exists a causal, linear, full-
information controller satisfying the objective (6.1.5) if and only if the Riccati dif-
ferential equation (6.2.20) has a solution on [0, T ]. In this case, one controller that
achieves the objective is the memoryless, state-feedback control law u = −B′

2Px, in
which P is the solution to the Riccati differential equation (6.2.20). We also remark
that the only facts concerning the controller that were used in the necessity proof
were: (a) causality and (b) homogeneity, meaning that the

K

[
0
0

]
= 0.

Thus, existence of a solution to the Riccati equation (6.2.20) is also necessary for
the existence of causal, homogeneous, but possibly nonlinear, controllers that satisfy
(6.1.5).

6.2.6 All closed-loop systems

In the last section, we observed that the “central controller” is only a function of x
although measurement access to w is allowed. We will now show how to construct
all control signals resulting from full-information controllers K that satisfy

J(K, w, T,∆) ≤ −ε‖w‖2
2,[0,T ] (6.2.36)

for all w ∈ L2[0, T ] and some ε > 0. Equivalently, we construct all closed-loop
operators generated by full-information controllers that satisfy (6.2.36).

Because of the redundant information inherent in the full-information config-
uration (see Section 4.2.2), this does not generate all full-information controllers
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that lead to (6.2.36). The characterization of all controllers, rather than all control
signals, is dealt with in the next section.

We know that there exists a full-information controller with the property (6.2.36)
if and only if the Riccati equation (6.2.20) has a solution on [0, T ]. In addition,

u∗ = −B′
2Px (6.2.37)

w∗ = γ−2B′
1Px (6.2.38)

results in
J(K, w, T,∆) = ‖u − u∗‖2

2,[0,T ] − γ2‖w − w∗‖2
2,[0,T ]. (6.2.39)

Consider the class of controllers obtained by setting

u − u∗ = U(w − w∗), (6.2.40)

in which U is causal and linear. This is a full-information controller, since it is just

u = −(B′
2P + γ−2UB′

1P )x + Uw.

We claim that a controller generated by (6.2.40) satisfies (6.2.36) if and only if

‖U‖[0,T ] < γ. (6.2.41)

To see this, rewrite (6.2.39) as

J(K, w, T,∆) = ‖U(w − w∗)‖2
2,[0,T ] − γ2‖w − w∗‖2

2,[0,T ] (6.2.42)

and let L be the system that maps w to w − w∗, which was given in equations
(6.2.24) and (6.2.25). If ‖U‖[0,T ] < γ, we have

J(K, w, T,∆) ≤ (‖U‖2
[0,T ] − γ2)‖w − w∗‖2

2,[0,T ]

= (‖U‖2
[0,T ] − γ2)‖Lw‖2

2,[0,T ]

≤ −ε‖w‖2
2,[0,T ]

for some ε > 0 and we conclude that (6.2.36) holds. Conversely, if (6.2.36) is
satisfied, then

‖U(w − w∗)‖2
2,[0,T ] − γ2‖w − w∗‖2

2,[0,T ] ≤ −ε‖w‖2
2,[0,T ]

= −ε‖L−1(w − w∗)‖2
2,[0,T ]

≤ − ε

‖L‖2
[0,T ]

‖w − w∗‖2
2,[0,T ]

for all w and hence also for all w−w∗, since the system L : w 7→ w−w∗ is invertible.
Thus U satisfies (6.2.41).

To conclude that (6.2.40) generates all closed loops that satisfy (6.2.36), we need
to show that any control signal (and hence any closed loop) that can be generated
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with a full-information control law can also be generated by a suitable U in (6.2.40).
Substituting

u = L1x + L2w (6.2.43)

and (6.2.38) into the dynamics (6.1.2) gives

ẋ =
(
A + γ−2B1B

′
1P + B2(L1 + γ−2L2B

′
1P )

)
x + (B1 + B2L2)(w − w∗).

Therefore
x = L3(w − w∗),

in which L3 is a causal, linear system. Substituting (6.2.37) and (6.2.38) into
(6.2.43) gives

u − u∗ = (L1 + B′
2P + γ−2L2B

′
1P )x + L2(w − w∗)

= ((L1 + B′
2P + γ−2L2B

′
1P )L3 + L2)(w − w∗)

= U(w − w∗)

for some causal U . This establishes the existence of the causal system in (6.2.40),
which may also be written in the LFT form

u = F`

([
−B′

2P 0 I
−γ−2B′

1P I 0

]
,U

)[
x
w

]
. (6.2.44)

We therefore conclude that all control signals and closed loops that satisfy (6.2.36)
are generated by letting U in (6.2.40), or equivalently (6.2.44), range over the space
of causal linear systems that satisfy ‖U‖[0,T ] < γ.

Figure 6.2 shows the closed loops generated by (6.2.40) and hence all closed
loops generated by full-information controllers. If w = w∗, there is no signal into
the U parameter and the corresponding control is given by u∗ (irrespective of U).
If w 6= w∗, we do not have to use the control u∗ as a “downgraded” control may
still be adequate—the controller only has to “play well enough” to ensure that
J(K, w, T,∆) ≤ −ε‖w‖2

2,[0,T ]. By choosing U = 0, we may insist that the controller
always “plays” u = u∗.

6.2.7 All controllers

Because of redundancy in the full-information configuration, equation (6.2.40) does
not capture all the controllers, even though it does capture all the possible control
signals. In order to capture all the controllers, we use the “duplicate state” technique
described in Section 4.2.2 to augment the LFT in (6.2.44).

Equation (6.2.40), or (equivalently) (6.2.44), gives u = u∗ + r, in which r =
U(w − w∗). To obtain all controllers, we augment r with the signal V (x − x̂), in
which x̂ is a copy of the state and V is any causal, linear system. This gives

˙̂x = (A − B2B
′
2P )x̂ + B1w + B2r

u = u∗ + r

r = U(w − w∗) + V (x − x̂).
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Figure 6.2: All closed-loops derived from full-information control laws.

These equations, together with the equations (6.2.37) and (6.2.38) describing w∗

and u∗, give




˙̂x
u[

w − w∗

x − x̂

]


 =




A − B2B
′
2P

[
0 B1

]
B2

0
[

−B′
2P 0

]
I[

0
−I

] [
−γ−2B′

1P I
I 0

] [
0
0

]







x̂[
x
w

]

r




r =
[

U V
] [

w − w∗

x − x̂

]
.

Setting

Ka
s
=




A − B2B
′
2P

[
0 B1

]
B2

0
[

−B′
2P 0

]
I[

0
−I

] [
−γ−2B′

1P I
I 0

] [
0
0

]


 (6.2.45)
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gives
K = F`(Ka,

[
U V

]
). (6.2.46)

Since the (1, 2)- and (2, 1)-blocks of Ka have causal inverses, this LFT, which is
illustrated in Figure 6.3, generates all full-information controllers. As before, the
closed-loop satisfies (6.2.36) if and only if ‖U‖[0,T ] < γ.
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Figure 6.3: All full-information controllers.

Main points of the section

1. There is a full-information controller satisfying the objective (6.1.5)
if and only if the Riccati equation (6.2.20) has a solution for all
t ∈ [0, T ]. A controller which achieves the objective is the linear,
memoryless, state-feedback control u = −B′

2Px.

2. P (t) ≥ 0 for all times t ≤ T for which a solution exists.
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3. Reviewing the proof of the necessary conditions in Theorem 6.2.4,
the only properties required of the controller were: (a) causality and

(b) homogeneity (i.e., K

[
0
0

]
= 0). It follows that (6.2.20) has a

solution on [0, T ] if and only if there exists a causal, homogeneous
controller satisfying (6.1.5). Therefore, if a causal, homogeneous
but possibly nonlinear controller satisfying the objective (6.1.5)
exists, there are also linear controllers satisfying this objective.

4. All full-information controllers that satisfy (6.1.5) are a generated
by

K = F`(Ka,
[

U V
]
),

in which U and V are causal, linear systems with ‖U‖[0,T ] < γ. A
state-space realization for Ka is given in (6.2.45). The parameter
V has no effect on the control signal or the closed loop.

6.3 The infinite-horizon case

We now focus our attention on the problem of obtaining necessary and sufficient
conditions for the existence of a stabilizing, full-information controller that satisfies

‖Rzw‖∞ < γ.

Our approach is to extend the finite-horizon results to the infinite-horizon case
by taking limits as the horizon length T tends to infinity. The technical difficulties
associated with this approach are concerned with establishing the existence of the
limit P = limT→∞ P (t, T,∆) and in guaranteeing that the control law u∗ = −B′

2Px
has certain stabilization properties. The notation P (t, T,∆) is used to flag the fact
that P (t) satisfies the terminal condition P (T ) = ∆.

In this section, we restrict our attention to the time-invariant plant

ẋ = Ax + B1w + B2u, x(0) = x0, (6.3.1)

z =

[
Cx
Du

]
, D′D = I, (6.3.2)

in which each of the five matrices is constant. We allow the possibility of nonzero
initial conditions in order to address stability issues.

6.3.1 Preliminary observations

In an attempt to gain some insight into potential difficulties, we begin by deriving
a closed formula for P (t, T,∆). Since

H =

[
A −(B2B

′
2 − γ−2B1B

′
1)

−C ′C −A′

]
(6.3.3)
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has the Hamiltonian property SH = (SH)′, where

S =

[
0 −In

In 0

]
,

there exists an eigenvector matrix Z satisfying

H

[
Z11 Z12

Z21 Z22

]
=

[
Z11 Z12

Z21 Z22

] [
Λ 0
0 −Λ

]
,

where Λ is n × n such that Reλi(Λ) ≤ 0. A routine calculation, which is left as an
exercise (Problem 6.5), demonstrates that

P (t, T,∆) = Ψ2(t, T,∆)Ψ−1
1 (t, T,∆), (6.3.4)

in which

Ψ1(t, T,∆) = (Z11 + Z12e
Λ(T−t)XeΛ(T−t))

Ψ2(t, T,∆) = (Z21 + Z22e
Λ(T−t)XeΛ(T−t))

X = −(Z22 − ∆Z12)
−1(Z21 − ∆Z11).

If Λ is asymptotically stable and nothing “goes wrong”, P (t, T,∆) will converge to
the constant matrix Π = Z21Z

−1
11 at an exponential rate equal to twice the largest

real part of any eigenvalue of Λ. Since P (t, T,∆) ≥ 0 for all t ≤ T , Π ≥ 0. In
addition, P = Π is a solution of the algebraic Riccati equation

PA + A′P − P (B2B
′
2 − γ−2B1B

′
1)P + C ′C = 0 (6.3.5)

such that A − (B2B
′
2 − γ−2B1B

′
1)P is asymptotically stable (since it has the same

eigenvalues as Λ). This solution will be referred to as the stabilizing solution to the
algebraic Riccati equation.

Notice that the matrix A − (B2B
′
2 − γ−2B1B

′
1)P is the closed-loop matrix cor-

responding to the implementation of the control laws

u∗ = −B′
2Px (6.3.6)

w∗ = γ−2B′
1Px (6.3.7)

in (6.3.1). If we use the control law u∗ = −B′
2Px and any open loop w, one obtains

ẋ = (A − B2B
′
2P )x + B1w,

which we will also require to be stable. It turns out that this stability property is
assured by the nonnegative definiteness of P .

Unfortunately, there is a lot that can go wrong with the solution given in (6.3.4).
In particular:
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• The matrix X may not exist due to the singularity of (Z22 − ∆Z12). This
focuses attention on the need to select a suitable terminal condition ∆.

• It is possible that Λ may have imaginary axis eigenvalues. In these cases,
P (t, T,∆) may not converge to a finite limit. This situation may occur in the
optimal case, which we do not consider in this chapter.

• The matrix
(
Z11 +Z12e

Λ(T−t)XeΛ(T−t)
)

may be singular for some t = t∗; this
gives rise to a finite escape time at t∗.

• The limit limT→∞
(
Z11 + Z12e

Λ(T−t)XeΛ(T−t)
)

may be singular leading to an
unbounded P . This situation is also associated with the optimal case.

Example 6.3.1. To illustrate these ideas, we re-examine Example 6.2.1, in which
the system is described by

ẋ = w + u, x(0) = 0,

z =

[
x
u

]
.

This problem has a = 0, b1 = 1, b2 = 1 and c = 1, and the associated Riccati
equation is

−ṗ = 1 − p2(1 − γ−2), p(T ) = δ.

When γ > 1,
p(t, T, δ) = β−1 tanh

(
tanh−1(δβ) − β(t − T )

)
,

in which β =
√

1 − γ−2. The limit π = limT→∞ p(t, T, δ) exists and is given by
π = β−1. It is easy to see that this is the positive solution of the algebraic Riccati
equation

0 = 1 − p2(1 − γ−2). (6.3.8)

Notice also that a − b2
2π = −β−1 and a − (b2

2 − γ−2b2
1)π = −β, which are both

asymptotically stable. In this case, therefore, the solution of the Riccati differential
equation approaches a solution of the corresponding algebraic equation with the
correct stability properties.

When γ ≤ 1, the solution to the Riccati equation is

p(t, T, δ) = φ−1 tan
(
tan−1(δφ) − φ(t − T )

)
,

with φ =
√

γ−2 − 1. In this case, p(t, T, δ) does not converge as T → ∞ and indeed
there is no stabilizing solution to the algebraic Riccati equation (6.3.8). 5

It is relatively straightforward to show that if (6.3.5) has a stabilizing solu-
tion which is nonnegative definite, the full-information controller (6.3.6) satisfies
‖Rzw‖∞ < γ. We verify this in the next section. Subsequent sections establish
that the existence of a stabilizing solution to (6.3.5) which is nonnegative is also
necessary for the existence of a full-information controller such that ‖Rzw‖∞ < γ,
provided certain conditions on (A,B2, C) are satisfied.
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6.3.2 Sufficiency

Theorem 6.3.1 Suppose the algebraic Riccati equation (6.3.5) has a solution P ≥
0 such that A − (B2B

′
2 − γ−2B1B

′
1)P is asymptotically stable. Then the control

law u = −B′
2Px is stabilizing and satisfies ‖Rzw‖∞ < γ. (Rzw is the closed-loop

mapping from w to z.)

Proof. Applying the control law (6.3.6) leads to the closed-loop system Rzw with
realization

ẋ = (A − B2B
′
2P )x + B1w (6.3.9)

z =

[
C

−DB′
2P

]
x. (6.3.10)

To see that this system is stable, re-write (6.3.5) as

P (A − B2B
′
2P ) + (A − B2B

′
2P )′P + γ−2PB1B

′
1P + PB2B

′
2P + C ′C = 0.

Since P ≥ 0, it follows from Theorem 3.1.1 that every unstable mode of A −
B2B

′
2P is unobservable through

[
−γ−1PB1 PB2 C ′ ]′

. However, since A −
(B2B

′
2 − γ−2B1B

′
1)P is asymptotically stable, we conclude A − B2B

′
2P can have

no unstable mode that is unobservable through
[
−γ−1PB1 PB2 C ′ ]′

from the
Popov-Belevitch-Hautus test and the identity

A − (B2B
′
2 − γ−2B1B

′
1)P = (A − B2B

′
2P ) −

[
γ−1B1 0 0

]



−γ−1B′

1P
B′

2P
C



 .

Hence A − B2B
′
2P is asymptotically stable.

Since A−B2B
′
2P is asymptotically stable, the bounded real lemma implies that

‖Rzw‖∞ < γ if and only if there exists an X such that

X(A − B2B
′
2P ) + (A − B2B

′
2P )′X + γ−2XB1B

′
1X + PB2B

′
2P + C ′C = 0,

with (A − B2B
′
2P ) + γ−2B1B

′
1X asymptotically stable. Since X = P is such a

solution, we conclude that ‖Rzw‖∞ < γ.

6.3.3 A monotonicity property

During the development of the necessary conditions for the existence of H∞ con-
trollers in the infinite-horizon case, we use the fact that P (t, T,∆) is monotonic for
certain ∆’s when the plant is time-invariant.

Lemma 6.3.2 For time-invariant plant matrices, P (t, T, 0) and P (t, T, P2) are
monotonically nonincreasing as functions of t. The matrix P2 is any solution to
the algebraic Riccati equation

A′P2 + P2A − P2B2B
′
2P2 + C ′C = 0,

associated with LQ optimal control.
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Since the plant is time-invariant, P (t, T,∆) is a function of T − t only:

P (t, T,∆) = P (τ, T − t + τ,∆).

It follows that P (t, T, 0) and P (t, T, P2) are monotonically nondecreasing as a func-
tions of T .

Proof. Differentiating (6.2.20) with respect to t gives

−P̈ = Ṗ
(
A − (B2B

′
2 − γ−2B1B

′
1)P (t)

)
+

(
A − (B2B

′
2 − γ−2B1B

′
1)P

)′
Ṗ .

Hence Ṗ is given by
Ṗ (t) = Φ(t, T )Ṗ (T )Φ′(t, T ),

in which Φ(·, ·) is the transition matrix associated with −
(
A−(B2B

′
2−γ−2B1B

′
1)P

)′
.

Now note that Ṗ (T ) is obtained from P (T ) = ∆:

−Ṗ (T ) = ∆A + A′∆ − ∆(B2B
′
2 − γ−2B1B

′
1)∆ + C ′C

=

{
C ′C if ∆ = 0

γ−2P2B1B
′
1P2 if ∆ = P2.

6.3.4 Assumptions

The aim of this section is to find a minimal set of hypotheses on which to base
the necessity theory. If a stabilizing controller exists, it is necessarily the case that
(A,B2) is stabilizable (see Appendix A). The question of assumptions pertaining
to the pair (A,C) is more subtle. We will attempt to uncover the essential issues
by studying an example.

Example 6.3.2. Consider the system

ẋ = ax + w + u, x(0) = 0,

z =

[
cx
u

]
,

in which x, w and u are scalar. Since b1 = 1 and b2 = 1, the algebraic Riccati
equation is

2ap − p2(1 − γ−2) + c2 = 0,

which has solutions

p =
a ±

√
a2 + c2(1 − γ−2)

1 − γ−2
,

provided γ 6= 1. Note also that

a − (b2
2 − γ−2b2

1)p = a − (1 − γ−2)p

= ∓
√

a2 + c2(1 − γ−2).
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If γ = 1, the only solution is p = −c2/2a. In this case, a− (b2
2 − γ−2b2

1)p = a, which
is stable if and only if a ≤ 0, which is equivalent to p ≥ 0. This corresponds to the
optimal case, which will be considered in Chapter 11.

1. Suppose a and c are not both zero and γ 6= 1. Then there exists a real solution
if and only if

γ2 ≥ γ2
min =

c2

a2 + c2
.

If γ = γmin, the conditions of Theorem 6.3.1 are never satisfied, because
a − (b2

2 − γ−2b2
1)p = 0 is not asymptotically stable. If γ > γmin, the solution

with the + sign is the stabilizing solution and it is nonnegative if and only if
γ > 1. Therefore, by Theorem 6.3.1, there is a controller such that ‖Rzw‖∞ <
γ for any γ > 1.

2. Suppose a and c are both zero and γ 6= 1. Then p = 0 is the only solution to the
Riccati equation and this solution is never stabilizing, since a−(b2

2−γ−2b2
1)p =

0. If γ = 1, any p will satisfy the Riccati equation but there is no stabilizing
solution because a − (b2

2 − γ−2b2
1)p is still zero. That is, there is no solution

to the Riccati equation that satisfies the conditions of Theorem 6.3.1 when
a and c are both zero. This is a problem, because the controller u = −kx,
k > 0, results in the stable closed-loop system

Rzw = −
[

0
k

s+k

]

and ‖Rzw‖∞ = 1. Thus there is a full-information controller (u = −x for
instance) that stabilizes the system and satisfies ‖Rzw‖∞ < γ for any γ > 1.

We conclude that Theorem 6.3.1 is not necessary for the existence of full-
information controllers that satisfy ‖Rzw‖∞ < γ when a and c are both zero. 5

The reader may begin to wonder why we bother with the Riccati equation at
all, since it is does not provide a necessary condition for the existence of an H∞
controller under all circumstances. The answer contains two parts:

1. The existence of a stabilizing nonnegative solution to the Riccati equation is
necessary when (A,C) has no unobservable modes on the imaginary axis. This
is what we will prove in the section dealing with necessity. We note that this
condition corresponds to assuming a and c are not both zero in Example 6.3.2.

2. We may augment the objective by making the substitution

z =

[
Cx
Du

]
→ za =

[
Cax
Du

]

in such a way that K satisfies ‖Rzw‖∞ < γ if and only if K satisfies
‖Rzaw‖∞ < γ for some Ca such that (A,Ca) has no unobservable modes
on the imaginary axis.
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We now verify that a Ca of the form

Ca =

[
C
L

]

with the desired properties can always be chosen.

(a) Suppose a controller K is internally stabilizing and satisfies ‖Rzaw‖∞ <
γ, in which

za =




Cx
Lx
Du





and (A,
[

C ′ L′ ]′
) has no unobservable mode on the imaginary axis.

Then K also satisfies ‖Rzw‖∞ < γ. This follows from the identity
‖za‖2

2 = ‖z‖2
2 + ‖Lx‖2

2.

(b) If K stabilizes the system, the closed-loop system W : w 7→ x is stable
and hence µ = ‖W ‖∞ < ∞. If K also satisfies ‖Rzaw‖∞ < γ, we can
choose ε > 0 such that ‖Rzw‖∞ < γ − ε. Now choose L such that (i)

‖L‖ ≤ ε/µ and (ii) (A,
[

C ′ L′ ]′
) has no unobservable modes on the

imaginary axis. For example, choose L = ε/µI. Then

‖Rzaw‖∞ ≤ ‖Rzw‖∞ + ‖LW ‖∞
< γ − ε +

ε

µ
µ

= γ.

We conclude that solving the original problem is equivalent to solving an
augmented problem for some L. Put another way, if (A,C) has unobservable
modes on the axis, the designer should include some additional objective. We
illustrate this procedure with another example.

Example 6.3.3. Consider the system in Example 6.3.2 with a = 0 and c = 0,
and recall that u = −kx, k > 0, is stabilizing and satisfies ‖Rzw‖∞ = 1. Hence
‖Rzw‖∞ < γ can be achieved for any γ > 1. We now show that all such controllers
can be generated by considering the augmented objective

za =




0
`x
u



 ,

in which ` > 0. The Riccati equation for the modified problem ‖Rzaw‖∞ < γ̃ is

−p2(1 − γ̃−2) + `2 = 0,
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which has a stabilizing nonnegative solution

p =
`√

1 − γ̃−2

if γ̃ > 1. The corresponding controller is u = −px. Thus, for any ` 6= 0, the
conditions of Theorem 6.3.1 can be satisfied if and only if γ̃ > 1.

Since γ̃ > 1 if and only if γ = γ̃ − ε > 1 for some ε > 0, we conclude that the
original problem (with ` = 0) has a solution for any γ > 1. Furthermore, u = −px
generates all controllers of the form u = −kx as ` is varied—selecting an ` in the
augmented problem is equivalent to selecting a particular k that solves the original
problem. 5

The standard assumptions

1. The pair (A,B2) is stabilizable.

2. The pair (C,A) has no unobservable modes on the imaginary axis.

Note that these assumptions are both necessary and sufficient for the existence
of a stabilizing solution to the algebraic Riccati equation

A′P2 + P2A − P2B2B
′
2P2 + C ′C = 0 (6.3.11)

associated with LQ optimal control.

6.3.5 Necessity

We now want to show that the existence of a full-information H∞ controller implies
that the algebraic Riccati equation (6.3.5) has a nonnegative stabilizing solution.
We assume from now on that the standard assumptions hold. Our proof takes the
following form:

1. We show that if the infinite-horizon problem has a solution, then so does the
finite-horizon problem for any horizon length. It then follows from our finite-
horizon results that the Riccati differential equation (6.2.20) has a solution
over any finite interval.

2. We show that the solution to the Riccati differential equation is bounded.
Since it is also monotonic, the solution tends to a finite limit as the horizon
length tends to infinity. Since this limiting solution must be constant, it
satisfies the algebraic Riccati equation (6.3.5).

3. We show that the solution to the algebraic Riccati equation obtained by letting
the horizon length tend to infinity has the required stability properties.

Before developing these ideas, we mention that the above statements are only
true if the terminal condition P (T ) = ∆ is selected correctly. To illustrate this we
consider another example.
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Example 6.3.4. Consider the system

ẋ = x + w + u

z =

[
cx
u

]
,

its associated Riccati differential equation

−ṗ = 2p − p2(1 − γ−2) + c2, p(T ) = δ, (6.3.12)

and its algebraic counterpart

0 = 2p − p2(1 − γ−2) + c2.

As noted in Example 6.3.2, there is no solution that satisfies the conditions of the
Theorem 6.3.1 unless γ > 1. In this case, the required solution is

p =
1 + φ

1 − γ−2
,

with φ =
√

1 + c2(1 − γ−2).
Now note that the solution to the differential equation is

p(t, T, δ) =
φδ − (δ + c2) tanh

(
φ(t − T )

)

φ +
(
1 − δ(1 − γ−2)

)
tanh

(
φ(t − T )

) .

If δ = 0, then

lim
T→∞

p(t, T, 0) =
c2

φ − 1

=
c2(φ + 1)

φ2 − 1

=
c2(φ + 1)

c2(1 − γ−2)

=
1 + φ

1 − γ−2
, provided c 6= 0.

Hence, provided c 6= 0, we obtain the correct solution to the algebraic Riccati
equation. (We invite the reader to show that this holds for all δ ≥ 0.)

When c = 0, we have φ = 1 and

lim
T→∞

p(t, T, δ) =
2δ

1 −
(
1 − δ(1 − γ−2)

)

=
2

1 − γ−2
, provided δ 6= 0.

Thus, by selecting δ 6= 0, we can always get the differential equation to converge to
the appropriate solution to the algebraic equation (when one exists). 5
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If (A,C) is detectable, the terminal condition ∆ = 0 will suffice. If (A,C) is not
detectable, we can ensure that the correct solution to the algebraic Riccati equation
(6.3.5) is obtained by selecting ∆ ≥ 0. One cannot use any ∆ ≥ 0, but as we will
show, ∆ = P2 always works—P2 is the stabilizing solution to (6.3.11).

A solution to the algebraic Riccati equation exists

Lemma 6.3.3 Suppose the standard assumptions hold and P2 is the stabilizing
solution to the LQ Riccati equation (6.3.11). Suppose also that there is a full-

information controller K̂ such that the closed-loop system Rzw defined by

ẋ = Ax + B1w + B2u, x(0) = 0,

z =

[
Cx
Du

]

u = K̂

[
x
w

]

is internally stable and satisfies ‖Rzw‖∞ < γ. Then:

1. The Riccati differential equation

−Ṗ = PA + A′P − P (B2B
′
2 − γ−2B1B

′
1)P + C ′C, P (T ) = P2, (6.3.13)

has a solution P (t, T, P2) for all finite t, T with t ≤ T .

2. P (t, T, P2) is nonnegative definite and uniformly bounded above. That is, there
is a real number β such that for all t ≤ T

0 ≤ P (t, T, P2) ≤ βI.

3. The limit Π = limT→∞ P (t, T, P2) exists, is independent of t, is nonnegative
and satisfies the algebraic Riccati equation (6.3.5). We note, in addition, that
Π ≥ P2.

Proof. Because of the need to address stability issues, it is necessary to consider
nonzero initial conditions:

ẋ = Ax + B1w + B2u, x(0) = x0.

Note also that for any 0 ≤ T < ∞ and any w ∈ L2[0,∞) such that

w(t) = 0 for all t > T, (6.3.14)

we have

‖z‖2
2 − γ2‖w‖2

2 =

∫ ∞

0

(z′z − γ2w′w) dt

=

∫ T

0

(z′z − γ2w′w) dt +

∫ ∞

T

z′z dt

≥
∫ T

0

(z′z − γ2w′w) dt + min
K

∫ ∞

T

z̃′z̃ dt. (6.3.15)
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The notation z̃ is used to distinguish an arbitrary output trajectory from that

obtained with the controller K̂. As is well known from classical LQ theory, the cost
function ∫ ∞

T

z̃′z̃ dt =

∫ ∞

T

(x̃′C ′Cx̃ + ũ′ũ) dt,

subject to

˙̃x = Ax̃ + B2ũ, x̃(T ) = x(T ),

ũ = K

[
x̃
w̃

]

is minimized by ũ = −B′
2P2x̃ and

min
K

∫ ∞

T

z̃′z̃ dt = x′(T )P2x(T ).

Hence, substituting into (6.3.15), we have

‖z‖2
2 − γ2‖w‖2

2 ≥ J(K, w, T, P2), (6.3.16)

in which

J(K, w, T, P2) =

∫ T

0

(z′z − γ2w′w) dt + x′(T )P2x(T ),

for any w ∈ L2[0,∞) that satisfies (6.3.14). With this background, we now establish
each of the claims of the lemma:

1. Let x0 = 0. Then ‖Rzw‖∞ < γ is equivalent to ‖z‖2
2 − γ2‖w‖2

2 ≤ −ε‖w‖2
2 for

all w ∈ L2[0,∞) and some ε > 0. Using (6.3.16), for any w ∈ L2[0,∞) that
satisfies (6.3.14), we have have

J(K̂, w, T, P2) ≤ −ε‖w‖2
2 = −ε‖w‖2

2,[0,T ]. (6.3.17)

We conclude that (6.3.17) holds for all w ∈ L2[0, T ] and hence that P (t, T, P2)
exists on [0, T ] by Theorem 6.2.4. As T was arbitrary and P (t, T, P2) =
P (τ, T − t + τ, P2) for any τ , we conclude that P (t, T, P2) exists for all finite
t, T with t ≤ T .

2. Let w be an arbitrary signal in L2[0,∞) and x0 an arbitrary initial condition.
The response z of the closed-loop system depends on x0 and w and by linearity
may be decomposed as

z = zx0
+ zw

with zx0
and zw denoting the contributions to the response due to x0 and w

respectively. Since ‖Rzw‖∞ < γ, we have ‖zw‖2
2−γ2‖w‖2

2 ≤ −ε‖w‖2
2 for some

ε > 0. Also, as the controller K̂ stabilizes the system, ‖zx0
‖2 and ‖zw‖2 are

finite,
‖z‖2

2 ≤ ‖zx0
‖2
2 + ‖zw‖2

2 + 2‖zx0
‖2‖zw‖2
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and ‖zx0
‖2 ≤ α‖x0‖ for some number α. Using these properties we have

‖z‖2
2 − γ2‖w‖2

2 ≤ ‖zw‖2
2 − γ2‖w‖2

2 + ‖zx0
‖2
2 + 2‖zx0

‖2‖zw‖2

≤ −ε‖w‖2
2 + α2‖x0‖2 + 2γα‖x0‖ ‖w‖2

= α2‖x0‖2 − ε(‖w‖2
2 −

2γα

ε
‖x0‖ ‖w‖2)

=

(
α2 +

γ2α2

ε

)
‖x0‖2 − ε(‖w‖2 −

γα

ε
‖x0‖)2

≤
(

α2 +
γ2α2

ε

)
‖x0‖2 = β‖x0‖2 (6.3.18)

for all x0 and all w ∈ L2[0,∞).

Now choose T finite and let w∗
T be the particular L2[0,∞) signal

w∗
T (t) =

{
γ−2B′

1P (t, T, P2)x(t) if t ≤ T
0 if t > T.

Since w∗
T satisfies (6.3.14), it satisfies (6.3.16). By completing the square using

P (t, T, P2) we obtain

J(K̂, w∗
T , T, P2) = x′

0P (0, T, P2)x0 + ‖u − u∗
T ‖2

2,[0,T ]

≥ x′
0P (0, T, P2)x0,

in which u∗
T (t) = −B′

2P (t, T, P2)x(t). Hence

x′
0P (0, T, P2)x0 ≤ J(K̂, w∗

T , T, P2)

≤ ‖z‖2 − γ2‖w∗
T ‖2

2 by (6.3.16)

≤ β‖x0‖2 by (6.3.18).

Since x0 was arbitrary, we conclude that P (0, T, P2) ≤ βI. The result follows
for all t ≤ T because P (t, T, P2) = P (0, T − t, P2).

As a final remark, we note that P (t, T, P2) ≥ 0 because the terminal condition
is nonnegative definite.

3. Since P (t, T, P2) is monotonic (by Lemma 6.3.2) and uniformly bounded
(when a controller exists such that ‖Rzw‖∞ < γ), it converges to a finite
limit Π as T → ∞. The matrix Π is independent of t because P (t, T, P2) =
P (0, T −t, P2), so that Π = limT→∞ P (0, T, P2). We must have Π ≥ 0 because
P (t, T, P2) ≥ 0 for all t ≤ T . The monotonicity property also ensures that
Π ≥ P2.

Since the solution to a Riccati equation depends continuously on the terminal
condition, we have

Π = lim
T→∞

P (t, T, P2)
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= lim
T→∞

P
(
t, T1, P (T1, T, P2)

)

= P
(
t, T1, lim

T→∞
P (T1, T, P2)

)

= P (t, T1,Π).

That is, Π satisfies the Riccati differential equation with the terminal condition
P (T1) = Π, for any T1. Consequently, since Π is constant, it must be a solution
to the algebraic Riccati equation

ΠA + A′Π − Π(B2B
′
2 − γ−2B1B

′
1)Π + C ′C = 0, (6.3.19)

and the lemma is proved.

Parametrization of the closed-loop system

In the finite-horizon case, we showed that all closed-loop systems that could be
generated by full-information controllers could also be generated by controllers of
the form u = u∗ + U(w − w∗). We will use this parametrization to show that
Π = limT→∞ P (0, T, P2) has the required stability properties whenever a stabilizing
controller exists such that ‖Rzw‖∞ < γ. Our first result shows that the asymptotic
stability of A − B2B

′
2Π follows from the fact that Π ≥ P2.

Lemma 6.3.4 Suppose the standard assumptions hold and that P is any solution
to the algebraic Riccati equation (6.3.5) such that P ≥ P2. Then A − B2B

′
2P is

asymptotically stable.

Proof. Subtracting (6.3.11) from (6.3.5) gives

(P − P2)A + A′(P − P2) − P (B2B
′
2 − γ−2B1B

′
1)P + P2B2B

′
2P2 = 0,

which we re-write as

(P − P2)(A − B2B
′
2P ) + (A − B2B

′
2P )′(P − P2)

+(P − P2)B2B
′
2(P − P2) + γ−2PB1B

′
1P = 0. (6.3.20)

Next, we observe that

(A − B2B
′
2P,

[
B′

2(P − P2)
B′

1P

]
)

is detectable, since A − B2B
′
2P2 is asymptotically stable and

(A − B2B
′
2P ) +

[
B2 0

] [
B′

2(P − P2)
B′

1P

]
= (A − B2B

′
2P2).

From (6.3.20) and Theorem 3.1.1, we conclude that A − B2B
′
2P is asymptotically

stable.
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The next result reminds us that closed-loop systems and control signals gener-
ated by full-information controllers may be parametrized in terms of a U -parameter.

Lemma 6.3.5 Suppose P is a solution to (6.3.5) such that A − B2B
′
2P is asymp-

totically stable. Then the control signal generated by the full-information controller

u =
[

K̂1 K̂2

] [
x
w

]
(6.3.21)

is also generated by a full-information controller of the form

u = −B′
2Px + U(w − γ−2B′

1Px). (6.3.22)

Furthermore, (6.3.21) is stabilizing if and only if (6.3.22) is stabilizing.

Proof. That (6.3.21) and (6.3.22) generate the same control signal and closed-
loop system follows from calculations which mimic those given in Section 6.2.6.
Furthermore, controller (6.3.22) is stabilizing if and only if (6.3.21) is, because
u = −B′

2P is a stabilizing controller.

A stabilizing nonnegative solution exists

We are now in a position to show that Π = limT→∞ P (0, T, P2) is the stabilizing
solution to (6.3.5).

Theorem 6.3.6 Suppose the standard assumptions hold and P2 is the stabilizing

solution to (6.3.11). If there is full-information controller K̂ such that the closed-
loop system Rzw defined by

ẋ = Ax + B1w + B2u, x(0) = 0,

z =

[
Cx
Du

]

u = K̂

[
x
w

]

is internally stable and satisfies ‖Rzw‖∞ < γ, then Π = limT→∞ P (0, T, P2) is the
stabilizing solution to (6.3.5) and Π ≥ P2 ≥ 0.

In addition,
u = −B′

2Πx + U(w − γ−2B′
1Πx),

in which U ∈ H∞ and ‖U‖∞ < γ, generates all the closed-loop systems satisfying
‖Rzw‖∞ < γ that can be generated by stabilizing, full-information controllers.

Proof. By Lemmas 6.3.3 and 6.3.4, Π = limT→∞ P (0, T, P2) exists, Π ≥ P2 ≥ 0
and A−B2B

′
2Π is asymptotically stable. By Lemma 6.3.5, there exist a stabilizing

controller of the form

u = −B′
2Πx + U(w − γ−2B′

1Πx)
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such that ‖Rzw‖∞ < γ. For such a controller, Rzw is given by the LFT

Rzw = γF`(R̂a,U/γ),

in which

R̂a
s
=




A − B2B
′
2Π γ−1B1 B2[

C
−DB′

2Π

] [
0
0

] [
0
D

]

−γ−1B′
1Π I 0


 . (6.3.23)

Notice that R̂
∼
a R̂a = I. This fact comes from the “completion of squares” identity

‖z‖2
2 − γ2‖w‖2

2 = ‖u − u∗‖2
2 − γ2‖w − w∗‖2

2.

It may also be verified using Theorem 3.2.1 by writing (6.3.19) as

Π(A − B2B
′
2Π) + (A − B2B

′
2Π)′Π + C ′C + ΠB2B

′
2Π + γ−2ΠB2B

′
1Π = 0.

Since ‖F`(R̂a, Û)‖∞ < 1 where Û = U/γ, the (2, 1)-block of R̂a, which is

R̂a21
s
=

[
A − B2B

′
2Π γ−1B1

−γ−1B′
1Π I

]
, (6.3.24)

has no zeros on the imaginary axis. This follows since I−F∼
` (R̂a, Û)F`(R̂a, Û) > 0

and

I −F∼
` (R̂a, Û)F`(R̂a, Û)

= R̂
∼
a21(I − Û

∼
R̂

∼
a22)

−1(I − Û
∼

Û)(I − R̂a22Û)−1R̂a21.

(See Theorem 4.3.2.) Because A − B2B
′
2Π is asymptotically stable, the realization

(6.3.24) has no uncontrollable or unobservable modes on the imaginary axis, so that

any eigenvalue of A− (B2B
′
2 − γ−2B1B

′
1)Π on the imaginary axis is a zero of R̂a21.

We conclude that A−(B2B
′
2−γ−2B1B

′
1)Π has no eigenvalue on the imaginary axis.

It remains to show that Π is actually the stabilizing solution. We do this using
the technique employed for this purpose in the optimal control proof of the bounded
real lemma.

Subtract (6.3.13) from (6.3.19) to obtain

−Ẋ = XÂ + Â′X + X(B2B
′
2 − γ−2B1B

′
1)X,

in which X(t) = Π − P (t) and Â = A − (B2B
′
2 − γ−2B1B

′
1)Π.

We now assume that X(t) is nonsingular for all t ≤ T ; the extension to the

general case is requested as an exercise. Define V (t) =
(
X(T − t)

)−1
. Then V̇ =

−V
(

d
dtX(T − t)

)
V , giving

V̇ = −ÂV − V Â′ − (B2B
′
2 − γ−2B1B

′
1), V (0) = (Π − P2)

−1.
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Let y 6= 0 be such that Â′y = λy. Since σ
(
X(t)

)
→ 0 as t → −∞, σ

(
V (t)

)
→ ∞ as

t → ∞. Consequently, y′V (t)y → ∞ as t → ∞. Since

d

dt

(
y∗V (t)y

)
= −(λ + λ̄)

(
y∗V (t)y

)
− y∗(B2B

′
2 − γ−2B1B

′
1)y,

we must have −(λ+ λ̄) ≥ 0. Since (λ+ λ̄) 6= 0, we conclude that Â is asymptotically
stable and that Π = limT→∞ P (0, T, P2) is the stabilizing solution to (6.3.5).

By Theorem 4.3.3, F`(R̂a, Û) is internally stable with ‖F`(R̂a, Û)‖∞ < 1 if and

only if Û ∈ H∞ and ‖Û‖∞ < 1.
It follows from an elementary scaling by γ that Rzw is internally stable with

‖Rzw‖∞ < γ if and only if

Rzw = F`(Ra,U), U ∈ H∞, ‖U‖∞ < γ,

in which

Ra
s
=




A − B2B
′
2Π B1 B2[

C
−DB′

2Π

] [
0
0

] [
0
D

]

−γ−2B′
1Π I 0


 .

6.3.6 All controllers

In Section 4.2.2, we showed that a representation formula for all controllers requires
the introduction of a second free parameter, V , driven by the error between the
state x and a duplicate state x̂. This leads to a stabilizing control law if and only
if V is stable.

This idea was used to generate all solution to the full-information problem on a
finite horizon in Section 6.2.7. The LFT parametrization of all controllers is given
in (6.2.46) and (6.2.45).

By replacing P (t) in (6.2.45) with the stabilizing nonnegative solution to the
algebraic Riccati equation (6.3.5), we see that all stabilizing, full-information con-
trollers that satisfy ‖Rzw‖∞ < γ are given by

K = F`(Ka,
[

U V
]
),

[
U V

]
∈ H∞ and ‖U‖∞ < γ. (6.3.25)

The generator of all controllers, Ka, is given by

Ka
s
=




A − B2B
′
2P

[
0 B1

]
B2

0
[

−B′
2P 0

]
I[

0
−I

] [
−γ−2B′

1P I
I 0

] [
0
0

]


 , (6.3.26)

and the controller u∗ = −B′
2Px corresponds to setting U = 0 and V = 0.
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Main points of the section

1. Suppose (A,B2) is stabilizable and that (A,C) has no unobservable
modes on the imaginary axis. Then there exists a full-information
control law such that the closed-loop system Rzw is internally sta-
ble and satisfies ‖Rzw‖∞ < γ if and only if the algebraic Riccati
equation

PA + A′P − P (B2B
′
2 − γ−2B1B

′
1)P + C ′C = 0

has a solution P ≥ 0 such that A− (B2B
′
2 −γ−2B1B

′
1)P is asymp-

totically stable.

2. The controller u∗ = −B′
2Px is stabilizing and leads to ‖Rzw‖∞ <

γ.

3. For any (A,C), a stabilizing, full-information controller K satisfies
‖Rzw‖∞ < γ if and only if it satisfies ‖Rzaw‖∞ < γ, in which

za =

[
Cax
Du

]
,

for some Ca such that (A,Ca) has no unobservable modes on the
imaginary axis.

4. Every full-information controller that satisfies ‖Rzw‖∞ < γ is given
by F`(Ka,

[
U V

]
) for some U ∈ H∞ with ‖U‖∞ < γ and

some V ∈ H∞.

6.4 Notes and References

The theory of H∞ controller synthesis has been developed using a variety of different
techniques. In most approaches, however, the decomposition of the general output
feedback problem into a full-information problem and an estimation problem is only
implicit. In order to confine our bibliographical notes to a reasonable length, we will
only review that literature that is directly related to the development and techniques
used in this chapter. Even with this restriction, reviewing all the literature that
could be regarded as relevant to this chapter is a formidable task.

The theory of zero-sum differential games goes back to the work of Isaacs [101,
102]. Another early reference is Berkovitz [27], who gives a rigorous treatment of
two-player, zero-sum games. He obtains necessary conditions that must hold along
an optimal path, and shows that the corresponding value function must satisfy
a Hamilton-Jacobi type partial differential equation. The books by Bryson and
Ho [34] and Başar and Olsder [22] are good sources for the early literature and
standard results on zero-sum games. Başar and Olsder’s text gives a treatment of
zero-sum games which is more general than we require here, but the linear quadratic
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case is included in their book. The stability issues associated with linear quadratic
differential games on an infinite horizon are considered in Mageirou [145], which
contains results similar to those in Section 6.3—his assumptions are stronger, and
he does not make the connection to H∞ optimization. Başar and Bernhard [20]
is a more recent book on games that deals explicitly with the connections between
games and H∞ control.

The paper by Mageirou and Ho [146] considers the design of decentralized con-
trollers using game theoretic methods. The design of a controller ui = −Fixi for
the ith subsystem is accomplished by assuming “the interactions between subsys-
tems enter only as perturbation terms”. Therefore, “so long as the total system is
dissipative, stability will result”. Frequency response conditions for dissipativeness
are given and it is shown that appropriate controllers result from the solution of
algebraic Riccati equations with indefinite quadratic terms.

H∞ optimization for disturbance attenuation was investigated by Petersen [163],
who proved that state-feedback controllers satisfying an H∞ norm objective could
be found using a Riccati equation with an indefinite quadratic term. The stabi-
lization of an uncertain linear system by state-feedback controllers was also accom-
plished using a Riccati equation with an indefinite quadratic term in Petersen and
Hollot [164]. The state-feedback H∞ control problem was further developed by
Khargonekar, Petersen and Rotea [116].

The full-information H∞ control problem per se was first posed and solved by
Doyle, Glover, Khargonekar and Francis [54] in the infinite-horizon case, and a
parametrization of all the closed-loop transfer function matrices was given. Their
approach, which uses mixed Hankel-plus-Toeplitz operators, is very different from
the game theoretic methods used in this chapter. This paper also showed that the
complete generalized regulator problem could be solved in a series of steps, with
the full-information problem playing a key role.

Many papers have appeared since [54]. Some deal with extensions of the basic
theory, such as the treatment of problems involving zeros on the imaginary axis
by Scherer [192] and singular problems by Stoorvogel and Trentleman [202], and
Scherer [193]. These extensions all follow easily from the discussion of the assump-
tions in Section 6.3.4 and the details are requested in Problems 6.17, 6.18 and 6.19.

The parametrization of all controllers, as opposed to all closed-loop systems,
is relatively recent. Mita, Liu and Ohuchi [150], and Zhou [229], give treatments
which are based on the Youla parametrization. Our “duplicate state” arguments
are new and more direct.

The treatment of the finite-horizon theory is based on Limebeer, Anderson,
Khargonekar and Green [130]. The limiting arguments that lead to the infinite-
horizon results are essentially our own, although we do not claim to be the first
authors to have pursued this approach—see Mageirou [145] and Ravi, Nagpal and
Khargonekar [169]. Tadmor [204] also considered an approach to the infinite-horizon
problem based on optimal control, although under very restrictive assumptions.

There are many topics related to the use of game theory in the solution of H∞
control problems which are of peripheral interest. Banker [26] was probably the first
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to study the relationship between differential games and J-spectral factorization
(see Problem 6.12), which has also been used in the context of H∞ control for
many years (see [65]). The connections between games, H∞ control and indefinite
factorization are more fully developed in the papers of Ball and Cohen [23]; Foias and
Tannenbaum [63]; Glover and Doyle [76]; Green, Glover, Limebeer and Doyle [85]
and Green [84].

There are interesting relationships between linear exponential Gaussian control,
risk-sensitive optimal control, entropy minimization and game theory. These topics
are investigated in Jacobson [103], Speyer, Deyst and Jacobson [196], Whittle [209],
Limebeer and Hung [134], Glover and Mustafa [80] and Mustafa, Glover and Lime-
beer [154]. The titles of these papers will give an idea as to their exact contents.

There are obviously discrete-time counterparts to the results given in this chap-
ter. These are considered in Appendix B and we postpone a review of the discrete-
time literature until then.

6.5 Problems

Note: In the first four problems, the systems are not assumed to be time-invariant,
except where this assumption is explicitly stated.

Problem 6.1. (Inclusion of cross terms). Suppose that a system is described
by

ẋ = Ax + B1w + B2u, x(0) = 0,

z = C1x + D12u

with D′
12D12 = I. Suppose also that the cost function associated with the plant is

J(K, w, T,∆) =

∫ T

0

(z′z − γ2w′w) dt + x′(T )∆x(T ).

1. Show that if ũ = u + D′
12C1x, then

ẋ = (A − B2D
′
12C1)x + B1w + B2ũ

z = (I − D12D
′
12)C1x + D12ũ.

Conclude that
J(K, w, T,∆) = J̃(K̃, w, T,∆),

in which K̃ = K +
[

D′
12C1 0

]
and

J̃(K̃, w, T,∆) =

∫ T

0

(z̃′z̃ − γ2w′w) dt,
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with

z̃ =

[
C̃x
ũ

]
, C̃ ′C̃ = C ′

1(I − D12D
′
12)C1,

ũ = K̃

[
x
w

]
.

2. Show that there is a full-information controller such that J(K, w, T,∆) ≤
−ε‖w‖2

2,[0,T ] for all w and some ε > 0 if and only if the Riccati equation

−Ṗ = Ã′P + PÃ − P (B2B
′
2 − γ−2B1B

′
1)P + C̃ ′C̃, P (T ) = ∆,

in which Ã = A − B2D
′
12C1, has a solution on [0, T ].

3. Give a parametrization of all full-information controllers satisfying

J(K, w, T,∆) ≤ −ε‖w‖2
2,[0,T ] for all w and some ε > 0.

4. Assume now that the system matrices are constant (i.e., the system is time-
invariant). Show that s0 is a unobservable mode of (Ã, C̃) if and only if

[
A − s0I B2

C1 D12

]
(6.5.1)

does not have full column rank.
5. Assume that the system matrices are constant, that (A,B2) is stabilizable and

the matrix in (6.5.1) has full column rank on the imaginary axis. Determine
necessary and sufficient conditions for the existence of a stabilizing, full-
information controller that satisfies ‖Rzw‖∞ < γ.

Problem 6.2. Show that the solution of the differential equation

−λ̇(t) = A′(t)λ(t) + B(t)u(t), λ(T ) = λT ,

is

λ(t) =

∫ T

t

Φ′(σ, t)B(σ)u(σ) dσ + Φ′(T, t)λT ,

in which d
dt

(
Φ(t, σ)

)
= A(t)Φ(t, σ). Use this to show that (6.2.7) satisfies (6.2.14).

Problem 6.3. Suppose

ẋ = Ax + B1w + B2u x(0) = 0,

z =

[
Cx
Du

]
,

in which D′D = I.
1. Show that J(u,w) =

∫ T

0
(z′z − γ2w′w) dt is a convex function of u.
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2. If Riccati equation (6.2.20) with P (T ) = 0 has a solution for all t ∈ [0, T ],
show that there exists a full-information controller that makes J(K, w) =∫ T

0
(z′z − γ2w′w) dt concave in w.

3. If there exists a linear, full-information controller that makes J(K, w) strictly
concave in w, show that (6.2.20) with P (T ) = 0 has a solution for all t ∈ [0, T ].

Problem 6.4. Consider the system

ẋ = Ax + B1w + B2u, x(0) = 0,

z =

[
Cx
Du

]

with D′D = I. Give a necessary and sufficient condition for the existence of a
full-information controller K ∈ K such that γ(Rzw) < γ. Here, γ(·) denotes the
incremental gain of the closed-loop system Rzw.

Note: From now on all systems are assumed to be time invariant.

Problem 6.5.
1. Verify that P (t, T,∆) given by (6.3.4) solves (6.2.20). (You may assume that

∆ has been chosen so that (Z22 − ∆Z12)
−1 exists!)

2. Show that Z22 is nonsingular if (A,C) is detectable. In fact, if (A,C) has no
unobservable modes on the imaginary axis, the rank defect of Z22 is equal to
the number of undetectable modes in (A,C)—try to show this.

3. Show that Π = Z21Z
−1
11 results in

A − (B2B
′
2 − γ−2B1B

′
1)Π = Z11ΛZ−1

11 .

Problem 6.6. Suppose P solves the algebraic Riccati equation

PA + A′P − PSP + C ′C = 0, (6.5.2)

in which S = S′.
1. Show that (A,C) observable implies P is nonsingular.
2. Assume a stabilizing (A − SP asymptotically stable) solution exists. Show

that this solution is nonsingular if and only if every unobservable mode of
(A,C) is unstable.

3. Suppose (A,C) is of the form

A =

[
A11 0
A21 A22

]
, C =

[
C1 0

]
,

with A22 stable. Show that the stabilizing solution P has the form

P =

[
P1 0
0 0

]
,

in which P1 is the stabilizing solution to

P1A11 + A′
11P1 − P1S11P1 + C ′

1C1 = 0.
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Problem 6.7. Suppose that (A,C) is observable, that X ≥ 0 and Y ≥ 0 satisfy
(6.5.2), with A − SX asymptotically stable. Show that Y ≥ X.

Problem 6.8. Consider the loop-gain transfer function B′
2P (sI − A)−1B2, in

which P ≥ 0 is the stabilizing solution to (6.3.5).
1. Show that

(I + B′
2(−sI − A′)−1PB2)(I + B′

2P (sI − A)−1B2)

= I + B′
2(−sI − A′)−1(C ′C + γ−2PB1B

′
1P )(sI − A)−1B2.

This equation is known as the “return-difference equality”.
2. If B2 = b2 is a vector, show that

|1 + b′2P (jωI − A)−1b2| ≥ 1.

3. Show that the closed-loop system has a guaranteed phase margin of ±60◦, a
gain reduction tolerance of up to 50% and an arbitrarily large gain increase
tolerance. These are well known properties of LQ optimal regulators (see [11]
for example).

Problem 6.9. Consider the system

ẋ = x + w + u

z =

[
cx
u

]

introduced in Example 6.3.4. We showed that for γ > 1 the nonnegative stabilizing
solution to 2p − p2(1 − γ−2) + c2 = 0 is given by

p =
1 +

√
1 + c2(1 − γ−2)

1 − γ−2
.

If we set u = −px, show that

lim
γ→1

z =

[
0

−w

]
.

(Hint: Introduce the change of state variable x = (1 − γ−2)q before taking
limits.)

Problem 6.10. Suppose the Riccati equation (6.3.13) has a uniformly bounded
solution P (t, T, P2) and let Π = limT→∞ P (t, T, P2). Show that Π is the stabiliz-
ing solution to the algebraic Riccati equation (6.3.5). The aim is to remove the
nonsingularity assumption on Π − P (t) that is made in the text.

(Hint: See Problem 3.24.)

.
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Problem 6.11. Suppose P2 is the stabilizing solution to (6.3.11) and that P2 is
nonsingular.

1. Show that −(A + P−1
2 C ′C) is asymptotically stable.

2. Show that there exists a stabilizing, nonnegative definite solution P to (6.3.5)
if and only if there exists a stabilizing solution to the Riccati equation

−(A + P−1
2 C ′C)Y − Y (A + P−1

2 C ′C)′ + γ−2Y C ′CY + B1B
′
1 = 0

such that γ2 > ρ(P2Y ). (ρ(·) denotes the spectral radius)
(Hint: Y = γ2(P−1

2 − P−1).)
3. Show that if C = 0 and −A is stable, then there exists a control such that

the closed loop Rzw is stable and satisfies ‖Rzw‖∞ < γ if and only if γ2 >
γ2

opt = ρ(P2Y ), in which Y is the controllability gramian of (−A,B1).

Problem 6.12. (J-spectral factorization). Suppose P is the stabilizing solution
to (6.3.5). Consider G given by

G
s
=




A B1 B2

C 0 0
0 0 D
0 I 0


 ,

in which D′D = I. Thus [
z
w

]
= G

[
w
u

]

is the solution to (6.1.2) and (6.1.4).
1. Show that

‖z‖2
2 − γ2‖w‖2

2 =
1

2π

∫ ∞

−∞

[
w′ u′ ]

G∗JG

[
w
u

]
dω,

in which J is the signature matrix:

J =




I 0 0
0 I 0
0 0 −γ2I



 .

2. Let

W
s
=




A B1 B2

B′
2P 0 I

−γ−2B′
1P I 0



 ,

in which J̃ is another signature matrix and P is (any) solution to (6.3.5).
Show that G∼JG = W∼J̃W .

3. Show that W−1 and GW−1 ∈ H∞.
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4. Show that P ≥ 0 implies

(GW−1)∗J(GW−1) ≤ J̃ for all s + s̄ ≥ 0.

(That is, GW−1 is J-lossless.) Show also that

[
u − u∗

w − w∗

]
= W

[
w
u

]

and conclude that u∗ = −W−1
12 W 11w.

Problem 6.13. Consider the system

ẋ = Ax + B1w + B2u, x(0) = 0,

z =

[
Cx
Du

]
, D′D = I.

1. Show that there exists a measurement feedback control law u = Ky, with the
special measurement y = C2x + w, such that

J(K, w, T,∆) ≤ −ε‖w‖2
2,[0,T ]

for all w ∈ L2[0, T ] and some ε > 0 if and only if the Riccati differential
equation (6.2.20) has a solution on [0, T ]. Show that all controllers that
achieve the objective are generated by the LFT K = F`(Ka,U), in which
U is causal, ‖U‖[0,T ] < γ and

Ka
s
=




A − B1C2 − B2B

′
2P B1 B2

−B′
2P 0 I

−(C2 + γ−2B′
1P ) I 0



 .

(Hint: Use u, x(0) and y to generate a copy of x.)
2. Now consider the infinite-horizon case and suppose the algebraic Riccati

equation (6.3.5) has a stabilizing, nonnegative definite solution. Show that
all stabilizing controllers such that ‖F`(P ,K)‖∞ < γ are generated by
K = F`(Ka,U) if and only if A−B1C2 is asymptotically stable, U ∈ RH∞
and ‖U‖∞ < γ.

Problem 6.14. (Nevanlinna-Pick interpolation). Suppose si, i = 1 . . . n, are given
distinct complex numbers with Re(si) > 0, and that gi and hi are given complex
vectors. We seek a transfer function matrix R ∈ H∞ such that

g∗i R(si) = h∗
i (6.5.3)

‖R‖∞ < γ. (6.5.4)
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1. Show that R ∈ H∞ satisfies (6.5.3) if and only if R is a closed-loop system
that can be generated by a stabilizing, full-information controller for the
system defined by

ẋ =




s1 0 0

0
. . . 0

0 0 sn


x −




h∗
1
...

h∗
n


 w +




g∗1
...

g∗n


u

z = u

u = K

[
x
w

]
.

2. Show that the interpolation problem described by (6.5.3) and (6.5.4) has a
solution if and only if the Pick matrix defined by

Mij =
g∗i gj − γ−2h∗

i hj

si + s̄j

is positive definite.
(Hint: M−1 is the solution to a Riccati equation. You will need to con-
vince yourself that complex systems make only a trivial difference—replace
transposes with complex conjugate transposes.)

3. Find a parametrization of all solutions to (6.5.3) and (6.5.4).
4. Find a spectral radius formula for γopt, the greatest lower bound on the values

of γ for which the interpolation problem in (6.5.3) and (6.5.4) has a solution.

Problem 6.15. (Decentralized control, Mageirou and Ho [146]) Consider the
interconnected subsystems in Figure 6.4.

Suppose that G1 is given by

ẋ1 = A1x1 + B1z2 + B2u1

z1 =

[
C1x1

D1u1

]

and that G2 is given by

ẋ2 = A2x2 + E1z1 + E2u2

z2 =

[
C2x2

D2u2

]
,

in which D′
iDi = I.

1. If there exist decentralized, state-feedback controllers ui = −Fixi that stabi-
lize their respective subsystems (with respect to loop-break points at z1 and
z2) and satisfy ‖F`(G2,−F2)‖∞ < 1 and ‖Fu(G1,−F1)‖∞ < 1, show that
the overall closed-loop is stable.3

3Fu(·, ·) denotes the upper LFT; F`(G2,−F2) and Fu(G1,−F1) are the closed-loop transfer
functions of the lower and upper subsystems defined by loop break-points z1 and z2.
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Figure 6.4: Decentralized control scheme.

2. Conclude that if the Riccati equations

P1A1 + A′
1P1 − P1(B2B

′
2 − B1B

′
1)P1 + C ′

1C1 = 0

P2A2 + A′
2P2 − P1(E2E

′
2 − E1E

′
1)P2 + C ′

2C2 = 0

have stabilizing solutions P1 ≥ 0 and P2 ≥ 0, then F1 = B′
2P1 and F2 = E′

2P2

are suitable controllers.

Problem 6.16. Consider system

ẋ = Ax + B1w + B2u, x(0) = x0,

z =

[
Cx
Du

]
.

Assume that a stabilizing, nonnegative definite solution P to the Riccati equation
(6.3.5) exists and that the control law u = −B′

2Px is implemented.
1. If w ≡ 0, show that ∫ ∞

0

z′z dt ≤ x′
0Px0.

2. If x0 = 0, show that
‖Rzw‖2

2 ≤ trace(B′
1PB1).

In the above, ‖·‖2 denotes the 2-norm of a system, which is the average RMS
power of z when w is a unit variance white noise process.



6.5 PROBLEMS 261

Problem 6.17. Suppose (A,B2) is stabilizable and that

ẋ = Ax + B1w + B2u

z =

[
Cx
Du

]
,

with D′D = I. No assumptions are made on the pair (A,C). Show that there exists
a stabilizing, full-information controller that satisfies ‖Rzw‖∞ < γ if and only if
there exists a matrix P such that

PA + A′P − P (B2B
′
2 − γ−2B1B

′
1)P + C ′C ≤ 0, (6.5.5)

with A − (B2B
′
2 − γ−2B1B

′
1)P asymptotically stable and P ≥ 0.

(Hint: See Section 6.3.4.)

Problem 6.18. (Singular problems) In Problem 6.17 we showed how to eliminate
the assumption that (A,C) has no unobservable modes on the imaginary axis. The
main idea behind the removal of this assumption is contained in the discussion in
Section 6.3.4. We now show that a similar line of argument can be used to eliminate
the assumption that D has full column rank.

Suppose

ẋ = Ax + B1w + B2u

z =

[
Cx
Du

]
,

in which D is arbitrary.
1. Show that a stabilizing, full-information controller satisfies ‖Rzw‖∞ < γ if

and only if it also stabilizing for the objective

za =




Cx
Du
εu



 , ε > 0

and satisfies ‖Rzaw‖∞ < γ for some ε > 0.
2. Suppose that (A,B2) is stabilizable and that (A,C) has no unobservable

modes on the imaginary axis. Show that there exists a stabilizing, full-
information controller such that ‖Rzw‖∞ < γ if and only if there exists
an ε ≥ 0 such that Rε = D′D + ε2I is nonsingular and a matrix Pε such that

PεA + A′Pε − Pε(B2R
−1
ε B′

2 − γ−2B1B
′
1)Pε + C ′C = 0

with A − (B2R
−1
ε B′

2 − γ−2B1B
′
1)Pε asymptotically stable and Pε ≥ 0.

Problem 6.19. Suppose

ẋ = Ax + B1w + B2u

z =

[
Cx
Du

]
,
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in which (A,B2) is stabilizable—no other assumptions are imposed. Show that there
exists a stabilizing, full-information controller such that the closed-loop system Rzw

satisfies ‖Rzw‖∞ < γ if and only if there exists an ε ≥ 0 such that Rε = D′D + ε2I
is nonsingular and a matrix Pε such that

PεA + A′Pε − Pε(B2R
−1
ε B′

2 − γ−2B1B
′
1)Pε + C ′C ≤ 0

with A − (B2R
−1
ε B′

2 − γ−2B1B
′
1)Pε asymptotically stable and Pε ≥ 0.

The technique of Section 6.3.4 and the results of Problems 6.17, 6.18 and 6.19
make use of the fact that a stabilizing controller must make the infinity norm of
closed-loop transfer function matrices mapping w to x and u finite, even if there is
no explicit norm objective on some components of x or u. By including an explicit,
but arbitrary, norm constraint on these states and control signals, one obtains a
problem that satisfies the standard assumptions.
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The H∞ Filter

7.1 Introduction

It is well known that the LQG control problem decomposes, or separates, into an
optimal state-feedback control problem and an optimal state estimation problem.
There is a well known duality between the optimal control and filtering problems and
the optimal state estimator is the celebrated Kalman filter. These facts are touched
on in Chapter 5. The aim of this chapter is to find an estimation dual to the full-
information H∞ control problem, thereby laying the foundations of a separation
theory for H∞ control with measurement feedback, which will be developed in
Chapter 8.

In the Kalman filter problem description, the signal generating system is as-
sumed to be a state-space system driven by a white-noise process with known sta-
tistical properties. The observed output is also corrupted by a white noise process
with known statistical properties. The aim of the filter is to minimize either the
average RMS power of the estimation error or the variance of the terminal state
estimation error. Both these optimal estimation problems yield the Kalamn filter
as the optimal filter.

The H∞ filtering problem differs from the Kalman filtering problem in two
respects:

• unknown deterministic disturbances of finite energy replace the white-noise
processes that drive the signal generating system and corrupt the observations;

• the aim of the filter is to ensure that the energy gain from the disturbances
to the estimation error is less than a prespecified level γ2.

If this estimation problem is to be dual to the full-information H∞ control problem,
the Kalman filter should emerge from the H∞ filter theory in the limit as γ → ∞. In

263
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addition, the H∞ filter should have predictable terminal state estimation properties
as well as predictable performance in the face of unknown disturbance inputs. Since
there are many solutions to the H∞ control problem with full information, we expect
the H∞ estimation problem to have several solutions also. We will find a formula
for all solutions; this allows one to solve secondary optimization problems such as
entropy minimization.

The finite-horizon problem

Suppose the signal is generated by the time-varying state-space system

ẋ = Ax + Bw, x(0) = 0, (7.1.1)

y = Cx + Dv, (7.1.2)

in which DD′ = I. The process disturbance w and the measurement disturbance
v are L2[0, T ] signals. It is notationally convenient to define the combined process
and measurement disturbance as

d =

[
w
v

]
. (7.1.3)

The aim is to find an estimate of z = Lx of the form

ẑ = F y, (7.1.4)

such that the ratio of the estimation error energy to the disturbance energy is less
than γ2, a prespecified performance level. This objective can be expressed as the
requirement that

‖ẑ − Lx‖2
2,[0,T ] − γ2‖d‖2

2,[0,T ] ≤ −ε‖d‖2
2,[0,T ] (7.1.5)

for all d ∈ L2[0, T ]. The filter F is required to be causal and linear. If R denotes
the system mapping d to ẑ − Lx, the objective (7.1.5) can be written as

‖R‖[0,T ] < γ, (7.1.6)

in which ‖ · ‖[0,T ] denotes the L2[0, T ] induced norm.

The infinite-horizon problem

In the infinite-horizon case, the signal generator (7.1.1) and (7.1.2) is time-invariant,
and d given by (7.1.3) is an unknown L2[0,∞) driving input. We seek a causal,
linear and time-invariant filter (7.1.4) such that

1. The system F is stable.

2. The system R : d 7→ (ẑ − Lx) is stable and satisfies

‖R‖∞ < γ. (7.1.7)

We shall assume that (A,C) is detectable, and that (A,B) has no uncontrollable
mode on the imaginary axis.
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7.2 Finite-horizon results

We solve the H∞ filtering problem by transforming it into an equivalent H∞ control
problem with full disturbance information. We are then able to invoke the full-
information results of Chapter 6 to effect a solution.

7.2.1 Necessary and sufficient conditions

The filtering problem may be expressed as the LFT problem




ẋ

ẑ − z
y



 =




A
[

B 0
]

0

− L
[

0 0
]

I

C
[

0 D
]

0







x[
w
v

]

ẑ


 , x(0) = 0, (7.2.1)

ẑ = F y. (7.2.2)

Recall that the induced norm of a system and its adjoint are equal, and that the
adjoint of F`(P ,F ) is F`(P

∼,F∼). Therefore, the estimation objective ‖R‖[0,T ] <
γ on the map R : d 7→ ẑ − z is equivalent to the objective ‖R∼‖[0,T ] < γ, in which
R∼ is the adjoint system generated by the LFT




d
dτ p(τ)
z̃(τ)
w̃(τ)



 =




A′(τ) −L′(τ) C ′(τ)[
B′(τ)

0

] [
0
0

] [
0

D′(τ)

]

0 I 0







p(τ)
w̃(τ)
ũ(τ)



 (7.2.3)

ũ = F∼w̃. (7.2.4)

The initial condition is p(τ)|τ=0 = 0, in which τ = T − t is the time-to-go variable
associated with the adjoint system. We also note that F is causal in real time if
and only if F∼ is causal in τ .

The LFT (7.2.3) and (7.2.4) describes a control problem in which the controller
F∼ only has access to the exogenous signal w̃, rather than to p and w̃, which would
be the full-information configuration of Section 4.2.2. From our discussion of the
full-information problem in Section 4.2.2, we know that for the purpose of achieving
particular closed loops or control signals, knowledge of w̃ is equivalent to knowledge
of p and w̃. This is because we can always replace p in any full-information controller
for the adjoint system with a copy generated from w̃ by

d

dτ
p̂(τ) = A′(τ)p̂(τ) − L′(τ)w̃(τ) + C ′ũ(τ), p̂(τ)|τ=0 = 0. (7.2.5)

It is now immediate from our full-information control results that a suitable con-
troller for the adjoint problem exists if and only if the Riccati differential equation

− d

dτ
Q(τ) = Q(τ)A′(τ) + A(τ)Q(τ) + B(τ)B′(τ)

−Q(τ)
(
C ′(τ)C(τ) − γ−2L′(τ)L(τ)

)
Q(τ), Q(τ)|τ=T = 0,
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has a solution on [0, T ]. In this case, the controller ũ∗(τ) = −C(τ)Q(τ)p̂(τ) satisfies
the objective for the adjoint system.

Substituting ũ∗ into equation (7.2.5) defining the duplicate adjoint state, we see
that the adjoint of a suitable filter is given by

d

dτ
p̂(τ) = (A′ − C ′CQ)(τ)p̂(τ) − L′(τ)w̃(τ), p̂(τ)|τ=0 = 0,

ũ(τ) = −C(τ)Q(τ)p̂(τ).

Hence, taking adjoints to return to the original problem defined by (7.2.1) and
(7.2.2), we see that a suitable filter exists if and only if the Riccati differential
equation

Q̇(t) = A(t)Q(t) + Q(t)A′(t) + B(t)B′(t)

−Q(t)
(
C ′(t)C(t) − γ−2L′(t)L(t)

)
Q(t), Q(0) = 0, (7.2.6)

has a solution on [0, T ], and that one filter that satisfies the objective (7.1.6) is
given by

˙̂x(t) = (A − QC ′C)(t)x̂(t) + Q(t)C ′(t)y(t), x̂(0) = 0, (7.2.7)

= A(t)x̂(t) + Q(t)C ′(t)(y(t) − C(t)x̂(t)) (7.2.8)

ẑ(t) = L(t)x̂(t). (7.2.9)

This filter has an observer structure like the Kalman filter and is illustrated in
Figure 7.1. The estimate of Lx is Lx̂, in which x̂ can be considered a state estimate.1

Notice, however, that x̂ depends on L, since the Riccati equation defining the filter
gain matrix QC ′ depends on L. The state estimate one uses in the H∞ filter depends
on the linear combination of the states that one is seeking to estimate, which is a
significant difference between Kalman filtering and H∞ filtering.

7.2.2 All solutions

All control signals that can be generated by full-information controllers for the
adjoint problem introduced in the previous section are generated by

ũ = ũ∗ + U∼(w̃ − w̃∗),

in which ũ∗ = −CQp̂, w̃∗ = −γ−2LQp̂ and U∼ is linear, causal in the adjoint
time variable τ and such that ‖U∼‖[0,T ] < γ. Combining this with the dynamical
equation (7.2.5) for p̂, we obtain the LFT




d
dτ p̂
ũ

w̃ − w̃∗



 =




(A′ − C ′CQ)(τ) −L′(τ) C ′(τ)

−CQ(τ) 0 I
γ−2LQ(τ) I 0








p̂
w̃

ũ − ũ∗



 ,

ũ − ũ∗ = U∼(w̃ − w̃∗).

1A sense in which x̂ may be considered a state estimate is offered in Section 7.2.3.
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Figure 7.1: An H∞ filter.

Taking adjoints, we see that all filters are generated by

F = F`(F a,U), (7.2.10)

in which

F a
s
=




A − QC ′C QC ′ −γ−2QL′

L 0 I
−C I 0



 (7.2.11)

and U is a casual, linear system such that

‖U‖[0,T ] < γ. (7.2.12)

This parametrization is illustrated in Figure 7.2. It captures all causal, linear filters
(as U varies without restriction on its norm), since the (1, 2)- and (2, 1)-blocks of
F a have causal inverses.

In parametrizing all suboptimal solutions to the Kalman filter problem, we ob-
served that all solutions were obtained by simply adding Uη to the optimal estimate.
The signal η = y−Cx̂ is the innovations process and x̂ is the optimal state estimate,
which is independent of U . The structure in the H∞ filter case is more complex,
since although we add Uη to ẑ, we also change the signal driving the integrator,
which means that the choice of U affects the state estimate x̂.

We may summarize our results in a theorem:

Theorem 7.2.1 Suppose the observation y is generated by (7.1.1) and (7.1.2) and
d is defined by (7.1.3). Then there exists a causal, linear filter ẑ = F y such that
the system R : d 7→ (ẑ − Lx) satisfies the norm bound ‖R‖[0,T ] < γ if and only if
the Riccati differential equation

Q̇ = AQ + QA′ − Q(C ′C − γ−2L′L)Q + BB′, Q(0) = 0. (7.2.13)
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Figure 7.2: A parametrization of all filters.

has a solution on [0, T ]. In this case, F is a causal, linear filter that achieves the
objective ‖R‖[0,T ] < γ if and only if it is given by (7.2.10) for some causal, linear
system U that satisfies (7.2.12).

7.2.3 Terminal state estimation properties

To show that the central H∞ filter shown in Figure 7.1 has terminal state estimation
properties in the Kalman filtering sense, we assume that the driving signal d is a
zero mean white noise process of unit intensity.2 We also assume that x(0) is a
random variable with the properties

E{x(0)} = m (7.2.14)

E
{(

x(0) − m
)(

x(0) − m
)′}

= Q0, (7.2.15)

with x(0) independent of d(t). If x(0) is known, we set Q0 = 0.
To ensure that our estimate is unbiased, we set x̂(0) = m in (7.2.7) and use the

terminal condition Q(0) = Q0 in the Riccati differential equation (7.2.13). Assuming
a solution to this equation exists on the time-interval of interest, we subtract (7.2.8)

2This is known as the central filter because it is obtain by setting U = 0 in the parametrization
of all filters; U = 0 is the center of the “ball” ‖U‖[0,T ] < γ.
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from (7.1.1) and use (7.1.2) to obtain the error system

ẋe = (A − QC ′C)xe +
[
−B QC ′D

] [
w
v

]
,

in which xe = x̂ − x. Since E{xe} = 0, the state error variance matrix Q̄(t) =
E{xe(t)x

′
e(t)} propagates in time according to the linear equation

˙̄Q = (A − QC ′C)Q̄ + Q̄(A − QC ′C)′ + BB′ + QC ′CQ, (7.2.16)

with initial condition Q̄(0) = Q0. Subtracting (7.2.16) from (7.2.13) gives

(Q̇ − ˙̄Q) = (A − QC ′C)(Q − Q̄) + (Q − Q̄)(A − QC ′C)′ + γ−2QL′LQ,

and since (Q − Q̄)(0) = 0, this shows that Q(t) − Q̄(t) ≥ 0 for all t ∈ [0, T ]. We
conclude that the terminal state estimation error variance satisfies

E{xe(t)x
′
e(t)} ≤ Q(t).

The Riccati equation that defines the Kalman filter for the signal generator
(7.1.1) and (7.1.2) is

˙̂
Q = AQ̂ + Q̂A′ − Q̂C ′CQ̂ + BB′, Q̂(0) = Q0. (7.2.17)

Since Q̂(t) is the optimal terminal state error covariance, which is the error covari-

ance obtained by the Kalman filter, we must have Q̄(t) ≥ Q̂(t). This may also be
verified by subtracting the Riccati equations (7.2.17) and (7.2.16).

Note also that the 2-norm of the system R : d 7→ (ẑ − Lx) satisfies

‖R‖2,[0,T ] =

{
1

T

∫ T

0

trace(LQ̄L′) dt

} 1
2

≤
{

1

T

∫ T

0

trace(LQL′) dt

} 1
2

.

This may be seen by using (7.2.16) and Theorem 3.3.1.
These observations establish that the central H∞ filter has predictable two-norm

properties and terminal state estimation properties when driven by white noise, but
that it is suboptimal with respect to these performance criteria.

Main points of the section

1. The H∞ estimation problem is the dual of a control problem in
which the controller has access to the exogenous input.
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2. A solution to the H∞ estimation problem exists if and only if the
Riccati differential equation (7.2.13) has a solution.

3. The central H∞ filter has an observer structure identical to that
of the Kalman filter, and the estimate of Lx is Lx̂ in which x̂ is a
state estimate that depends on L. In contrast to the Kalman filter,
the H∞ filter gain is a function of L.

4. There is a LFT parametrizing all solutions to the H∞ estimation
problem.

5. The central H∞ filter obtained by setting U = 0 has predictable
two-norm and terminal state estimation properties. In particular,
E{(x̂ − x)(x̂ − x)′} ≤ Q, in which Q is the solution to the Riccati
equation (7.2.13).

7.3 Infinite-horizon results

In the infinite-horizon case, the signal generator (7.1.1) and (7.1.2) is assumed to
be time-invariant. We also assume that (A,C) is detectable and that (A,B) has no
uncontrollable modes on the imaginary axis. Our aim is to determine conditions
for the existence of a causal, linear, time-invariant and stable filter F such that the
system R : d 7→ (ẑ − Lx) is stable and satisfies

‖R‖∞ < γ. (7.3.1)

As before, we may express the relationship between the disturbance d and the
estimation error ẑ − Lx as the LFT




ẋ

ẑ − z
y



 =




A
[

B 0
]

0

− L
[

0 0
]

I

C
[

0 D
]

0







x[
w
v

]

ẑ


 ,

ẑ = F y.

Notice that this LFT is not stablizable in the sense defined in Section 4.2.1, unless
A is asymptotically stable, because the output of the filter does not affect the signal
generator. We emphasize that we do not demand that the filter F is internally
stabilizing. Rather, we demand that F and R are stable.3

Taking the adjoint, we obtain




ṗ
z̃
w̃



 =




A′ −L′ C ′
[

B′

0

] [
0
0

] [
0
D′

]

0 I 0







p
w̃
ũ





ũ = F∼w̃.
3We do not care what happens to the state x, and indeed can do nothing about it. Our aim is

to ensure that our estimate of Lx is a good one.
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(All time arguments and derivatives are taken with respect to the adjoint time
variable τ = −t.) The adjoint filter F∼ must be τ -stable (i.e., stable in the adjoint
time variable τ), and must lead to a τ -stable closed-loop system R∼ that satisfies
‖R∼‖∞ < γ.

Now consider the full-information controller

ũ = −H ′p + G∼w̃, (7.3.2)

in which G∼ : w̃ 7→ ̂̃u is given by

˙̂p = A′p̂ + (C ′F∼ − L′)w̃

̂̃u = H ′p̂ + F∼w̃.

If F is a filter that satisfies our requirements and we choose H such that A −
HC is asymptotically stable, then the full-information controller (7.3.2) internally
stabilizes the full-information configuration




ṗ
z̃[
p
w̃

]


 =




A′ −L′ C ′
[

B′

0

] [
0
0

] [
0
D′

]

[
I
0

] [
0
I

] [
0
0

]







p
w̃
ũ



 ,

and the infinity norm of the closed-loop system is less than γ. Consequently, there
exists a stabilizing, nonnegative definite solution Q to the algebraic Riccati equation

AQ + QA′ − Q(C ′C − γ−2L′L)Q + BB′ = 0.

All the control signals that result from τ -internally-stabilizing controllers for the
adjoint problem are generated by

ũ = ũ∗ + U∼(w̃ − w̃∗),

in which U∼ is τ -stable, ‖U∼‖∞ < γ and ũ∗ = −CQp with w̃∗ = −γ−2LQp. Hence
F∼ is generated by the LFT

F`(F
∼
a ,U∼),

in which

F∼
a

s
=




(A − QC ′C)′ −L′ C ′

−CQ 0 I
γ−2LQ I 0



 .

Taking the adjoint, we see that all stable filters such that R : d 7→ (ẑ−Lx) is stable
and satisfies ‖R‖∞ < γ are generated by

F = F`(F a,U), U ∈ H∞, ‖U‖∞ < γ, (7.3.3)
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in which

F a
s
=




A − QC ′C QC ′ −γ−2QL′

L 0 I
−C I 0



 . (7.3.4)

Theorem 7.3.1 Suppose the observation y is generated by (7.1.1) and (7.1.2) and
that d is defined by (7.1.3). Suppose also that (A,C) is detectable and that (A,B)
has no uncontrollable mode on the imaginary axis.

There exists a stable filter F such that the system R : d 7→ (ẑ−Lx) is stable and
satisfies the norm bound ‖R‖∞ < γ if and only if the algebraic Riccati equation

AQ + QA′ − Q(C ′C − γ−2L′L)Q + BB′ = 0 (7.3.5)

has a solution such that A−Q(C ′C − γ−2L′L) is asymptotically stable and Q ≥ 0.
In this case, F is a stable filter such that R is stable and ‖R‖∞ < γ if and only if
it is given by (7.3.3).

7.3.1 The H∞ Wiener filtering problem

fG F- - - -?w

v

yz ẑ

Figure 7.3: The Wiener problem.

As an illustration of the H∞ filter, we consider the Wiener filter configuration
given in Figure 7.3. The observation y is the sum of a signal z plus a noise v, and we
wish to extract the signal z from y. In Wiener’s formulation the system G is stable,
strictly proper and driven by white noise. In the H∞ formulation, the signals w
and v are deterministic, but unknown.

It is immediate from Figure 7.3 that

z = Gw

ẑ = F (v + Gw)

ẑ − z =
[

(F − I)G F
] [

w
v

]
.

Ultimately we want a stable filter F , but initially we ignore this restriction and
consider a smoothing problem in which the aim is to choose F such that

‖
[

(F − I)G F
]
‖∞ ≤ γ. (7.3.6)
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The objective (7.3.6) is equivalent to

(F − I)GG∼(F∼ − I) + FF∼ ≤ γ2I. (7.3.7)

Since
(
F − G(I + G∼G)−1G∼)

(I + GG∼)
(
F∼ − G(I + G∼G)−1G∼)

= FF∼ + (F − I)GG∼(F∼ − I) − G(I + G∼G)−1G∼,

the inequality (7.3.7) may be written as

G(I + G∼G)−1G∼ + (F − F ∗)(I + GG∼)(F − F ∗)∼ ≤ γ2I, (7.3.8)

in which
F ∗ = G(I + G∼G)−1G∼.

The inequality (7.3.8) can be satisfied if and only if

G(I + G∼G)−1G∼ ≤ γ2I, (7.3.9)

in which case the filter F = F ∗ satisfies (7.3.8) and hence achieves the objec-
tive (7.3.6). The condition (7.3.9) may be manipulated (Problem 7.5) to yield the
equivalent condition

γ ≥ 1√
1 + δ−2

= γopt, (7.3.10)

in which δ = ‖G‖∞. Thus the minimum γ that can be achieved with any filter,
stable or otherwise, is determined by ‖G‖∞. Surprisingly, if γ > γopt, we can also
satisfy (7.3.6) with a stable filter. That is,

γopt = inf
F∈H∞

‖
[

(F − I)G F
]
‖∞

where γopt is given in (7.3.10), although the infimum is not achievable with a stable
filter due to the appearance of filter poles on the imaginary axis.

In order to prove this, suppose G has realization (A,B,C) with A asymptotically
stable. Then

ẋ = Ax + Bw

y = Cx + v

and we seek a stable estimator F such that the error system

R =
[

(F − I)G F
]

is stable and satisfies ‖R‖∞ < γ. Note that the stability of R follows from the
stability of F and G in this case. Using Theorem 7.3.1, we see that such a filter F

exists if and only if the Riccati equation

AQ + QA′ − (1 − γ−2)QC ′CQ + BB′ = 0 (7.3.11)
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has a solution such that A − (1 − γ−2)QC ′C is asymptotically stable and Q ≥ 0.
If γ > 1, such a solution always exists, because we may write (7.3.11) as

AQ + QA′ − QC̃ ′C̃Q + BB′ = 0,

in which C̃ = C
√

1 − γ−2. This is the algebraic Riccati equation associated with

the Kalman filter problem of estimating x given the measurement ỹ = C̃x+v, which
always has a stabilizing, nonnegative definite solution.4

If γ < 1, we conclude from the bounded real lemma (Theorem 3.7.1) that Q
exists if and only if

‖G‖∞ <
1√

γ−2 − 1
,

which is equivalent to γ > γopt.

7.4 Example: Inertial navigation system

This example illustrates the properties of an H∞ filter designed for a simple inertial
navigation system (INS). The archetypal INS deduces velocity and position from
acceleration measurements—velocity is found by integrating the acceleration once,
while position is deduced via a double integration. Unfortunately, accelerometer
biases, variations in the earth’s gravitational field, noise and gyro platform mis-
alignment cause the position estimate from the INS to drift away from the true
position. One way to compensate for this effect is to use external position data
such as a radio beacon or satellite. The INS and external device could then be
combined as shown in Figure 7.4 to produce a compensated position estimate. The
aim is to use the INS to track the high-frequency maneuvering of the vehicle, while
the external position data should be favored in the long term.

For the purpose of illustration, we consider navigation in one dimension. The
INS is modelled as a double integrator fed by a corrupted acceleration signal. The
external radio navigation aid is represented by a true position together with an
additive disturbance signal that represents radio transmission noise. This model is
illustrated in Figure 7.5.

The state variables we have selected are the errors in the INS’s position and
speed:

δp = pi − pt

δs = si − st,

in which pt and st represent the true position and speed. The input to the filter is
given by

∆p = pi − pr,

4The stability of A ensures (A, C̃) is stabilizable and that (A, B) has no uncontrollable mode
on the imaginary axis.
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Figure 7.4: INS compensated by external position data.

which is the difference between the INS’s position estimate and the radio navigation
aid’s estimate of the current position. From Figure 7.5 we obtain

∆p = pi − pr

= (pt + δp) − (pt − v)

= δp + v.

We also see from this diagram that the speed and position estimates produced by
the inertial navigator are given by

[
ṗi

ṡi

]
=

[
0 1
0 0

] [
pi

si

]
+

[
0
1

]
(at + w).

The true speed and position are given by

[
ṗt

ṡt

]
=

[
0 1
0 0

] [
pt

st

]
+

[
0
1

]
at.

Consequently

[
δṗ
δṡ

]
=

[
0 1
0 0

] [
δp
δs

]
+

[
0
1

]
w

= Ax + Bw

and

∆p =
[

1 0
] [

δp
δs

]
+ v

= Cx + v.
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Figure 7.5: Model of INS with external position data.

Since we want the H∞ filter to minimize the effects of w and v on the difference
between δp and its estimate δp̂, we set

L =
[

1 0
]
.

To complete the design data, we suppose that the energy in the acceleration error
w and navigation aid error v are bounded:

‖w‖2 < q and ‖v‖2 < r.

The filter gain is given by
[

k1

k2

]
= r−2QC ′,

in which Q is the stabilizing solution of the algebraic Riccati equation

AQ + QA′ − (1 − (r/γ)2)r−2QC ′CQ + q2BB′ = 0.

If γ > r, this is the Riccati equation associated with the Kalman filter problem

with measurement ỹ = r−1
√

1 − (r/γ)2Cx+v, so a stabilizing, nonnegative definite
solution exists. We leave it as an exercise for the reader to show that no stabilizing,
nonnegative definite solution exists for γ ≤ r. Figure 7.6 provides a block diagram
representation of the central H∞ filter for this problem.

We now obtain explicit formulas for the solution to the Riccati equation and
hence the filter gain. Writing

Q =

[
q1 q2

q2 q3

]
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Figure 7.6: The INS H∞ filter.

and substituting the data gives the Riccati equation

[
2q2 − β−2q2

1 q3 − β−2q1q2

q3 − β−2q1q2 q2 − β−2q2
2

]
= 0,

in which

β2 =
r2

1 − (r/γ)2
.

Elementary algebra now reveals that

Q =

[
β
√

2qβ qβ
qβ q

√
2qβ

]
,

and the filter gain is therefore

[
k1

k2

]
= r−2

[
β
√

2qβ
qβ

]
.

If the exogenous input

[
w
v

]
is a white noise such that

E
{[

w(t)
v(t)

] [
w′(τ) v′(τ)

]}
=

[
q2 0
0 r2

]
δ(t − τ),

the variance of the position estimate error satisfies

E{(δp − δp̂)2(t)} ≤ q1 = β
√

2qβ.

The bound on the variance of the estimation error decreases as γ increases—in the
case that γ−2 = 0, we get E{(δp − δp̂)2(t)} = r

√
2qr, which is the error variance

associated with the Kalman filter. Figure 7.7 gives a plot of the position error
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Figure 7.7: Upper bound on the error variance.

variance bound q1 as a function of γ when r = q = 1. The interesting feature of
this diagram is the fact that the upper bound on the error variance is almost as low
as that obtained for the Kalman filter right down to γ values of the order of 2.

We conclude the example by examining the properties of the transfer functions
linking w, v and the estimated position p̂. One implementation of the filter is given
in Figure 7.8. It is immediate from this diagram that

g1 =
p̂

w
=

1

s2 + sk1 + k2

g2 =
p̂

v
=

sk1 + k2

s2 + sk1 + k2
.

The natural frequency of these transfer functions is

ωn =
√

k2 = r−1
√

qβ,

while 2ζωn = k1 gives

ζ =
β

r
√

2

as the damping ratio. These formulas show that both these quantities increase as γ
decreases. Bode plots of g1 and g2 are shown in Figures 7.9 and 7.10 respectively
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Figure 7.8: Open-loop implementation of compensated INS.

for r = q = 1 and various values of γ. These diagrams show that g1 and g2

act as low-pass filters of the INS disturbances and radio noise, and that the INS
disturbance rejection improves as γ decreases, while p̂ becomes more susceptible to
wide bandwidth radio beacon noise as γ decreases.

7.5 Notes and References

Minimax and game theoretic ideas have been employed in robust filtering for at
least two decades. The general approach to these problems is to minimize the worst
case error (in some sense) as one ranges over all admissible signal and noise models.
Kassan and Poor [114] give a review of many of the established ideas in robust
filtering. Başar and Mintz [21] and Hexner and Mintz [92] study an estimation
problem that is motivated by tracking problems involving uncooperative targets
under the control of intelligent adversaries.

Some of the early work on robust estimation in an H∞ framework is due to
Grimble, Ho and Elsayed [87, 88], who analyze the problem using polynomial meth-
ods. Bernstein and Haddad [28] study similar problems in a state-space setting
using projection methods, which are particularly well suited to reduced order filter
synthesis problems. They also study problems requiring the minimization of an
upper bound on the H2 norm under and H∞ norm constraint. Their problem turns
out to be the same as entropy minimization.

For filtering work which emphasizes the connection with game theory, we re-
fer the reader to Shaked and Yaesh [195, 215]; Khargonekar and Nagpal [115];
and Limebeer and Shaked [137]. Shaked and Yaesh also study frequency domain
connections with J-spectral factorization. Başar [19] analyzes a wide variety of
filtering, smoothing and prediction problems using game theoretic methods. Fer-
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Figure 7.9: Bode magnitude plot of g1.

nandes, de Souza and Goodwin [61] study L1, L2 and L∞ robust estimation via a
parametrization of all estimators that is an affine function of an H∞ transfer matrix
function, which is the estimation dual of the well known Q-parameterization of all
stabilizing controllers.

The inertial navigation example comes from Maybeck [147].

7.6 Problems

Problem 7.1. Suppose Q̄(t) is the solution of (7.2.16) and that Q̂(t) is the solution

of (7.2.17). If the initial conditions for these equations are Q̄(0) = Q̂(0) = Q0, show

that Q̄(t) ≥ Q̂(t). If Q(0) = Q0, conclude that Q(t) ≥ Q̄(t) ≥ Q̂(t) for all times for
which a solution to (7.2.13) exists.

Problem 7.2. Suppose the noise descriptions in the problem statement satisfy

w = Q
1
2 w̃, with ‖w̃‖2 ≤ 1

and
v = R

1
2 ṽ, with ‖ṽ‖2 ≤ 1,
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Figure 7.10: Bode magnitude plot of g2.

and that the observations are given by

y = Cx + v.

Show that there exists a causal filter F such that ẑ = F y satisfies ‖ẑ − Lx‖2 ≤ γ
for all ṽ and w̃ if and only if the filtering Riccati differential equation

Q̇ = AQ + QA′ − Q(C ′R−1C − γ−2L′L)Q + BQB′ Q(0) = 0

has a solution on [0, T ]. Show that the filter gain is given by H = QC ′R−1.

Problem 7.3. Suppose A, B, L and C have been transformed to the form

A =

[
A11 A12

0 A22

]
, B =

[
B1

0

]
, L =

[
L1 L2

]
, C =

[
C1 C2

]
,

in which A22 is asymptotically stable. Suppose also that Q̂ ≥ 0 is the stabilizing
solution to the algebraic Riccati equation

A1Q̂ + Q̂A′
1 − Q̂(C ′

1C1 − γ−2L′
1L1)Q̂ + B1B

′
1 = 0.

Show that

Q =

[
Q̂ 0
0 0

]
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is the stabilizing solution to

AQ + QA′ − Q(C ′C − γ−2L′L)Q + BB′ = 0.

Problem 7.4. Suppose that the signal generator is

ẋ = Ax + Bw, x(0) = 0,

y = Cx + Dw,

in which DD′ = I. Show that the estimator gain for this problem is H = QC ′+BD′,
where Q satisfies the Riccati equation

Q̇ = ĀQ + QĀ′ − Q(C ′C − γ−2L′L)Q + B̄B̄′

with initial condition Q(0) = 0. The matrices Ā and B̄ are given by

Ā = A − BD′C and B̄B̄′ = B(I − D′D)B′.

Write down the generator of all filters that satisfy ‖R‖[0,T ] < γ.

Problem 7.5. Verify that the inequality (7.3.9) is equivalent to the inequality
(7.3.10).

Problem 7.6. Suppose the measurement noise v(t) is frequency weighted by the
causal and causally invertible system

˙̃x = Ã(t)x̃(t) + B̃(t)ṽ(t)

v(t) = C̃(t)x̃(t) + D̃(t)ṽ(t).

Show how one may reduce this frequency weighted estimation problem into a stan-
dard problem of the form given in Problem 7.4.

How would you deal with problems in which w(t) is frequency weighted?

Problem 7.7.
In certain applications one may wish to frequency weight the estimation error

as shown in Figure 7.11, with W , W−1 ∈ RH∞.
If

[
G1

G2

]
s
=




A B
C 0
L 0



 ,

carefully derive a formula for all filters with the property ‖R‖∞ < γ which is free of

state inflation; R maps the disturbance to φ. Note that deg(F ) ≤ deg(

[
G1

G2

]
) +

deg(W ); deg(·) denotes the McMillan degree.
(Hint: Redraw Figure 7.11 as Figure 7.12 and solve for F̃ using the augmented

function G̃1. The filter we seek may then be recovered by setting F = W−1F̃ .
Mind the extra states now!)
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Figure 7.11: A configuration for frequency weighted estimation errors.

Problem 7.8. Consider the signal generator

ẋ = Ax + Bw + B2ẑ

y = Cx + v

ẑ = F y.

As usual, we seek to choose the filter F such that R : d 7→ (ẑ − Lx) has certain
properties. Since the filter output affects the signal being estimated, this is a closed-
loop estimation problem.

1. Show that a causal linear filter F satisfying ‖R‖[0,T ] < γ exists if and only if
the Riccati differential equation (7.2.13) has a solution on [0, T ]. Show that
all filters are generated by F = F`(F a,U), in which U is a causal, linear
system such that ‖U‖[0,T ] < γ and

F a
s
=




A + B2L − QC ′C QC ′ B2 − γ−2QL′

L 0 I
−C I 0



 .

2. If (A,C) is detectable, (A,B) has no uncontrollable modes on the imaginary
axis and A+B2L is asymptotically stable, show that there exists an internally-
stabilizing filter F for the generalized regulator problem defined by

P
s
=




A
[

B 0
]

B2

− L
[

0 0
]

I

C
[

0 I
]

0




if and only if the algebraic Riccati equation (7.3.5) has a stabilizing nonneg-
ative definite solution. Give a parametrization of all such filters.

Problem 7.9. (Xie, de Souza and Fu [214]) Consider the signal generator

ẋ = (A + H1∆E)x + Bw

y = (C + H2∆E)x + v,
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Figure 7.12: One solution to the frequency weighted estimation problem.

in which the matrices A, B, C, H1, H2 and E are known, but the stable perturbation
∆ is unknown with the property ‖∆‖∞ < 1. We require an estimate ẑ = F y of Lx
such that ‖R‖∞ < 1, where R maps the disturbance to the estimation error ẑ−Lx.

Set up this configuration as a generalized regulator problem.
(Hint: Set up a generalized regulator problem that includes

[
H ′

1 H ′
2

]′
w̃ as

an additional input and Ex as an additional output.)
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The H∞ Generalized

Regulator Problem

8.1 Introduction

We now turn to the problem of synthesizing controllers for the H∞ generalized reg-
ulator problem posed in Section 4.2.1. In the case of the LQG generalized regulator
problem, it is well known that the synthesis is achieved via a decomposition, or
separation, into an optimal state-feedback control problem and an optimal state
estimation problem. The optimal state-feedback controller is given in terms of
the solution of a Riccati differential equation, which is solved backwards in time
from a terminal condition. This state-feedback controller is also the optimal full-
information controller. The optimal state estimator is the Kalman filter and the
filter gain is given in terms of the solution of a second Riccati differential equation,
which is solved forwards in time from an initial condition. In the infinite-horizon,
time-invariant case, the solutions to the Riccati differential equations are replaced
with the stabilizing solutions to the corresponding algebraic Riccati equations.

Although there are many similarities between the solution of the LQG problem
and the H∞ generalized regulator problem, the LQG problem and its H∞ coun-
terpart are also quite different in several respects. The following two facts are the
source of these differences:

• Full-information H∞ controllers depend on the way in which the exogenous
signal enters the system dynamics—that is, on B1. In full-information LQG
control, B1 does not affect the optimal controller, only the optimal cost.

• An H∞ filter that estimates −Fx is −Fx̂, in which x̂ depends on F . In the
Kalman filter situation, the optimal estimate of −Fx is −Fx̂, in which x̂, the

285
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optimal state estimate, does not depend on F .

A further complication stems from the need to address existence questions, because
the Riccati equations associated with H∞ control and filtering problems do not
always have solutions, unlike their LQG counterparts.

We will show that all solutions to the H∞ generalized regulator problem have
the form of an H∞ filter that estimates the full-information H∞ control law. This
yields necessary and sufficient conditions for the existence of controllers in terms of
two Riccati equations. The second Riccati equation depends on the solution to the
first. Manipulations involving these Riccati equations enable us to show that the
H∞ generalized regulator problem has a solution if and only if:

1. the Riccati equation associated with the full-information control problem has
a solution (on some appropriate time interval which may be infinite);

2. the Riccati equation associated with the H∞ estimation of C1x has a solution
(on the same interval); and

3. a coupling condition is satisfied.

If solutions exist, there is a LFT parametrizing all controllers. The controller gen-
erator is given in terms of the problem data and the solutions of the two Riccati
equations.

8.1.1 Problem statement

We consider the generalized plant P described by the state-space system

ẋ = Ax + B1w + B2u, x(0) = 0, (8.1.1)

z = C1x + D12u (8.1.2)

y = C2x + D21w, (8.1.3)

in which w is an l-dimensional exogenous input, u is an m-dimensional control
signal, y is a q-dimensional measurement and z is a p-dimensional objective signal.
The state vector x has dimension n. We assume that for all times of interest

D′
12D12 = Im and D21D

′
21 = Iq. (8.1.4)

By assuming that the loop shifting and scaling transformations described in Sec-
tion 4.6 have already been carried out, the simplified objective (8.1.2) and measure-
ment (8.1.3) may be considered instead of the more complicated expressions

z = C1x + D11w + D12u

y = C2x + D21w + D22u.
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Figure 8.1: The generalized regulator configuration.

Finite-horizon problem

In the case of a finite horizon, the generalized plant P described by (8.1.1) to (8.1.3)
may be time-varying and we seek a causal, linear controller

u = Ky (8.1.5)

such that the closed-loop system Rzw = F`(P ,K) satisfies

‖Rzw‖[0,T ] < γ. (8.1.6)

Infinite-horizon problem

In the case of an infinite horizon, the generalized plant P described by (8.1.1) to
(8.1.3) is assumed to be time-invariant. We consider the class of causal, linear,
time-invariant and finite-dimensional controllers that internally stabilize P . Any
such controller will be called admissible for P . Our aim is to find an admissible
controller such that the closed-loop system Rzw = F`(P ,K) satisfies the infinity
norm objective

‖Rzw‖∞ < γ. (8.1.7)

The standard assumptions: We will assume that:

1. The pair (A,B2) is stablizable and the pair (A,C2) is detectable.

2. The matrices D12 and D21 satisfy (8.1.4).

3.

rank

[
A − jωI B2

C1 D12

]
= n + m, for all real ω, (8.1.8)

4.

rank

[
A − jωI B1

C2 D21

]
= n + q, for all real ω. (8.1.9)
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The assumption that (A,B2, C2) is stabilizable and detectable is necessary and suf-
ficient for the existence of admissible controllers. This is proved in Appendix A (see
Lemma A.4.2). The “full rank on the imaginary axis” assumptions are necessary
for the existence of stabilizing solutions to the Riccati equations that we use to
characterize the solution to the H∞ generalized regulator problem. Problem 8.14
explores a way in which these assumptions may be removed.

8.2 Finite-horizon results

As has been our practice throughout the synthesis theory chapters, we consider the
finite-horizon case first. The plant (8.1.1) to (8.1.3) is time-varying and we seek a
causal, linear controller u = Ky such that the objective (8.1.6) is satisfied.

Before considering the general case, it is instructive to consider two special cases
which can be solved using only one Riccati equation.

Simple measurement feedback problems

Consider the measurement feedback problem in which

y = C2x + w (8.2.1)

is used instead of (8.1.3). In this case, the observer

˙̂x = Ax̂ + B2u + B1(y − C2x̂), x̂(0) = 0, (8.2.2)

ŵ = y − C2x̂ (8.2.3)

perfectly reconstructs the state x and exogenous input w from the measurements
y. Consequently, we may replace the state x in any full-information controller
with x̂, generated from y by the observer (8.2.2) and (8.2.3). We conclude that a
measurement feedback controller for this problem exists if and only if the Riccati
equation

−Ẋ∞ = X∞Ã + Ã′X∞ + C̃ ′C̃

− X∞(B2B
′
2 − γ−2B1B

′
1)X∞, X∞(T ) = 0, (8.2.4)

has a solution on [0, T ]. The matrices Ã and C̃ are given by

Ã = A − B2D
′
12C1 (8.2.5)

C̃ ′C̃ = C ′
1(I − D12D

′
12)C1, (8.2.6)

which result from reducing (8.1.2) to the form

z̃ =

[
C̃x
ũ

]
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using the transformation ũ = u + D′
12C1x. For more details, see Section 5.2.3 and

Problem 6.1. One controller that achieves the objective is u∗ = −F∞x̂, in which

F∞ = D′
12C1 + B′

2X∞.

We obtain all solutions to this special measurement feedback problem by combining
the generator of all full-information controllers with the observer (8.2.2) and (8.2.3).
This yields the LFT parametrization K = F`(Ka,U), in which U is a causal linear
system such that ‖U‖[0,T ] < γ and Ka is given by

Ka
s
=




A − B1C2 − B2F∞ B1 B2

−F∞ 0 I
−(C2 + γ−2B′

1X∞) I 0



 .

Since the observer has no effect on the achievable norm, a measurement of the form
(8.2.1) is no worse than full information, in terms of achieving closed-loop norm
objectives.

Another special situation is the case in which

z = C1x + u (8.2.7)

replaces (8.1.2). This problem is the adjoint of the problem just considered and is
the closed-loop estimation problem discussed in Problem 7.8. A solution exists if
and only if the Riccati equation

Ẏ∞ = ĀY∞ + Y∞Ā′ + B̄B̄′

− Y∞(C ′
2C2 − γ−2C ′

1C1)Y∞, Y∞(0) = 0, (8.2.8)

has a solution on [0, T ]. The matrices Ā and B̄ are given by

Ā = A − B1D
′
21C2 (8.2.9)

B̄B̄′ = B1(I − D′
21D21)B

′
1. (8.2.10)

All solutions are generated by the LFT K = F`(Ka,U) in which U is a causal
linear system such that ‖U‖[0,T ] < γ and Ka is given by

Ka
s
=




A − B2C1 − H∞C2 H∞ B2 + γ−2Y∞C ′

1

−C1 0 I
−C2 I 0



 ,

in which
H∞ = B1D

′
21 + Y∞C ′

2.

8.2.1 Two necessary conditions

We now consider the general case in which P is described by (8.1.1) to (8.1.3).
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Measurement feedback and full-information control

Any measurement feedback controller is also a full-information controller, since
(8.1.3) and (8.1.5) imply that

u =
[

KC2 KD21

] [
x
w

]
. (8.2.11)

The existence of a measurement feedback controller that achieves the objective
(8.1.6) therefore implies the existence of a full-information controller that achieves
(8.1.6). Hence, by our full-information H∞ control results, the existence of a so-
lution to the Riccati differential equation (8.2.4) is necessary for the existence of a
solution to the measurement feedback problem.

Measurement feedback and filtering

As a dual to the above observations, consider the signal generating system

ẋo = Axo + B1w, xo(0) = 0, (8.2.12)

yo = C2xo + D21w (8.2.13)

and the filter F defined by

˙̃x = Ax̃ + B2K(yo + C2x̃)

z̃ = C1x̃ + D12K(yo + C2x̃).

Then the system mapping w to C1xo + z̃ is just F`(P ,K) and we conclude that if
K satisfies (8.1.6) for the signal generator (8.1.1) to (8.1.3), then F satisfies

‖C1xo + z̃‖2
2,[0,T ] − γ2‖w‖2

2,[0,T ] ≤ −ε‖w‖2
2,[0,T ]

for all w ∈ L2[0, T ] and some ε > 0.1 Hence, by invoking our H∞ filtering results,
the existence of a solution to the Riccati differential equation (8.2.8) is also necessary
for the existence of a solution to the measurement feedback problem.

The separation principle

Let us now recall the solution to the LQG measurement feedback problem. The fil-
tering problem there was to find an optimal estimate of the optimal full-information
control law. Since this is of the form u = −Fx, this amounts to finding an optimal
state estimate. The Kalman filter combined with the optimal, full-information con-
trol law therefore provides the solution. The control and estimation problems are
completely decoupled. It is not necessary to decide on the noise covariances before
designing the full-information controller, nor is it necessary to decide on the control
objective before designing the Kalman filter.

1x = xo + x̃, y = y0 + ỹ and z = C1xo + z̃.
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The decoupling of the control and estimation problems in LQG controller syn-
thesis results from the fact that the optimal estimator of −Fx is given by −Fx̂,
in which x̂ is the optimal state estimate, which is independent of F . As we know,
this does not hold for H∞ filtering, since the state estmate depends on F . For this
reason, the filter cannot be designed independently of the control objective, as the
filter required depends on the control law. This means that although the existence of
solutions to the Riccati equations (8.2.4) and (8.2.8) are necessary conditions, they
are not sufficient conditions for the existence of a solution to the H∞ generalized
regulator problem. Nevertheless, the solution to the H∞ controller synthesis prob-
lem may be obtained by solving the full-information control problem and finding
an H∞ estimator for the full-information control. This is the separation principle
of H∞ control.

8.2.2 Necessary and sufficient conditions

Suppose the Riccati differential equations (8.2.4) and (8.2.8) have solutions on [0, T ].
We know from our full-information control results that the controller u∗ =

−F∞x, in which F∞ = D′
12C1 + B′

2X∞, achieves the objective (8.1.6). More-
over, any closed-loop system Rzw = F`(P ,K) satisfying the objective (8.1.6) is
generated by

u − u∗ = Ũ(w − w∗),

in which w∗ = γ−2B′
1X∞x, for some causal, linear system Ũ satisfying

‖Ũ‖[0,T ] < γ. (8.2.14)

Thus, in order to determine whether or not a measurement feedback controller
u = Ky satisfies the objective (8.1.6), we evaluate the system Ũ that maps w−w∗

to u− u∗. Writing the state dynamics (8.1.1) and measurement equation (8.1.3) in
terms of w − w∗ instead of w, we obtain

ẋ = (A + γ−2B1B
′
1X∞)x + B1(w − w∗) + B2u

y = (C2 + γ−2D21B
′
1X∞)x + D21(w − w∗).

From this, we immediately see that the system Ũ that maps w − w∗ to u − u∗ is
generated by the LFT




ẋ

u − u∗

y



 =




A + γ−2B1B

′
1X∞ B1 B2

F∞ 0 I
C2 + γ−2D21B

′
1X∞ D21 0








x

w − w∗

u



 ,

u = Ky.

The parametrization of all solution to the full-information problem says that the
controller K satisfies the objective (8.1.6) if and only if Ũ satisfies (8.2.14). The
advantage of considering this modified generalized regulator problem is that its
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objective signal u − u∗ = F∞x + u has precisely the form of the special objective
(8.2.7) considered earlier. Applying these results, we conclude that K exists if and
only the Riccati differential equation

Ż∞ = AzZ∞ + Z∞A′
z + B̄B̄′

− Z∞(C ′
2zC2z − γ−2F ′

∞F∞)Z∞, Z∞(0) = 0, (8.2.15)

has a solution on [0, T ]. In (8.2.15), C2z and Az are given by

C2z = C2 + γ−2D21B
′
1X∞, (8.2.16)

Az = A + γ−2B1B
′
1X∞ − B1D

′
21C2z

= A + γ−2B1(I − D′
21D21)B

′
1X∞ − B1D

′
21C2. (8.2.17)

Furthermore, all solutions are generated by the LFT

K = F`(Ka,U), (8.2.18)

in which U is a causal linear system such that

‖U‖[0,T ] < γ. (8.2.19)

The generator of all solutions Ka is given by the realization

Ka
s
=




Ak Bk1 Bk2

Ck1 0 I
Ck2 I 0



 , (8.2.20)

in which

Ak = A + γ−2B1B
′
1X∞ − B2F∞ − Bk1C2z[

Bk1 Bk2

]
=

[
B1D

′
21 + Z∞C ′

2z B2 + γ−2Z∞F ′
∞

]
[

Ck1

Ck2

]
=

[
−F∞
−C2z

]
.

The fact that the (1, 2)- and (2, 1)-blocks of Ka have causal inverses means that
we capture all causal, linear, measurement feedback controllers if U is allowed to
range over the class of causal, linear systems (without restriction on its norm).

The central controller: Notice that the central controller obtained by setting
U = 0 can be written as

˙̂x = Ax̂ + B1ŵ
∗ + B2u + Bk1

(
y − (C2x̂ + D21ŵ

∗)
)

u = −F∞x̂

ŵ∗ = γ−2B′
1X∞x̂,
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which is shown in block diagram form in Figure 8.2. We see that u is generated by
the feedback gain F∞ acting on a state estimate resulting from an observer. The
observer is driven by the difference between the measured y and the measurement
estimate ŷ∗ = C2x̂ + D21ŵ

∗ that would occur if the exogenous signal were w∗.
Recall that w∗ is the worst exogenous input in L2[0, T ] for the full-information
control problem. It is therefore also the worst exogenous input in L2[0, T ] for the
measurement feedback problem. The worst-case nature of H∞ control is therefore
evident in the structure of the controller.

f f f f

s

s
s

∫
C2

A

−F∞ γ−2B′
1X∞

D21

B1

Bk1
- - - - -

¾ -

6

6

¾

6

-

?-

¾

6

B2

6

?-

ŵ∗

ŵ∗

x̂

u

y

ŷ∗

−

Figure 8.2: The central H∞ controller.

Reformulation of the conditions

Although this analysis offers a complete solution to the finite-horizon, measurement
feedback problem, we have not made use of Y∞, the existence of which is necessary
for the existence of a solution to the H∞ measurement feedback problem. It must
be that the existence of Y∞ is necessary for the existence of Z∞, and that the
existence of Z∞ is sufficient for the existence of Y∞. In fact,

Z∞ = Y∞(I − γ−2X∞Y∞)−1 = (I − γ−2Y∞X∞)−1Y∞. (8.2.21)

We summarize our results in the following theorem.

Theorem 8.2.1 There exists a causal, linear measurement feedback controller for
the time-varying plant defined by (8.1.1) to (8.1.3) that satisfies the objective (8.1.6)
if and only if:

1. the Riccati differential equation (8.2.4) has a solution X∞ on [0, T ];
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2. the Riccati differential equation (8.2.8) has a solution Y∞ on [0, T ];

3. ρ(X∞(t)Y∞(t)) < γ2 for all t ∈ [0, T ].2

If these conditions hold, K is a causal, linear measurement feedback controller sat-
isfying (8.1.6) if and only if K is given by the LFT (8.2.18) for some causal, linear
U satisfying (8.2.19). The generator Ka is given by (8.2.20), with Z∞ given by
(8.2.21).

Proof. We need to prove that Items 2 and 3 are equivalent to the existence of
Z∞.

Suppose Z∞ exists. Since X∞ ≥ 0 and Z∞ ≥ 0, I + γ−2X∞Z∞ is nonsingular
for all t ∈ [0, T ]. A calculation that is requested in Problem 8.4 shows that Y∞ =
Z∞(I + γ−2X∞Z∞)−1 is the solution to the Riccati equation (8.2.8). We also have

ρ(X∞Y∞) = ρ
(
X∞Z∞(I + γ−2X∞Z∞)−1

)
)

= γ2 ρ(X∞Y∞)

γ2 + ρ(X∞Y∞)

< γ2.

Conversely, if Items 2 and 3 are satisfied, then I − γ−2X∞Y∞ is nonsingular and a
calculation shows that Z∞ = Y∞(I − γ−2X∞Y∞)−1 is the solution to (8.2.15).

Main points of the section

1. If a solution to the H∞ generalized regulator problem exists, then
there exist solutions X∞ and Y∞ to the Riccati differential equa-
tions associated with the full-information H∞ control problem and
the H∞ estimation of C1x given y.

2. Any solution of the H∞ generalized regulator problem is a H∞
filter that estimates the full-information control law u∗ = −F∞x
in such a way that

sup
w−w∗∈L2[0,T ]

‖u − u∗‖2,[0,T ]

‖w − w∗‖2,[0,T ]
< γ,

with w∗ = γ−2B′
1X∞x.

3. A solution to the H∞ generalized regulator problem exists if and
only if X∞ exists, Y∞ exists and ρ(X∞Y∞) < γ2.

4. The central controller is u = −F∞x̂, in which x̂ comes from an
observer that assumes the exogenous signal is ŵ∗ = γ−2B′

1X∞x̂,
which is an estimate of the worst-case disturbance in L2[0, T ]. The
number of states in this controller is equal to the number of states
in the generalized plant description.

2ρ(·) is the spectral radius: ρ(Q) = maxi |λi(Q)|.
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8.3 Infinite-horizon results

We now consider the time-invariant plant (8.1.1) to (8.1.3) and we assume that the
standard assumptions hold. We seek an admissible controller (8.1.5) such that the
closed-loop system Rzw = F`(P ,K) satisfies (8.1.7). In the infinite-horizon case,
stability becomes an additional concern.

Internal stability

In this section, we note a fact concerning the internal stability of LFTs that can be
found in Appendix A (see Lemma A.4.1).

Let (AK , BK , CK ,DK) be a minimal realization of K, and let the natural
realization3 of F`(P ,K) be

F`(P ,K)
s
=

[
APK BPK

CPK DPK

]
. (8.3.1)

(See Lemma 4.1.2 for more details.) Then K is admissible (i.e., internally stabilizes
P ) if and only if APK is asymptotically stable.

8.3.1 A necessary condition

If K is an admissible controller, APK is asymptotically stable, which implies that
x ∈ L2[0,∞) for any w ∈ L2[0,∞) and any x(0). Therefore, K

[
C2 D21

]
is a sta-

bilizing, full-information controller. The existence of a stabilizing, full-information
controller such that ‖Rzw‖∞ < γ implies that there is a solution to the algebraic
Riccati equation

X∞Ã + Ã′X∞ − X∞(B2B
′
2 − γ−2B1B

′
1)X∞ + C̃ ′C̃ = 0 (8.3.2)

such that Ã − (B2B
′
2 − γ−2B1B

′
1)X∞ is asymptotically stable and X∞ ≥ 0. The

matrices Ã and C̃ are defined by (8.2.5) and (8.2.6) as before.
Furthermore, all internally-stable closed-loop systems that satisfy (8.1.7) are

generated by
u − u∗ = Ũ(w − w∗) (8.3.3)

for some Ũ ∈ H∞ such that ‖Ũ‖∞ < γ. In (8.3.3),

u∗ = −F∞x

F∞ = D′
12C1 + B′

2X∞

w∗ = γ−2B′
1X∞x.

3The realization obtained by eliminating u and y
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8.3.2 An equivalent problem

If u is generated by the measurement feedback u = Ky, then Ũ in (8.3.3) is
generated by the LFT

Ũ = F`(G,K), (8.3.4)

in which the system G is given by

G
s
=




A + γ−2B1B

′
1X∞ B1 B2

F∞ 0 I
C2 + γ−2D21B

′
1X∞ D21 0



 . (8.3.5)

We now establish that K stabilizes P and ‖F`(P ,K)‖∞ < γ if and only if K

stabilizes G and ‖F`(G,K)‖∞ < γ.

Lemma 8.3.1 Suppose X∞ ≥ 0 is the stabilizing solution to (8.3.2). The following
are equivalent:

1. K is admissible for P and ‖F`(P ,K)‖∞ < γ;

2. K is admissible for G and ‖F`(G,K)‖∞ < γ.

Furthermore, for all λ,

rank

[
A + γ−2B1B

′
1X∞ − λI B1

C2 + γ−2D21B
′
1X∞ D21

]
= rank

[
A − λI B1

C2 D21

]
. (8.3.6)

Proof. Let (AK , BK , CK ,DK) be a minimal realization of K, and let the natural
realizations of F`(P ,K) and F`(G,K) be (8.3.1) and

F`(G,K)
s
=

[
AGK BGK

CGK DGK

]

respectively. An examination of these realizations shows that

[
AGK − λI BGK

]

=
[

APK − λI BPK

] [
I 0[

γ−2B′
1X∞ 0

]
I

]
, (8.3.7)

which is a restatement of the fact that P is driven by w and u, while G is driven
by w − w∗ and u. (Problem 8.5 requests a verification of (8.3.7).)

Suppose Item 1 holds. Since K
[

C2 D21

]
is a stabilizing, full-information

controller, we conclude from the parametrization of all full-information controllers
that Ũ = F`(G,K) ∈ RH∞ and ‖F`(G,K)‖∞ < γ. We now show that the
realization (AGK , BGK , CGK) is stabilizable and detectable. By Lemma 4.1.2, any
unobservable mode (AGK , CGK) is a zero of

[
A + γ−2B1B

′
1X∞ − λI B2

F∞ I

]
.
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All such zeros are asymptotically stable, because they are the eigenvalues of A −
B2F∞ + γ−2B1B

′
1X∞, which are all in the closed-left-half plane, since X∞ is the

stabilizing solution to (8.3.2). By (8.3.7), any uncontrollable mode of (AGK , BGK) is
an uncontrollable mode of (APK , BPK); these modes are all stable since K stabilizes
P . Thus (AGK , BGK , CGK ,DGK) is a stabilizable and detectable realization of the
stable transfer function matrix F`(G,K). Hence AGK is asymptotically stable, and
we conclude that K is admissible for G.

Suppose Item 2 holds. Then Ũ = F`(G,K) ∈ RH∞ and ‖Ũ‖∞ < γ. By
the parametrization of all stabilizing, full-information controllers, u = −(F∞ +

γ−2ŨB′
1X∞)x + Ũw is a stabilizing full-information controller, and we conclude

that K stablizes P .
Equation (8.3.6) follows from the identity
[

A + γ−2B1B
′
1X∞ − λI B1

C2 + γ−2D21B
′
1X∞ D21

]
=

[
A − λI B1

C2 D21

] [
I 0

γ−2B′
1X∞ I

]
.

8.3.3 Necessary and sufficient conditions

Suppose that X∞ ≥ 0 is the stabilizing solution to (8.3.2). By Lemma 8.3.1, we
may confine our attention to the problem of finding an admissible controller for G

such that
‖F`(G,K)‖∞ < γ. (8.3.8)

This is a closed-loop estimation problem—we seek an estimate of the control law
u = −F∞x. By (8.1.9) and (8.3.6), G satisfies the assumptions required for the
solution of this problem (see Problem 7.8). We conclude that an admissible K

satisfying ‖F`(G,K)‖∞ < γ exists if and only if there is a solution to the algebraic
Riccati equation

AzZ∞ + Z∞A′
z − Z∞(C ′

2zC2z − γ−2F ′
∞F∞)Z∞ + B̄B̄′ = 0 (8.3.9)

such that Az − Z∞(C ′
2zC2z − γ−2F ′

∞F∞) is asymptotically stable and Z∞ ≥ 0. In
this case, all admissible measurement feedback controllers satisfying (8.3.8), and
hence also (8.1.7), are generated by

K = F`(Ka,U), U ∈ RH∞, ‖U‖∞ < γ. (8.3.10)

The generator Ka is given by

Ka
s
=




Ak Bk1 Bk2

Ck1 0 I
Ck2 I 0



 , (8.3.11)

in which

Ak = A + γ−2B1B
′
1X∞ − B2F∞ − Bk1C2z[

Bk1 Bk2

]
=

[
B1D

′
21 + Z∞C ′

2z B2 + γ−2Z∞F ′
∞

]
[

Ck1

Ck2

]
=

[
−F∞
−C2z

]
.
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As in the finite-horizon case, we can rewrite everything in terms of a solution to
the algebraic Riccati equation

ĀY∞ + Y∞Ā′ − Y∞(C ′
2C2 − γ−2C ′

1C1)Y∞ + B̄B̄′ = 0. (8.3.12)

Theorem 8.3.2 Suppose the standard assumptions hold. There exists an admis-
sible K such that the closed-loop system Rzw = F`(P ,K) satisfies (8.1.7) if and
only if:

1. there is a solution to the algebraic Riccati equation (8.3.2) such that Ã −
(B2B

′
2 − γ−2B1B

′
1)X∞ is asymptotically stable and X∞ ≥ 0;

2. there is a solution to the algebraic Riccati equation (8.3.12) such that Ā −
Y∞(C ′

2C2 − γ−2C ′
1C1) is asymptotically stable and Y∞ ≥ 0;

3. ρ(X∞Y∞) < γ2.

In case these conditions hold, K is an admissible controller satisfying (8.1.7) if and
only if K is given by the LFT (8.3.10). The generator Ka is given by (8.3.11) with
Z∞ given by

Z∞ = Y∞(I − γ−2X∞Y∞)−1 = (I − γ−2Y∞X∞)−1Y∞.

Proof. We need to show that Items 2 and 3 are equivalent to the existence of a
stabilizing, nonnegative definite Z∞.

Suppose Z∞ exists. Then Y∞ = Z∞(I + γ−2X∞Z∞)−1 exists, is nonnegative
definite (because X∞ and Z∞ are) and a calculation that is requested in Problem 8.2
shows that Y∞ satisfies (8.3.12). The same argument as was used in the proof of
the finite-horizon result shows that ρ(X∞Y∞) < γ2. It remains to show that Y∞ is
the stabilizing solution. This follows from the identity

Ā − Y∞(C ′
2C2 − γ−2C ′

1C1)

= (I + γ−2Z∞X∞)−1
(
Az − Z∞(C ′

2zC2z − γ−2F ′
∞F∞)

)

×(I + γ−2Z∞X∞), (8.3.13)

the verification of which is also requested in Problem 8.2.
Conversely, if Items 2 and 3 hold, then Z∞ = Y∞(I − γ−2X∞Y∞)−1 exists, is

nonnegative definite and satisfies (8.3.9). The identity (8.3.13) shows that it is the
stabilizing solution to (8.3.9).

Main points of the section

1. A solution to the H∞ generalized regulator problem exists if and
only if there exist stabilizing, nonnegative definite solutions X∞
and Y∞ to the algebraic Riccati equations associated with the full-
information H∞ control problem and the H∞ estimation of C1x
given y such that the coupling condition ρ(X∞Y∞) < γ2 is satisfied.
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2. Any solution of the H∞ generalized regulator problem is a H∞
filter that estimates the full-information control law u∗ = −F∞x
in such a way that

sup
w−w∗∈L2[0,∞)

‖u − u∗‖2

‖w − w∗‖2
< γ,

with w∗ = γ−2B′
1X∞x.

3. The “central” controller has the same number of states as the gen-
eralized plant description.

8.4 Example

We conclude this chapter with a simple example, which illustrates the use of the
generalized regulator. The system we will consider is the servomechanism illustrated
in Figure 8.3, where the aim is to control the speed of the inertia J2 by applying

f fs ss
s

J1 J240k(0)

k

- - - - - -

¾

6

?

−

Θ̇ref e

u

T

D1, Θ1 D2, Θ2

Θ̇2

Mass-Spring System

K

L

Θ̇K

Figure 8.3: Mass-spring system, feedback controller and prefilter.

a controlled torque T to the inertia J1. The control system is fed with a reference
signal Θ̇ref and a speed measurement Θ̇2. The drive motor is modelled by a simple
gain of 40. The inertias J1 and J2 are coupled by a flexible shaft K. The damping
coefficients associated with J1 and J2 are D1 and D2 respectively. Load variations
are modelled as an additive disturbance L to Θ̇2. Numerical values for the problem
data are given Table 8.1 in mks units.

A torque balance on J1 gives

T = J1Θ̈1 + D1Θ̇1 + K(Θ1 − Θ2)

⇒ Θ̈1 = T/J1 − Θ̇1D1/J1 − (Θ1 − Θ2)K/J1,

while a torque balance on J2 yields

K(Θ1 − Θ2) = JΘ̈2 + D2Θ̇2

⇒ Θ̈2 = (Θ1 − Θ2)K/J2 − D2Θ̇2/J2.
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J1 1.0
J2 2.0
D1 0.01
D2 0.02
K 30.0

Table 8.1: Problem data.

Combining these equations and defining Θe = Θ1 − Θ2 gives




Θ̈1

Θ̈2

Θ̇e



 =




−D1/J1 0 −K/J1

0 −D2/J2 K/J2

1 −1 0








Θ̇1

Θ̇2

Θe



 +




40/J1

0
0



 e

Θ̇2 =
[

0 1 0
]



Θ̇1

Θ̇2

Θe



 ,

which is the open-loop model g of the system. The open-loop frequency response
is given in Figure 8.4, and the single shaft resonant frequency is clearly visible at
6.7082 rad/s.

One solution comes from evaluating a stabilizing controller that minimizes the

transfer function matrix mapping

[
Θ̇K

L

]
to

[
e

Θ̇2

]
. This will ensure good track-

ing and load disturbance attenuation by keeping ‖e‖2 small. The mapping is given
by the LFT




e

Θ̇2

Θ̇2



 =




1 0 −1
g 1 −g

g 1 −g








Θ̇K

L
u



 ,

u = kΘ̇2.

Solving the two Riccati equations associated with this generalized regulator
problem reveals that:

1. The optimum norm is γopt = 3.8856.

2. The optimal controller is

kopt
s
=




6.3057 33.3704 8.0177

−16.2572 −31.6275 −11.3415
4.2992 10.5358 3.6283





=
3.6283s2 + 6.8628s + 88.0362

s2 + 25.3218s + 343.0775
.
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Figure 8.4: Open loop frequency response.

3. The closed-loop poles are −5.4056, −2.6297± j8.4329 and −7.3384± j8.4702.

Notice that the optimal controller has degree two, in contrast to central suboptimal
controllers, which have degree three. We will have more to say about the solution
and properties of optimal controllers in Chapter 11.

The design is completed by introducing the prefilter k(0) = 0.2566. If the steady-
state value of the speed is Θ̇2ss, then k(0)Θ̇2ss ≈ k(0)Θ̇2, implying that Θ̇2ss ≈ Θ̇2.
This follows from the fact that the steady-state torque required to overcome the
inertial damping is low. In the case of no inertial damping, the system introduces
its own integral action, thereby completely eliminating the steady-state error. This
follows because, in this case, the steady-state torque is zero and Θ̇2ss = Θ̇2. Figure
8.5 shows the closed-loop step responses of the system—the solid curve is Θ̇2 and
the dashed curve is e. It is clear that the feedback system provides a fast and
accurate closed-loop response.

It follows from Figure 8.3 that

Θ̇2 − Θ̇ref =
(
(1 + gk)−1gk(0) − 1

)
Θ̇ref .

Figure 8.6 shows a Bode magnitude plot of this transfer function, which indicates
that the closed loop has good low-frequency tracking properties.
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Figure 8.5: Closed-loop step responses, Θ̇2 (solid) and e (dashed).

8.5 Notes and References

It has been known for some time that the H∞ generalized regulator problem could
be reduced to an approximation or “general distance” problem known as the four-
block problem [52, 36, 65]. A solution based on Davis, Kahan and Weinberger [39]
involved a reduction to the classical Nehari extension problem, the solution of which
is given by Adamjan, Arov and Krein [1, 2]. A state-space solution to the Nehari
(and other) approximation problems given by Glover [71] completed this solution
method.

Unfortunately, the cumbersome chain of factorizations required in this method-
ology involves Riccati equations of increasing dimension and the procedure was slow,
unreliable, and resulted in controllers which tended to have high state dimension.
The prospect of a simpler solution was raised by Limebeer and Hung [134], Lime-
beer and Halikias [132] and Limebeer and Anderson [129], who showed that optimal
controllers of degree one less than that of the generalized plant could be found (for
one- and two-block problems).4 Explicit solutions to some specific H∞ optimiza-
tion problems, such as Glover [73] and Kwakernaak [123], also supported the view

4The generator of all solutions to the suboptimal synthesis problem has degree equal to the
degree of the generalized plant. In the optimal case, which is considered in Chapter 11, we will
see that the generator of all optimal solutions may have lower degree.
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Figure 8.6: Magnitude frequency response of the tracking error transfer function.

that a simpler and more elegant solution to the H∞ generalized regulator problem
might exist. The work of Ball and Cohen [23] provided the first reasonably simple
solution, based on J-spectral factorization ideas, involving three Riccati equations.

The “two Riccati equation” solution to the H∞ generalized regulator problem
was first presented in Glover and Doyle [76]. The proof based on the four-block
problem is due to Glover, Limebeer, Doyle, Kasenally, Jaimoukha and Safonov [78,
135]. Independently, Hung [97, 98] obtained a solution in terms of two Riccati
equations based on a model matching problem.

The approach using full-information H∞ control and an H∞ filter estimating the
full-information controller is due to Doyle, Glover, Khargonekar and Francis [54].
Since the controller formulas in this work were already known, the substantive
contribution is the methodology, which precipitated a move away from algebraic
methods that offer little control engineering insight. The paper provides intuitive
remarks concerning “a worst-case input for the full information problem” and it
points out that the measurement feedback controller “is actually the optimal filter
. . . for estimating the full information control input, in the presence of this worst-
case input” ([54], page 838; see also page 840). Their solution is based on the
theory of mixed Hankel-plus-Toeplitz operators; they use some of the language of
game theory, but not its methods.

Tadmor [204] obtained a solution to the infinite-horizon problem based on the
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maximum principle.
The solution of the time-varying problem was developed using the theory of

linear quadratic differential games by Limebeer, Anderson, Khargonekar and Green
[130] and Ravi, Nagpal and Khargonekar [169].

The long-established connection between H∞ optimization and J-spectral fac-
torization (see Francis [65]) suggested that this approach might also yield the “two
Riccati equation” formulas (Glover and Doyle [76]). This J-spectral factorization
approach was developed in Green, Glover, Limebeer and Doyle [85] and Green [84].
There are close connections between this approach and the separation arguments
of Doyle, Glover, Khargonekar and Francis [54]. Since the J-spectral factorization
approach is based on transfer function matrices, the discrete-time case is easily han-
dled with almost no additional effort (Green [84]). We will have more to say about
the discrete-time case in Appendix B. Kwakernaak [124] has developed a polyno-
mial approach to H∞ control based on J-spectral factorization. Another approach
closely related to the J-spectral factorization methods is the J-lossless conjugation
method of Kimura, Lu and Kawatani [120].

Extensions of the theory to singular problems were given by Stoorvogel [199],
while problems involving imaginary axis zeros were treated by Scherer [193].

The monographs by Başar and Bernhard [20], which concentrates on the discrete-
time case, and Stoorvogel [201] contain expository treatments of H∞ controller
synthesis theory.

8.6 Problems

Problem 8.1.
1. Show that ρ(A) < 1 implies I − A is nonsingular.
2. Suppose A ≥ 0. Show that

ρ(A(I + A)−1) = ρ(A)/(1 + ρ(A)).

Problem 8.2. Define

HY =

[
Ā′ −(C ′

2C2 − γ−2C ′
1C1)

−B̄B̄′ −Ā

]

and

HZ =

[
A′

z −(C ′
2zC2z − γ−2F ′

∞F∞)
−B̄B̄′ −Az

]
.

1. Suppose X∞ is the stabilizing solution to (8.3.2). Show that

[
I γ−2X∞
0 I

]
HZ

[
I −γ−2X∞
0 I

]
= HY . (8.6.1)
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2. Show that the stabilizing solution to (8.3.9) exists if Y∞, the stabilizing so-
lution to (8.3.12), exists and satisfies ρ(X∞Y∞) < γ2. Show that in this case
Z∞ = Y∞(I − γ−2X∞Y∞)−1 is the stabilizing solution to (8.3.9).

3. Verify (8.3.13).

Problem 8.3. Show that the Riccati differential equation

Ṗ = A′P + PA − PDP + Q, P (0) = M, (8.6.2)

has a solution on [0,T] if and only if there exists an X such that the boundary value
problem [

P1

P2

]
X −

[
A −D
−Q −A′

] [
P1

P2

]
=

d

dt

[
P1

P2

]
(8.6.3)

has a solution on [0, T ] with P1 nonsingular for all t ∈ [0, T ] and P2(0)P−1
1 (0) = M .

In this case, show that P = P2P
−1
1 is a solution to (8.6.2) and that

[
I
P

]
(A − DP ) −

[
A −D
−Q −A′

] [
I
P

]
=

[
0

Ṗ

]
.

Problem 8.4. Suppose X∞ satisfies (8.2.4).
1. If Z∞ satisfies (8.2.15), show that Y∞ = Z∞(I + γ−2X∞Z∞)−1 exists and

satisfies (8.2.8). Furthermore, show that ρ(X∞Y∞) < γ2.
2. If Y∞ satisfies (8.2.8) and ρ(X∞Y∞) < γ2, show the Riccati equation (8.2.15)

has the solution Z∞ = Y∞(I − γ−2X∞Y∞)−1.

Problem 8.5. Verify the decomposition indicated by equation (8.3.7).

Note: The next few problems are concerned with special cases of the general-
ized regulator problem for which a formula for the optimal infinity norm can be
derived—the minimum may be determined via an eigenvalue calculation. The sim-
ple measurement feedback problems considered on page 288 have the feature that
the objective signal z = C1x + u can be arbitrarily selected via the choice of u. In
addition, the measurement y = C2x+w enables complete reconstruction of w and x
from y and x(0). When the objective and the measurement are both of this simple
form, an explicit eigenvalue formula can be obtained for the optimal performance
level γ. The dependence of the controller on γ can also be determined explicitly. We
consider the finite-horizon case first, followed by the problems of maximizing the
robustness margin for additive model errors, complementary sensitivity minimiza-
tion and sensitivity minimization. We conclude with the general infinite-horizon
problem with this special structure.

Problem 8.6. We consider the general “one-block” generalized regulator prob-
lem which is characterized by the off-diagonal blocks of the generalized plant being
square. By assuming that the loop shifting and scaling transformations described
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in Section 4.6 have been carried out, we may suppose, without loss of generality,
that the generalized plant P is of the form:




ẋ
z
y



 =




A B1 B2

C1 0 I
C2 I 0








x
w
u



 . (8.6.4)

1. Show that the controller

˙̂x = Ax̂ + B2u + B1(y − C2x̂)

u∗ = −C1x̂

makes the closed-loop mapping from w to z identically zero. Now show that
U is the closed-loop system mapping w to z generated by the controller




˙̂x
u
ŵ



 =




A − B1C2 − B2C1 B1 B2

−C1 0 I
−C2 I 0








x̂
y

u − u∗





u − u∗ = U ŵ.

By observing that the controller inverts the plant, conclude that any desired
closed loop can be achieved.

2. Show that for any γ ≥ 0, there exists a causal, linear controller such that the
closed-loop system R : w 7→ z satisfies ‖R‖[0,T ] ≤ γ.

3. In the infinite-horizon problem, we must consider internal stability issues.
Show that if A − B1C2 and A − B2C1 are asymptotically stable, then there
exists a stabilizing controller such that ‖R‖∞ ≤ γ for any γ ≥ 0.
(Hint: Use Lemma 4.1.2 to show that any cancellations which occur between
the generalized plant and the controller must be stable.)

Problem 8.7. Consider the feedback loop shown in Figure 8.7. We seek a
controller K that stablizes the loop for all stable A such that γ(A) ≤ ν. (γ(·) is
the incremental gain.)

1. Show that the generalized plant for this problem is

P =

[
0 I
I G

]
.

2. Suppose

G = G− + G+
s
=




A− 0 B−
0 A+ B+

C− C+ 0



 ,

in which A+ and −A− are asymptotically stable, and (A−, B−, C−) is min-
imal. If P and Q are the controllability and observability gramians of G−,
show that

X∞ =

[
−P−1 0

0 0

]
and Y∞ =

[
−Q−1 0

0 0

]
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Figure 8.7: Feedback loop with additive model error.

are the stabilizing, nonnegative definite solutions to (8.3.2) and (8.3.12).
3. Conclude that a necessary and sufficient condition for the existence of a con-

troller that achieves the robust stability objective is

ν ≤ min
i
{λi(PQ)} 1

2 .

4. If ν < mini{λi(PQ)} 1
2 , find a controller that robustly stabilizes the feedback

configuration in Figure 8.7 for any stable A such that γ(A) ≤ ν.

Problem 8.8. As an example of the solution to the robust stability synthesis
problem given in Problem 8.7, we obtain the controller which optimizes ‖k(1 −
gk)−1‖∞, with g = 1

(s−1)2 . The solution was used in Example 2.4.2.

1. If g has realization

g
s
=




1 1 0
0 1 1
1 0 0



 ,

show that the Riccati equation solutions are

X∞ = 4

[
2 1
1 1

]
, Y∞ = 4

[
1 1
1 2

]
.

2. Hence show that

γopt = min
k stabilizing

‖k(1 − gk)−1‖∞ = 4

√
3 + 2

√
2.

Problem 8.9. We now consider the complementary sensitivity problem of find-
ing γopt = infK stabilizing ‖GK(I − GK)−1‖∞, which is associated with robust

stability with respect to multiplicative model errors and the attenuation of sensor
errors.
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1. Show that the generalized plant for this problem is

P =

[
0 G

I G

]
s
=




A 0 B
C 0 D
C I D



 .

For the remainder of the problem, assume that D is nonsingular.
2. Show that the standard assumption are that (A,B,C) are stabilizable and

detectable, and that A and Ã = A − BD−1C have no eigenvalues on the
imaginary axis.

3. Show that the LQG Riccati equations for this problem are

XÃ + Ã′X − X(BD−1)(BD−1)′X = 0

AY + Y A′ − Y C ′CY = 0.

4. Show that the H∞ Riccati equations for this problem are

Ã′X∞ + X∞Ã − X∞(BD−1)(BD−1)′X∞ = 0

AY∞ + Y∞A′ − (1 − γ−2)Y∞C ′CY∞ = 0.

Conclude that X∞ = X and Y∞ = Y (1 − γ−2)−1.
5. What is γopt when G is stable?
6. When G has at least one closed-right-half-plane pole, show that the lowest

achievable infinity norm for the complementary sensitivity problem is γopt =√
1 + ρ(XY ).

7. In the case that G has at least one closed-right-half-plane pole, but has no
zeros there, explain why γopt = 1.

Problem 8.10. The first H∞ control problem to receive widespread attention
was the sensitivity minimization problem of finding infK ‖(I−GK)−1‖∞, in which
the infimum is taken over the class of stabilizing controllers.

1. Show that the generalized plant for this problem is

P =

[
I G

I G

]
.

Show that a realization of this generalized plant is



ẋ
z
y



 =




A 0 B
C I D
C I D








x
w
u



 .

For the rest of the problem assume that D is nonsingular.
2. Consider the controller K̃ = (I−DK)−1 and the generalized plant P̃ defined

by 


ẋ
z
ỹ



 =




Ã −BD−1 BD−1

0 0 I
C I 0








x
w
ũ



 ,
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in which Ã = A − BD−1C. Show that F`(P ,K) = F`(P̃ , K̃) and that K

stabilizes P if and only if K̃ stabilizes P̃ .
3. Show that the standard assumptions are that (A,B,C) are stabilizable and

detectable, and that A and Ã = A − BD−1C have no eigenvalues on the
imaginary axis.

4. Show that the Riccati equations associated with the LQG problem of mini-
mizing ‖F`(P̃ , K̃)‖2 are

XÃ + Ã′X − X(BD−1)(BD−1)′X = 0

AY + Y A′ − Y C ′CY = 0.

5. Show that the Riccati equations associated with the H∞ generalized regulator
problem ‖F`(P̃ , K̃)‖∞ < γ are

X∞Ã + Ã′X∞ − (1 − γ−2)X∞(BD−1)(BD−1)′X∞ = 0

AY∞ + Y∞A′ − Y∞C ′CY∞ = 0.

Hence show that Y∞ = Y and that X∞ = X(1 − γ−2)−1.
6. Give two possible reasons why γopt = 0 when G−1 ∈ RH∞.
7. If G has at least one closed-right-half-plane zero, show that

γopt =
√

1 + ρ(XY ).

Problem 8.11. We suppose that the generalized plant given in Problem 8.6 is
described by the time-invariant realization (8.6.4) and we assume that the standard
assumptions hold. Note that, in this case, the full-rank-on-the-axis conditions are
equivalent to Ã = A − B2C1 and Ā = A − B1C2 having no eigenvalues on the
imaginary axis.

1. Show that the Riccati equations associated with the LQG version of this
problem are

XÃ + Ã′X − XB2B
′
2X = 0

ĀY + Y Ā′ − Y C ′
2C2Y = 0.

Show that the Riccati equations for the H∞ version of the problem are

X∞Ã + Ã′X∞ − X∞(B2B
′
2 − γ−2B1B

′
1)X∞ = 0

ĀY∞ + Y∞Ā′ − Y∞(C ′
2C2 − γ−2C ′

1C1)Y∞ = 0.

2. Show that X is nonsingular if and only if −Ã is asymptotically stable. In
this case, let W be the solution to the linear equation

−ÃW − WÃ′ + B1B
′
1 = 0.

Show that a stabilizing solution X∞ ≥ 0 exists if and only if ρ(WX) < γ2.



310 THE H∞ GENERALIZED REGULATOR PROBLEM

(Hint: X−1
∞ = X−1 − γ−2W .)

Using a similar analysis for Y∞, obtain spectral radius condition for the ex-
istence of Y∞ in terms of the solution to the linear equation

−V Ā − Ā′V + C ′
1C1 = 0.

3. Suppose −Ã and −Ā are asymptotically stable. Show that there exists a
stabilizing controller K such that ‖F`(P ,K)‖∞ < γ if and only if

Π(γ) =

[
Y −1 − γ−2V γ−1I

γ−1I X−1 − γ−2W

]
> 0.

Now show that
[

γ2I −γX
0 γX

]
Π(γ)

[
Y 0
0 γI

]

= γ2

[
I 0
0 I

]
−

[
V Y + XY −XW

−XY XW

]
.

Conclude that the least value of γ for which a suitable controller exists can
be determined via an eigenvalue calculation.
Can you obtain a similar result for the case when −Ã and −Ā are not assumed
to be asymptotically stable?

Problem 8.12. We consider another important controller synthesis problem
for which an eigenvalue formula for the optimal performance level can be given.
The problem is to find a controller that minimizes the norm of the system mapping[

w′ v′ ]′
to

[
y′ u′ ]′

in the configuration shown below:

ff
s

s
K

G- - -
6

-

¾

?w

v

y

u

ξ

1. Show that the generalized plant is given by

P =




G I G

0 0 I
G I G



 .

Show that the closed-loop system is

F`(P ,K) =

[
I
K

]
(I − GK)−1

[
G I

]
.
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We are therefore interested in finding

γopt = inf
K stabilizing

∥∥∥∥
[

I
K

]
(I − GK)−1

[
G I

]∥∥∥∥
∞

.

This problem is associated with normalized coprime factor, or gap metric,
robustness optimization; 1/γopt is the optimal stability margin for the nor-
malized coprime factor model error representation.5

Show that when G = C(sI − A)−1B, the generalized plant has realization

P
s
=




A
[

B 0
]

B
[

C
0

] [
0 I
0 0

] [
0
I

]

C
[

0 I
]

0


 .

2. Show that γopt ≥ 1. (Hint: consider the closed-loop transfer function at infi-
nite frequency.) This means that the stability margin for normalized coprime
factor uncertainty must always lie between zero and one. Show also that the
2-norm of F`(P ,K) is infinite.

3. Using the loop transformations of Section 4.6, show that ‖F`(P ,K)‖∞ < γ

if and only if ‖F`(P̂ ,K)‖∞ < γ, in which

P̂
s
=




A
[
−B 0

]
B

[
(1 − γ−2)−

1
2 C

0

] [
0 0
0 0

] [
0
I

]

(1 − γ−2)−
1
2 C

[
0 −I

]
0


 .

4. Show that the standard assumptions reduce to (A,B,C) stabilizable and
detectable, and that the the Riccati equations associated with the sysnthesis
of controllers K such that ‖F`(P̂ ,K)‖∞ < γ are

X∞A + A′X∞ − (1 − γ−2)X∞BB′X∞ + (1 − γ−2)−1C ′C = 0

AY∞ + Y∞A′ − Y∞C ′CY∞ + BB′ = 0.

5. Show that the LQG Riccati equations associated with the problem of minimiz-
ing the 2-norm of the closed-loop system mapping

[
w′ v′ ]′

to
[

ξ′ u′ ]′

are

XA + A′X − XBB′X + C ′C = 0

AY + Y A′ − Y C ′CY + BB′ = 0.

5The normalized coprime factor robustness problem is discussed in Chapter 12; see also [206,
79, 148, 70].
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6. Show that X∞ = X(1 − γ−2)−1 and Y∞ = Y and hence deduce that

γopt =
√

1 + ρ(XY ).

7. For γ > γopt, show that the controller given by the descriptor system

W ˙̂x =
(
W (A − BB′X) − γ2Y C ′C

)
x̂ + γ2Y C ′y

u = −B′Xx̂,

in which W = (γ2 − 1)I − Y X, achieves the objective ‖F`(P ,K)‖∞ < γ.
8. In the case that g = 1

s , show that γopt =
√

2. This problem is the robust
stabilization of an integrator in the gap metric or normalized coprime factor
sense. It shows that the optimal stability margin for normalized coprime
factor model error representation is 1/

√
2. Show that the optimal controller

is k = −1 (i.e., u = −y) and that the singular values of the optimal closed-
loop transfer function are

√
2 and zero, for all frequencies.

Problem 8.13. Using suitable computer software6 verify the optimal controllers
given in Section 8.4 and Example 2.4.2.

Problem 8.14. Consider the generalized plant P described by

P
s
=




A B1 B2

C1 D11 D12

C2 D21 D22



 .

It is assumed that (A,B2, C2) is stabilizable and detectable, but no other assump-
tions are imposed.

Show that K is admissible for P and ‖F`(P ,K)‖∞ < γ if and only if K is
admissible for P a and ‖F`(P a,K)‖∞ < γ, for some

P a
s
=




A B1a B2

C1a D11a D12a

C2 D21a D22





that satisfies the standard assumptions.
(Hint: See Section 6.3.4.)

6The Robust Control Toolbox (see [35]) and MATLAB, for example. MATLAB is a registered
trademark of The MathWorks, Inc.



9

Model Reduction by

Truncation

9.1 Introduction

The approximation of high-order plant and controller models by models of lower-
order is an integral part of control system design. Until relatively recently model
reduction was often based on physical intuition. For example, chemical engineers
often assume that mixing is instantaneous and that packed distillation columns
may be modelled using discrete trays. Electrical engineers represent transmission
lines and the eddy currents in the rotor cage of induction motors by lumped cir-
cuits. Mechanical engineers remove high-frequency vibration modes from models
of aircraft wings, turbine shafts and flexible structures. It may also be possible to
replace high-order controllers by low-order approximations with little sacrifice in
performance.

The next three chapters develop several procedures which seek to automate the
model reduction process. Suppose a high-order, linear, time-invariant model G

is given, then the prototype L∞ model reduction problem is to find a low-order

approximation Ĝ of G such that ‖G − Ĝ‖∞ is small. In Chapter 11, we consider

the more difficult problem of selecting Ĝ such that ‖W 1(G−Ĝ)W 2‖∞ is small; the
weighting functions W 1 and W 2 are used to frequency shape the model reduction
error. For example, one might select the weights so that the modelling error is small
in the unity gain range of frequencies.

Truncation methods of model reduction seek to remove, or truncate, unimpor-
tant states from state-space models. If a state-space model has its A-matrix in
Jordan canonical form, state-space truncation will amount to classical modal trun-
cation. For example, one may truncate all those states that correspond to “fast

313
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modes”—eigenvalues with a large negative real part. One’s interpretation of “fast”
will obviously depend on the application, but this could mean modes outside the
control system bandwidth. Since the poles of the truncated model are a subset of
the poles of the original high-order model, any low-order modal approximation of a
stable high-order model is guaranteed to be stable. As we will show later, it is also
possible to get a bound on ‖G − Ĝ‖∞ for modal truncation. Because any transfer
function can be realized in terms of an infinite number of state-space models, there
are, in principle, also an infinite number of candidate truncation schemes. For a
truncation scheme to be useful, it must preserve stability and carry with it a guar-
anteed error bound. The aim of this chapter is to develop the balanced truncation
method of model reduction, which satisfies an infinity norm bound on the absolute
approximation error.

It is well known that the modes of a realization that are either uncontrollable or
unobservable do not appear in the corresponding system transfer function matrix.
It is therefore natural to conjecture that the modes that are almost uncontrollable
and unobservable can be omitted from the realization with little effect on the input-
output characteristics of the model. The balanced realization has the property that
mode i is equally controllable and observable, with these properties measured in
terms of a number σi ≥ 0. As σi increases, the corresponding level of controllability
and observability increases. In Chapter 10 we will show that these σi’s are the
singular values of the Hankel operator associated with the transfer function matrix
G. The model reduction method that applies the truncation operation to a balanced
realization is known as balanced truncation. For this algorithm the absolute error
is guaranteed to satisfy the twice-the-sum-of-the-tail bound

‖G − Ĝ‖∞ ≤ 2(σr+1 + . . . + σn),

in which n is the McMillan degree of G and r is the McMillan degree of Ĝ.

Example 9.1.1. The transfer function

g =
1

(s + 1)(s + 2)

has modal realization g = Cm(sI − Am)−1Bm, in which

Am =

[
−1 0
0 −2

]
, Bm =

[
1
−1

]
,

Cm =
[

1 1
]
.

If we truncate the fast mode we obtain the reduced-order system

gm =
1

s + 1
.

The norm of the error is

‖g − gm‖∞ = ‖ 1

s + 2
‖∞ =

1

2
.
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The transfer function g also has realization g = Cb(sI − Ab)
−1Bb, in which

Ab =

[
−0.40859 −0.970143
0.970143 −2.59141

]
, Bb =

[
0.492479
−0.492479

]
,

Cb =
[

0.492479 0.492479
]
.

This realization is balanced because the controllability and observability gramians
are both equal and diagonal:

Σ =

[
0.296796 0

0 0.0467961

]
,

so that σ1 = 0.296796 and σ2 = 0.0467961. If we truncate this realization, we
obtain the reduced-order system

gb =
(0.492479)2

s + 0.40859
,

which is stable and the norm of the error is

‖g − gb‖∞ = 0.0935921

= 2σ2.

The point to note is that, in this case, the error associated with balanced truncation
is considerably smaller than that associated with modal truncation. The generally
good performance of balanced truncation has led to its widespread popularity. 5

Another well known model order reduction method is the singular perturbation
approximation. This technique is usually associated with a fast-slow decomposition
of the state space, with the approximation achieved by setting the “fast” states to
their steady-state values. Since the singular perturbation approximation is related
to state-space truncation by the frequency inversion transformation s → 1/s, it is
also considered to be a truncation method. Our main interest is in balanced singular
perturbation approximation, in which the singular perturbation method is applied
to a balanced realization. In this method, states corresponding to small σi’s are set
to their steady-state values.

Although the error bounds for balanced truncation and balanced singular per-
turbation approximation are identical, the resulting models have different high-
and low-frequency characteristics. Direct truncation gives a good model match at
high frequency, while singular perturbation methods have superior low-frequency
properties. We will develop most of our theory for direct truncation because of its
notational simplicity.

9.2 State-space truncation

Consider a linear, time-invariant system with the realization

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,
y(t) = Cx(t) + Du(t)

(9.2.1)
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and divide the state vector x into components to be retained and components to be
discarded:

x(t) =

[
x1(t)
x2(t)

]
. (9.2.2)

The r-vector x1(t) contains the components to be retained, while the (n− r)-vector
x2 contains the components to be discarded. Now partition the matrices A, B and
C conformably with x to obtain

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
,

C =
[

C1 C2

]
.

(9.2.3)

By omitting the states and dynamics associated with x2(t), we obtain the lower-
order system

ṗ(t) = A11p(t) + B1u(t) p(0) = p0,
q(t) = C1p(t) + Du(t).

The rth-order truncation of the realization (A,B,C,D) is given by

Tr(A,B,C,D) = (A11, B1, C1,D). (9.2.4)

In general, very little can be said about the relationship between x and p, y and
q or the transfer function matrices G and Ĝ associated with (A,B,C,D) and
(A11, B1, C1,D). In particular, the truncated system may be unstable even if the
full-order system is stable, and the truncated system realization may be nonminimal
even if the full-order realization is minimal. One thing that clearly does hold is

Ĝ(∞) = G(∞),

which means that all reduced-order models obtained by truncation have perfect
matching at infinite frequency.

Example 9.2.1. (Modal Truncation). The truncation of modal realizations is
common in engineering practise, because it is often the case that high-frequency
modes may be neglected on physical grounds, or because the phenomena result-
ing in such modes only play a secondary role in determining the model’s essential
characteristics.

Let G be a transfer function matrix with an asymptotically stable modal real-
ization

A =




λ1 0 0

0
. . . 0

0 0 λm


 , B =




B1

...
Bm


 ,

C =
[

C1 . . . Cm

]
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For simplicity, we assume that each of the eigenvalues λi of the A-matrix has a
simple Jordan structure. If the modes with a fast decay rate may be omitted
from the model, the eigenvalues should be ordered so that |Re(λi)| is nondecreasing
with increasing i. Alternatively, if one is to omit the high-frequency modes, the
eigenvalues should be ordered so that |Im(λi)| is nondecreasing with increasing i. As
a combination of these two, one might order the modes so that |λi| is nondecreasing
with increasing i, so that those modes with the highest “natural” frequency are
deleted.

The error incurred in modal truncation depends not only on the λi’s, but also on
the size of the residues CiBi. If modes labeled r +1 to n are omitted by truncation
to obtain Ĝ, we have

G − Ĝ =

n∑

i=r+1

CiBi

s − λi

and therefore that

‖G − Ĝ‖∞ ≤
n∑

i=r+1

‖CiBi‖
|Reλi|

.

Since the error associated with deleting a mode depends on the ratio ‖CiBi‖/|Reλi|
and not |Reλi| alone, the modal decay rate is not a reliable guide as to whether a
particular mode should be included in the reduced-order model.

The main features of modal truncation are:

1. It is conceptually simple.

2. The poles of the reduced-order model are a subset of the poles of the original
model. In addition, the poles of the reduced-order model retain their physical
interpretation, because one knows, for example, that certain vibration modes
are being retained while others are being omitted.

3. It is computationally cheap, because the main calculation is an eigenvalue
decomposition of A. 5

9.2.1 The truncation error

To help us with later work, in which we develop bounds for the error incurred by
model reduction based on truncation, we develop some of the basic properties of
the error system.

Lemma 9.2.1 Suppose (A,B,C,D) is a realization of order n partitioned as in

(9.2.3) and let G = D + C(sI − A)−1B and Ĝ = D + C1(sI − A11)
−1B1. Define

Ã(s) = A22 + A21(sI − A11)
−1A12

B̃(s) = B2 + A21(sI − A11)
−1B1

C̃(s) = C2 + C1(sI − A11)
−1A12.

(9.2.5)

Then:
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1. det(sI − A) = det(sI − A11) det(sI − Ã(s)).

2. The truncation error system satisfies

G(s) − Ĝ(s) = C̃(s)(sI − Ã(s))−1B̃(s). (9.2.6)

3. If AP + PA′ + BB′ = 0 and P =

[
P1 0
0 P2

]
, in which the partitioning is

conformable with (9.2.3), then

A11P1 + P1A
′
11 + B1B

′
1 = 0 (9.2.7)

Ã(s)P2 + P2Ã
∼

(s) + B̃(s)B̃
∼

(s) = 0. (9.2.8)

If (A,B) is controllable, then
[

sI − Ã(s) B̃(s)
]

has full row rank for all
s.

4. If A′Q + QA + C ′C = 0 and Q =

[
Q1 0
0 Q2

]
, in which the partitioning is

conformable with (9.2.3), then

A′
11Q1 + Q1A11 + C ′

1C1 = 0 (9.2.9)

Ã
∼

(s)Q2 + Q2Ã(s) + C̃
∼

(s)C̃(s) = 0. (9.2.10)

If (A,C) is observable, then

[
sI − Ã(s)

C̃(s)

]
has full column rank for all s.

Proof. Write Φ(s) = (sI − A11)
−1 and note that

sI − A =

[
I 0

−A21Φ(s) I

] [
sI − A11 0

0 sI − Ã(s)

]

×
[

I −Φ(s)A12

0 I

]
. (9.2.11)

1. This follows directly from (9.2.11).

2. From (9.2.11), we have

C(sI − A)−1B

=
[

C1 C2

] [
I Φ(s)A12

0 I

] [
Φ(s) 0

0 (sI − Ã(s))−1

]

×
[

I 0
A21Φ(s) I

] [
B1

B2

]

= C1Φ(s)B1 + C̃(s)(sI − Ã(s))−1B̃(s),

which proves (9.2.6).
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3. Equation (9.2.7) is immediate from the assumed block diagonal structure of
P . To prove (9.2.8), write

BB′ = (sI − A)P + P (−sI − A)′.

Now use (9.2.11) to obtain

[
B1

B̃(s)

] [
B′

1 B̃
′
(−s)

]

=

[
sI − A11 −A12

0 sI − Ã(s)

] [
P1 P1Φ

′(−s)A′
21

0 P2

]

+

[
P1 0

A21Φ(s)P1 P2

] [ −sI − A′
11 0

−A′
12 −sI − Ã

′
(−s)

]
.

The (2, 2)-block of this equation is (9.2.8). We also note that if x is such that

x∗ [
sI − Ã(s) B̃(s)

]
= 0

for some s, then

[
0 x∗ ] [

I 0
A21Φ(s) I

] [
sI − A B

]
= 0

and we see that (A,B) controllable implies x = 0. Hence
[

sI − Ã(s) B̃(s)
]

has full row rank when (A,B) is controllable.

4. This follows from calculations which are dual to those given in Item 3.

9.2.2 Singular perturbation approximation

The steady-state error associated with state-space truncation is given by

G(0) − Ĝ(0) = C1A
−1
11 B1 − CA−1B.

In applications requiring good low-frequency models this may be unacceptably large.
In these cases, it is appropriate to use a singular perturbation approximation in
preference to state-space truncation because of its greatly improved low-frequency
model reduction characteristics.

Consider the full-order model given by

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t) + Du(t),

which is partitioned as in (9.2.2) and (9.2.3). If x2(t) represents the fast dynamics
of the system, we may approximate the low-frequency behavior by setting ẋ2(t) = 0.
This gives

0 = A21x1(t) + A22x2(t) + B2u(t),
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which yields the quasi-steady-state solution

x2(t) = −A−1
22 (A21x1(t) + B2u(t)) (9.2.12)

provided A22 is nonsingular. Eliminating x2 from the remaining equations using
(9.2.12) yields

ṗ(t) = (A11 − A12A
−1
22 A21)p(t) + (B1 − A12A

−1
22 B2)u(t)

q(t) = (C1 − C2A
−1
22 A21)p(t) + (D − C2A

−1
22 B2)u(t).

The rth-order singular perturbation approximation (SPA) is given by

Sr(A,B,C,D) = (Â11, B̂1, Ĉ1, D̂), (9.2.13)

in which

Â11 = A11 − A12A
−1
22 A21, B̂1 = B1 − A12A

−1
22 B2,

Ĉ1 = C1 − C2A
−1
22 A21, D̂ = D − C2A

−1
22 B2.

(9.2.14)

The following result shows that SPA is equivalent to: (a) setting H(w) =

G(w−1); (b) performing a state-space truncation of H(w) to obtain Ĥ(w); and

(c) defining the reduced-order model as Ĝ(s) = Ĥ(s−1).

Lemma 9.2.2 Let G(s) = D + C(sI −A)−1B, in which A is nonsingular, and let
H(w) = G(w−1). Then:

1. H(w) = D − CA−1B − CA−1(wI − A−1)−1A−1B.

2. The realizations of G(s) and H(w) have the same controllability and observ-
ability gramians (when they exist).

3. Suppose that A22 is nonsingular, that Gr(s) is the rth-order SPA of G(s) and
that Hr(w) is the rth-order system obtained by truncation of the realization
of H(w) defined in Item 1. Then Gr(s) = Hr(s

−1).

Proof.

1. This follows from the identity

(w−1I − A)−1 = −A−1 − A−1(wI − A−1)−1A−1.

2. Suppose P and Q are the controllability and observability gramians of the real-
ization of G satisfying

AP + PA′ + BB′ = 0

A′Q + QA + C ′C = 0.

Multiplying by A−1 and (A−1)′ gives

A−1P + P (A−1)′ + (A−1B)(A−1B)′ = 0

QA−1 + (A−1)′Q + (CA−1)′(CA−1) = 0.



9.3 BALANCED REALIZATION 321

3. Writing

A =

[
I A12A

−1
22

0 I

] [
Â11 0
0 A22

] [
I 0

A−1
22 A21 I

]

gives

A−1 =

[
I 0

−A−1
22 A21 I

] [
Â−1

11 0
0 A−1

22

] [
I −A12A

−1
22

0 I

]
.

Now truncate the realization of H(w):

[
I 0

]
A−1

[
I
0

]
= Â−1

11

[
I 0

]
A−1B = Â−1

11 B̂1

−CA−1

[
I
0

]
= −Ĉ1Â

−1
11

D − CA−1B = D̂ − Ĉ1Â
−1
11 B̂1.

Applying Item 1 to the realization of Gr given in (9.2.13), Hr(w) = Gr(w
−1),

which is equivalent to Gr(s) = Hr(s
−1).

Since the singular perturbation and truncation operations are related in a straight-
forward way, it suffices to develop all our theoretical results for state-space trun-
cation. When the low-frequency fidelity of the approximation is important, the
singular perturbation approximation is the method of choice. Conversely, direct
truncation should be preferred when good high-frequency modelling is the central
concern.

Main points of the section

1. State-space truncation is a simple but general procedure for gen-
erating reduced-order models. The properties of the reduced-order
model will depend on the realization selected for truncation. For
example, reduced-order models obtained from the truncation of
balanced and modal realizations (of the same full-order system)
will generally be quite different.

2. State-space truncation produces zero error at infinite frequency.

3. Since the singular perturbation method of model reduction is re-
lated to state-space truncation by the bilinear transform s → 1/s,
singular perturbation approximations have zero steady-state error.

9.3 Balanced realization

The aim of this section is to introduce balanced realizations, which are of interest
because they have good absolute-error truncation properties.
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9.3.1 Model reduction motivation

Suppose we are given a G ∈ RH∞ and our aim is to produce a reduced-order model
Ĝ ∈ RH∞ that approximates G. A natural criterion with which to measure the
absolute error is ‖G − Ĝ‖∞.

If we drive G and Ĝ with the same input u, we get

y = Gu, ŷ = Ĝu

and therefore that

‖G − Ĝ‖∞ = sup
u∈L2

‖y − ŷ‖2

‖u‖2
. (9.3.1)

If G = D + C(sI − A)−1B, then

ẋ = Ax + Bu

y = Cx + Du.

We assume that A is asymptotically stable (i.e., Reλi(A) < 0). For ‖G − Ĝ‖∞ to
be small, the identity given in (9.3.1) suggests we should delete those components
of the state-vector x that are least involved in the energy transfer from the input u
to the output y. This observation leads us to consider two closely related questions:

1. What is the output energy resulting from a given initial state x(0) = x0?

2. What is the minimum input energy required to bring the state from zero to
the given initial state x(0) = x0?

The solutions are well known:

1. Suppose x(0) = x0 is given and that u(t) = 0 for t ≥ 0. By Theorem 3.1.1, the
L2[0,∞) norm of y is given by ‖y‖2

2 = x′
0Qx0, in which Q is the observability

gramian.

2. Consider the LQ problem

min
u∈L2(−∞,0]

∫ 0

−∞
u′(t)u(t)dt

subject to ẋ = Ax + Bu with x(0) = x0. This is equivalent to

min
v∈L2[0,∞)

∫ ∞

0

v′(τ)v(τ) dτ

subject to
d

dτ
p(τ) = −Ap(τ) − Bv(τ), p(0) = x0,
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with τ = −t, p(τ) = x(t) and v(τ) = u(t). By standard LQ theory (see
Chapter 5), the optimal control is v(τ) = B′Xp(τ) and

min
v

∫ ∞

0

v′(τ)v(τ) dτ = x′
0Xx0,

in which X is the solution to

−XA − A′X − XBB′X = 0

such that −A − BB′X is asymptotically stable.

If (A,B) is controllable and P is the controllability gramian satisfying

AP + PA′ + BB′ = 0,

then P is invertible and

−P−1A − A′P−1 − P−1BB′P−1 = 0.

Furthermore −A−BB′P−1 = PA′P−1, which is asymptotically stable. Hence
X = P−1 and we conclude that the optimal control is u(t) = B′P−1x(t) and
that

min
u∈L2(−∞,0]:x(0)=x0

∫ 0

−∞
u(t)′u(t) dt = x′

0P
−1x0.

Combining the answers to our two questions we get

max
u∈L2(−∞,0]:x(0)=x0

∫ ∞
0

y′(t)y(t) dt
∫ 0

−∞ u′(t)u(t) dt
=

x′
0Qx0

x′
0P

−1x0
(9.3.2)

=
α′P

1
2 QP

1
2 α

α′α
, x0 = P

1
2 α.

These calculations suggest that in order to keep ‖G−Ĝ‖∞ small, the state-space for
the truncated system should be the space spanned by the eigenvectors corresponding

to the larger eigenvalues of P
1
2 QP

1
2 . That is, we should truncate a realization in

which P
1
2 QP

1
2 is diagonal, with the eigenvalues ordered in descending order.

9.3.2 Balanced realization

In the last section we argued that an appropriate realization for absolute-error model
reduction is one in which P

1
2 QP

1
2 is diagonal. We now show that these realizations,

known as a balanced realizations, always exist for asymptotically stable minimal
realizations. The following is the most commonly used definition of a balanced
realization:
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Definition 9.3.1 A realization (A,B,C) is balanced if A is asymptotically stable
and

AΣ + ΣA′ + BB′ = 0 (9.3.3)

A′Σ + ΣA + C ′C = 0, (9.3.4)

in which

Σ =




σ1Ir1
0 0

0
. . . 0

0 0 σmIrm


 , σi 6= σj , i 6= j and σi > 0 ∀i. (9.3.5)

Note that n = r1 + . . . + rm is the McMillan degree of C(sI −A)−1B and that ri is
the multiplicity of σi.

We say that the realization is an ordered balanced realization if, in addition,
σ1 > σ2 > . . . > σm > 0.

In a balanced realization, the basis for the state space is such that each basis
vector is equally controllable and observable, with its “degree” of controllability
and observability given by the corresponding diagonal entry of Σ.

Suppose (A,B,C) is a balanced realization and the initial condition x0 is par-

titioned as x0 =
[

x′
1 · · · x′

m

]′
with xi an ri × 1 vector. It follows from (9.3.2)

that

max
u∈L2(−∞,0]:x(0)=x0

∫ ∞
0

y′(t)y(t) dt
∫ 0

−∞ u′(t)u(t) dt
=

m∑

i=1

σ2
i x′

ixi.

This shows that σ2
i is a measure of the extent to which the corresponding ri dimen-

sional subspace of the state space is involved in the transfer of energy from past
inputs to future outputs.

The next result is concerned with the existence and uniqueness of balanced
realizations.

Lemma 9.3.1 A given realization (A,B,C) can be transformed by a state trans-
formation to a balanced realization if and only if it is asymptotically stable and
minimal. Furthermore, a balanced realization obtained from such an (A,B,C) is
unique up to: (a) the ordering of the σi’s and (b) an orthogonal matrix S satisfying

SΣ = ΣS.

When the σi have multiplicity one (i.e., ri = 1 for all i), S is a diagonal matrix
with diagonal elements ±1.

When (A,B,C) is asymptotically stable and minimal, (TAT−1, TB,CT−1) is

balanced if T = Σ
1
2 U ′R−1. When defining T , P = RR′ is a Cholesky factorization

of P and R′QR = UΣ2U ′ is a singular value decomposition of R′QR, in which P
and Q are the controllability and observability gramians, which satisfy

AP + PA′ + BB′ = 0 (9.3.6)

A′Q + QA + C ′C = 0. (9.3.7)
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Proof. To begin we note that if P and Q satisfy (9.3.6) and (9.3.7), then for any
nonsingular T ,

(TAT−1)(TPT ′) + (TPT ′)(TAT−1)′ + (TB)(TB)′ = 0

and

(
(T ′)−1QT−1

)
(TAT−1) + (TAT−1)′

(
(T ′)−1QT−1

)
+ (CT−1)′(CT−1) = 0.

If (A,B,C) is balanced, it is asymptotically stable by assumption and Σ > 0
implies minimality. If (A,B,C) is asymptotically stable and minimal is has positive
definite controllability and observability gramians P and Q satisfying (9.3.6) and

(9.3.7) respectively. Setting T = Σ
1
2 U ′R−1 gives

TPT ′ = (Σ
1
2 U ′R−1)RR′((R′)−1UΣ

1
2

)
= Σ

and
(T ′)−1QT−1 = (Σ− 1

2 U ′R′)Q(RUΣ− 1
2 ) = Σ.

Clearly, we may re-label the state components in a balanced realization to obtain
another balanced realization. To determine the nonuniqueness that is possible while
maintaining the same Σ, let S be a transformation that preserves the ordering of
the σi in some balanced realization. Under this assumption we have Σ = SΣS′

and Σ = (S−1)′ΣS−1. This gives SΣ2 = Σ2S, which implies that SΣ = ΣS since
σi > 0. It now follows that Σ = SΣS′ = ΣSS′, so that I = SS′ as required.

Main points of the section

1. A balanced realization is an asymptotically stable and minimal
realization in which the controllability and observability gramians
are equal and diagonal.

2. Any stable transfer function matrix has a balanced realization. The
balanced realization is unique up to ordering of the numbers σi and
an orthogonal transformation that commutes with Σ.

3. An analysis of the extent to which states are involved in energy
transfer from past inputs to future outputs motivates the consider-
ation of the balanced realization as an appropriate realization for
absolute-error model reduction.

9.4 Balanced truncation

Model reduction by balanced truncation simply applies the truncation operation to
a balanced realization (A,B,C,D) of a system G.
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Suppose (A,B,C) is a balanced realization as described in Definition 9.3.1 and
partition Σ as

Σ =

[
Σ1 0
0 Σ2

]
(9.4.1)

with

Σ1 =




σ1Ir1
0 0

0
. . . 0

0 0 σlIrl


 , Σ2 =




σl+1Irl+1
0 0

0
. . . 0

0 0 σmIm


 . (9.4.2)

We never “split” states corresponding to a σi with multiplicity greater that one.
If (A,B,C) is partitioned as in (9.2.3) conformably with Σ, we obtain Ĝ with
realization (A11, B1, C1,D), which is a balanced truncation of G.

We will show that (A11, B1, C1,D) is itself a balanced realization, which implies

that Ĝ is stable, has McMillan degree r = r1 + . . . + rl and that the approximation
error satisfies the twice-the-sum-of-the-tail infinity norm bound

‖G − Ĝ‖∞ ≤ 2(σl+1 + . . . + σm).

9.4.1 Stability

Lemma 9.4.1 Suppose (A,B,C) is a balanced realization as described in Defini-
tion 9.3.1 and that (A11, B1, C1,D) is a balanced truncation of (A,B,C,D). Then
(A11, B1, C1) is a balanced realization. In particular, A11 is asymptotically stable
and (A11, B1, C1) is minimal.

Note that by a trivial re-ordering argument (A22, B2, C2,D) is also a balanced
realization.

Proof. From (9.3.3) and (9.3.4) we have

A11Σ1 + Σ1A
′
11 + B1B

′
1 = 0 (9.4.3)

A′
11Σ1 + Σ1A11 + C ′

1C1 = 0. (9.4.4)

If we can show that Reλi(A11) < 0, then it is immediate that (A11, B1, C1) is a
balanced realization because Σ1 > 0.

Since Σ1 > 0, we have Reλi(A11) ≤ 0, but we still need to show that there can
be no imaginary axis eigenvalues. Suppose, to obtain a contradiction, that there is
a real ω such that jωI−A11 is singular. Let V be a basis for the kernel of jωI−A11:

(jωI − A11)V = 0. (9.4.5)

Multiplying (9.4.4) on the left by V ∗ and on the right by V , and then multiplying
just on the right by V , we obtain

C1V = 0, (jωI + A′
11)Σ1V = 0.
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Multiplying (9.4.3) on the left by V ∗Σ1 and on the right by Σ1V , and then multi-
plying just on the right by Σ1V , we obtain

B′
1Σ1V = 0, (jωI − A11)Σ

2
1V = 0.

Therefore Σ2
1V is also a basis for the right nullspace of jωI − A11 and hence

Σ2
1V = V Σ

2

1

for some matrix Σ
2

1, which will have eigenvalues which are a subset of the eigenvalues

of Σ2
1. (In fact, since (jωI − A11)(V T ) = 0 and Σ2

1(V T ) = (V T )(T−1Σ
2

1T ) for any

nonsingular T , we can assume V is such that Σ
2

1 is diagonal—it will have diagonal
entries that are a subset of those in Σ2

1.)
Now consider

A21Σ1 + Σ2A
′
12 + B2B

′
1 = 0 (9.4.6)

A′
12Σ1 + Σ2A21 + C ′

2C1 = 0, (9.4.7)

which come from the (2, 1)-blocks of (9.3.3) and (9.3.4). Multiplying (9.4.6) on the
right by Σ1V and multiplying (9.4.7) on the left by Σ2 and on the right by V , we
obtain

A21Σ
2
1V + Σ2A

′
12Σ1V = 0

Σ2
2A21V + Σ2A

′
12Σ1V = 0.

Subtracting these gives

Σ2
2A21V = A21Σ

2
1V = A21V Σ

2

1,

which we may write as
[

Σ
2

1 0
0 Σ2

2

] [
I

A21V

]
=

[
I

A21V

]
Σ

2

1.

Since Σ
2

1 and Σ2
2 have no eigenvalues in common,

[
I (A21V )′

]′
must be a basis

for the eigenspace of

[
Σ

2

1 0
0 Σ2

2

]
corresponding to the eigenvalues Σ

2

1. That is, we

have [
I

A21V

]
=

[
I
0

]
,

which amounts to A21V = 0. Combining this with (9.4.5) we obtain

(jωI − A)

[
V
0

]
= 0,

which contradicts the asymptotic stability of A.

Notice that Lemma 9.4.1 does not assume that the balanced realization is or-
dered in any way. The only assumption is that the partitioning of Σ does not split
the states associated with a multiple σi.
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9.4.2 Error bound for “one-step” truncation

Our next result determines the infinity norm of the error that occurs when deleting
the state(s) associated with one of the σi’s.

Lemma 9.4.2 Let Ã(s), B̃(s) and C̃(s) be proper real rational transfer function
matrices, without poles on the imaginary axis, such that Ã(jω)−jωI is nonsingular
for all real ω. Suppose that

σ(Ã(s) + Ã
∼

(s)) + B̃(s)B̃
∼

(s) = 0 (9.4.8)

σ(Ã(s) + Ã
∼

(s)) + C̃
∼

(s)C̃(s) = 0 (9.4.9)

for some σ > 0. Then E(s) = C̃(s)(sI − Ã(s))−1B̃(s) satisfies ‖E‖∞ = 2σ.
Moreover, if Ã(s) has odd dimension, then σ

(
E(0)

)
= 2σ.

Proof. The proof is divided into two steps: first we show that ‖E‖∞ ≤ 2σ and
then that equality holds. In establishing the equality, we observe that σ

(
E(0)

)
= 2σ

when Ã(s) has odd dimension. In the proof, we shall assume that the number of

rows of C̃(s)(jω) is greater than or equal to the number of columns of B̃(s)(jω);
when this is not the case, we may consider a dual argument based on E∗ rather
than E.

Choose any real ω. From (9.4.8) and (9.4.9), we have

B̃(jω)B̃
∗
(jω) = C̃

∗
(jω)C̃(jω),

so there exists a matrix Ũ(jω) such that

Ũ
∗
(jω)Ũ(jω) = σ2I, σB̃(jω) + C̃

∗
(jω)Ũ(jω) = 0. (9.4.10)

(see Problem 9.1.) Now note that
(
Ũ(jω) + E(jω)

)∗(
Ũ(jω) + E(jω)

)

=
(
Ũ

∗
+ B̃

∗
(jωI − Ã)−∗C̃

∗)(
Ũ + C̃(jωI − Ã)−1B̃

)

= σ2I − σB̃
∗
(jωI − Ã)−∗

(
(jωI − Ã) + (jωI − Ã)∗

+(Ã + Ã
∗
)
)

(jωI − Ã)−1B̃

= σ2I.

Hence

‖E‖∞ = sup
ω

σ
(
E(jω)

)

= sup
ω

σ
(
Ũ(jω) + E(jω) − Ũ(jω)

)

≤ sup
ω

σ
(
Ũ(jω) + E(jω)

)
+ sup

ω
σ
(
Ũ(jω)

)

= 2σ.
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We now show that there is a frequency ω0 such that σ
(
E(jω0)

)
= 2σ. Define

Φ̃(jω) = Ã(jω) − jωI, X(jω) = Φ̃(jω) − Φ̃
∗
(jω)

and note that X(jω) is skew-Hermitian since

X(jω) + X∗(jω) = 0. (9.4.11)

If X(jω)x = λx, x 6= 0, it follows from (9.4.11) that (λ + λ)x∗x = 0, so that
λ + λ = 0. That is, every eigenvalue of X(jω) is on the imaginary axis. Now
X(0) is real, so it has an equal number of eigenvalues with positive and negative
imaginary part. For sufficiently large ω, all the eigenvalues of X(jω) have negative
imaginary part, since X(jω) → −j2ωI as ω → ∞. Since the eigenvalues of a
matrix are continuous functions of the matrix entries, it follows that there is a
frequency, ω0, such that X(jω0) is singular (i.e., has a zero eigenvalue). If X has
odd dimension, X(0) must be singular, since it is a real matrix of odd dimension
with all its eigenvalues on the imaginary axis, so we may take ω0 = 0 in this case.

Let x 6= 0 and ω0 be selected so that X(jω0)x = 0. Then

0 =
1

2
X(jω0)x

=
1

2

(
Φ̃(jω0) − Φ̃

∗
(jω0)

)
x

= Φ̃(jω0)x − 1

2
(Φ̃(jω0) + Φ̃

∗
(jω0))x

= Φ̃(jω0)x +
1

2σ
B̃(jω0)B̃

∗
(jω0)x by (9.4.8)

= Φ̃(jω0)x + B̃(jω0)u,

in which u = 1
2σ B̃

∗
(jω0)x. Note that u 6= 0, since otherwise we would have

Φ̃(jω0)x = 0, which is banned by assumption. Now using (9.4.10) we have

−2Ũ(jω0)u = C̃(jω0)x,

giving [
Φ̃(jω0) B̃(jω0)

C̃(jω0) 0

] [
x
u

]
=

[
0

−2Ũ(jω0)u

]
.

Hence
E(jω0)u = −2Ũ(jω0)u, u 6= 0.

Since Ũ
∗
(jω0)Ũ(jω0) = σ2I, we see that σ

(
E(jω0)

)
= 2σ.

Consider the situation in which the state(s) associated with one σi are deleted
by balanced truncation and define Ã(s), B̃(s) and C̃(s) as in Lemma 9.2.1. Then
by Lemma 9.4.1 the assumptions of Lemma 9.4.2 are satisfied and we conclude
that the infinity norm of the error associated with this special “one-step” balanced
truncation is exactly 2σ. Moreover, if the associated multiplicity r of σ is odd, then
the maximum error (as measured by the maximum singular value) occurs at ω = 0.
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9.4.3 The error bound for balanced truncation

Lemma 9.4.2 provides an infinity norm bound on the absolute error associated with
the truncation of the state(s) associated with a single σi in a balanced realization.
To determine a bound that is applicable when the states associated with several
σi’s are deleted, we simply remove the σi’s one at a time and allow the error to
accumulate. This procedure yields the twice-the-sum-of-the-tail error bound.

Theorem 9.4.3 Let G = D + C(sI −A)−1B, in which (A,B,C,D) is a balanced
realization partitioned as in (9.4.1). Let r = r1 + . . . + rl, (A11, B1, C1,D) =

Tr(A,B,C,D) and Ĝ = D + C1(sI − A11)
−1B1. Then

‖G − Ĝ‖∞ ≤ 2(σl+1 + . . . + σm). (9.4.12)

In the case that l = m − 1 equality holds, and σ
(
G(0) − Ĝ(0)

)
= 2σm if rm is odd.

Proof. Truncating the states associated with σl+1, . . . , σm may be achieved by a
succession of one-step truncation operations. At the kth step we delete the states
associated with σm−k+1, k = 1 . . . m − l, to obtain Gk from Gk−1 where G0 = G.
Each truncation step preserves the balanced realization and each step incurs an
error of Ek = Gk−1 − Gk with ‖Ek‖∞ = 2σm−k+1. The last of these steps gives

Gm−l = Ĝ. Now write

G − Ĝ = (G0 − G1) + . . . + (Gm−l−1 − Gm−l)

= E1 + . . . + Em−l (9.4.13)

and observe that the triangle inequality gives

‖G − Ĝ‖∞ ≤ ‖E1||∞ + . . . + ‖Em−l‖∞.

Since ‖Ek‖∞ = 2σm−k+1, we obtain the error bound (9.4.12).

By considering the case when all the states are deleted, the bound (9.4.12) yields

‖G − G(∞)‖∞ ≤ 2(σ1 + . . . + σm).

Hence,

‖G‖∞ = ‖G − G(∞) + G(∞)‖∞
≤ ‖G(∞)‖ + 2(σ1 + . . . + σm).

Tightness of the bound

We have already established that the infinity norm error bound for one-step trunca-
tion is tight. In the case of multi-step truncation the situation is less clear cut—one
can find examples for which the error bound is close to the true error and there are
also cases for which it is conservative.
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It is natural to suspect that because the twice-the-sum-of-the-tail bound arises
by repeated application of the triangle inequality, it gets weaker and weaker as
more and more states are deleted. Although this is usually the case, the bound may
remain tight however many states are deleted. The next example illustrates this
point.

Example 9.4.1. Consider the transfer function

gn =

n∑

i=1

αi

s + αi
α > 0, α 6= 1

which may be realized as

A =




−α 0 0

0
. . . 0

0 0 −αn


 B =




√
α
...√
αn


 C = B′.

It is easily verified that the controllability and observability gramians are equal and
the (i, j) entry of the controllability gramian is

Pij =

√
αi−j

αi−j + 1
i, j = 1, . . . , n.

Since P = Q, we have

σi =
√

λi(PQ) = λi(P ), i = 1, . . . , n,

giving

2(σ1 + . . . + σn) = 2 × trace(P )

= 2 × n

2
= n.

Therefore (9.4.13) implies ‖gn‖∞ ≤ n. Since g(0) = n, equality must hold. 5

Systems of the form given in the above example have interlaced poles and zeros
on the negative real axis (Problem 9.4). The bound is tight for such systems. At the
other extreme, for systems that have interlaced poles and zeros on the imaginary
axis, the bound exceeds the true error by a factor that is approximately twice the
number of states that are deleted—see Enns [57].

Frequency dependence of the error

The error bounds given in Theorem 9.4.3 says nothing about the way the true
error varies as a function of frequency. Since the full-order system G and the
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reduced-order system Ĝ match each other exactly at infinite frequency, one would
expect good high-frequency fidelity from the reduced order model. Apart from the
guaranteed satisfaction of the error bound, little can be said about the variation of
the error at low and intermediate frequencies. In most cases, the σi’s will have unit
multiplicity and the truncation of n−r states will be achieved via n−r truncations
of one state. Since one is odd, each of these truncations incurs a maximum error at
zero frequency. One would therefore expect the largest truncation error to occur at
low frequency.

Main points of the section

1. Any truncation of a balanced realization that does not “split” the
states associated with a single singular value is called balanced
truncation.

2. Balanced truncation preserves stability and minimality, and the
approximation error satisfies the twice-the-sum-of-the-tail infinity
norm error bound.

3. The infinity norm of a strictly proper transfer function matrix is
bounded above by twice the sum of the σi in its balanced realiza-
tion.

9.5 Balanced singular perturbation approximation

The fact that balanced truncation generally incurs the greatest approximation error
in the low-frequency region is undesirable in many applications. An algorithm which
produces zero error at zero frequency may be obtained via an easy modification to
the basic balanced truncation algorithm. The idea is to simply replace s with 1/s
as follows:

1. Set H(w) = G(1/w).

2. Let Hr(w) be an rth-order balanced truncation of H(w).

3. Set Gr(s) = H(1/s).

This algorithm will have exact matching at zero frequency, thereby leading to prefect
steady-state performance; it is a singular perturbation version of balanced trunca-
tion, which we call balanced singular perturbation approximation (BSPA).

Since singular perturbation and truncation are connected by the simple fre-
quency inversion s → 1/s, the infinity norm error bounds will still hold. Secondly,
since frequency inversion preserves stability, both algorithms will produce reduced-
order models with the same stability properties. Finally, since frequency inversion
preserves the controllability and observability gramians and hence a balanced real-
ization, we obtain the following result:
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Theorem 9.5.1 Assume the hypotheses of Theorem 9.4.3 and define Ĝ = D̂ +

Ĉ1(sI − Â11)
−1B̂1, in which (Â11, B̂1, Ĉ1, D̂) = Sr(A,B,C,D). Then:

1. The realization (Â11, B̂1, Ĉ1, D̂) is balanced with its controllability and observ-

ability gramians given by Σl = diag(σ1Ir1
, . . . , σlIrl

). In particular, Â11 is

stable, (Â11, B̂1) is controllable and (Ĉ1, Â11) is observable.

2. ‖G − Ĝ‖∞ ≤ 2(σl+1 + . . . + σm), and equality holds if l = m − 1.

3. Ĝ(0) = G(0).

4. ‖G − G(0)‖∞ ≤ 2(σ1 + . . . + σm).

Proof. Since (A,B,C) is balanced, A is stable and therefore nonsingular. By

Lemma 9.4.1, A22 is also stable and hence is nonsingular. Thus (Â11, B̂1, Ĉ1, D̂)
given by (9.2.14) are well defined and the assumptions of Lemma 9.2.2 hold. All
the items now follow directly from their balanced truncation counterparts by using
Lemma 9.2.2.

Main point of the section

The stability and infinity norm properties of any model reduction pro-
cedure will be preserved by a change of variables that maps the left-half
plane into itself. The balanced singular perturbation approximation,
which is equivalent to balanced truncation of the system obtained by
setting w = 1/s, has the same infinity norm error as balanced trunca-
tion, but has zero steady-state error. In general, its performance at low
frequencies is superior to that of balanced truncation.

9.6 Example

We illustrate the model reduction methods described above with an eighth-order
model of a flexible structure [58]. The model is

g =

4∑

i=1

ki
ω2

i

s2 + 2ζiωis + ω2
i

,

in which

i ωi ζi ki

1 0.56806689746895 0.00096819582773 0.01651378989774
2 3.94093897440699 0.00100229920475 0.00257034576009
3 10.58229653714164 0.00100167293203 0.00002188016252
4 16.19234386986640 0.01000472824082 0.00027927762861
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The controllability and observability gramians of a balanced realization for this
system are

Σ = diag

[
4.26819 4.25994 0.641754 0.640469

0.069856 0.0697163 0.00546623 0.00545529

]
.

By making use of the error bound given in Theorem 9.4.3, we see that if two states
are eliminated, the infinity norm of the error is less than 0.0218431. If four states
are eliminated, the error bound increases to 0.300988 and so on.

Eliminating four states by balanced truncation gives

ĝ
s
=




−0.000550222 −0.568066 0.000993291 0.00134457 0.068534
0.568066 −0.000549776 0.00134607 0.000994008 −0.0684399

0.000993291 −0.00134607 −0.00394544 −3.94093 −0.0711619
−0.00134457 0.000994008 3.94093 −0.00395455 0.0711725

0.068534 0.0684399 −0.0711619 −0.0711725 0




.

Figure 9.1 shows the gain of the full-order model g, the fourth-order balanced
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Figure 9.1: Flexible structure models: full-order g (solid), balanced truncation ĝ

(dashed) and balanced singular perturbation (dash-dot).

truncation model ĝ and the fourth-order balanced singular perturbation model.
The gains of the error incurred by each method, along with the error bound, are

shown in Figure 9.2. The solid line is the error bound, the dashed line is the balanced
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truncation error and the dash-dot line is the balanced singular perturbation error.
Notice that the actual error is an order of magnitude less than the error bound. This
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Figure 9.2: Model reduction errors: error bound (solid), balanced truncation
(dashed) and balanced singular perturbation (dash-dot).

is not unexpected for this type of system because its poles and zeros are interlaced
and close to the imaginary axis.

It is also worth noting that the balanced truncation reduced-order model is
virtually identical to the fourth-order model obtained by deleting the two high-
frequency modes. The main difference is that the balanced truncation reduced-order
model has an additional zero at −3980.19.

9.7 Notes and References

Balanced realizations first appeared with the work of Mullis and Roberts [153],
who were interested in realizations of digital filters that are optimal with respect
to round-off errors in the state update calculations. These issues are developed
extensively in the book by Williamson [212].

The balanced truncation method of model reduction is due to Moore, who ar-
gued that the method is sensible on system theoretic grounds. He also proved a
weak version of the stability result. The asymptotic stability result, Lemma 9.4.1,
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is due to Pernebo and Silverman [162]. The twice-the-sum-of-the-tail infinity norm
error bound for balanced truncation is due to Enns [57], who also proposed a fre-
quency weighted generalization. He introduced formula (9.2.6) for the truncation
error system and proved that the error for “one-step” truncation is 2σ when the
multiplicity of σ is one. Our new proof shows that no matter what the multiplicity
of σ is, the infinity norm of the error is exactly 2σ. The twice-the-sum-of-the-tail
error bound was also proved by Glover [71] using a different approach.

The balanced singular perturbation approximation method was introduced by
Fernando and Nicholson [62]. Liu and Anderson [140] showed that it was related to
balanced truncation by the transformation s → 1/s.

Numerical algorithms for computing balanced realizations have been considered
by Laub, Heath, Page and Ward [128]. Tombs and Postlethwaite [152], and Safonov
and Chiang [180] have developed various algorithms that compute balanced trunca-
tion approximations without computing balanced realizations. None of these proce-
dures eliminate the need to compute the controllability and observability gramians,
which is a serious problem when large-scale models need to be reduced. Jaimoukha,
Kasenally and Limebeer [104] have developed algorithms for computing approxi-
mate solutions to Lyapunov equations using Krylov subpace methods that can be
effective even for models containing many hundreds of states.

A relative error based truncation method of model reduction is the balanced
stochastic truncation method of Desai and Pal [45]. Green derived an infinity norm
bound for the relative error associated with this method [83]; the bound was sub-
sequently improved by Wang and Safonov [208]. Another feature of the algorithm
is that it preserves the closed-right-half-plane zeros of the model and will therefore
produce a minimum phase approximation of a minimum phase system [82].

Discrete-time versions of the results in this chapter (see Problem 9.6) have been
proved by Al-Saggaf and Franklin [5].

9.8 Problems

Problem 9.1. Let B and C be complex matrices such that BB∗ = C∗C.

1. If the number of rows of C is greater than or equal to the number of columns
of B, show that for any nonzero real number σ, there exists a matrix U such
that σB + C∗U = 0 and U∗U = σ2I.
(Hint: Write a singular value decomposition of C and infer the form of the
singular value decomposition of B; see Lemma 3.5 of [71].)

2. Show that for any nonzero real number σ, there exists a matrix U such that
σB + C∗U = 0 and U∗U ≤ σ2I. Show further that the nonzero singular
values of U are all equal to σ.

Problem 9.2. Suppose (Aii, Bi, Ci), i = 1, 2 are two balanced realizations with
controllability/observability gramians Σ1 and Σ2 respectively. Suppose also that
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Σ1 and Σ2 have no eigenvalues in common. Construct the unique matrices A21 and
A12 such that

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
,

C =
[

C1 C2

]

is a balanced realization with controllability/observability gramian

[
Σ1 0
0 Σ2

]
.

Problem 9.3. Assume the hypotheses of Lemma 9.4.2. Using the bounded real
lemma (Theorem 3.7.1), prove that

sup
ω

σ
(
C̃(jω)(jωI − Ã(jω))−1B̃(jω)

)
≤ 2σ.

Problem 9.4. Show that the poles and zeros of the system gn defined in
Example 9.4.1 have an interlacing property—between any two poles there is exactly
one zero. If gn is the impedance of a linear circuit, explain why this interlacing
property implies that the circuit is passive.

Problem 9.5. Let (A,B,C,D) be any realization such that A is asymptotically
stable and let P and Q satisfy

AP + PA′ + BB′ = 0

A′Q + QA + C ′C = 0.

Show that the following procedure computes the rth-order balanced truncation ap-
proximation to G = D + C(sI − A)−1B:

a. Let P = UP SP U ′
P and Q = UQSQU ′

Q be ordered singular value decomposi-
tions of P and Q.

b. Let S
1
2

QU ′
QUP S

1
2

P have (ordered) singular value decomposition V ΣU ′.
c. Partition the matrices V , Σ and U as

V =
[

V1 V2

]
, Σ =

[
Σ1 0
0 Σ2

]
, U =

[
U1 U2

]
,

in which Σ1 is r × r.
d. Define

L = UQS
1
2

QV1Σ
− 1

2

1 , M = UP S
1
2

P U1Σ
− 1

2

1 .

e. Define Ar = L′AM , Br = L′B and Cr = CM .
f. Define Ĝ = D + Cr(sI − Ar)

−1Br.
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Problem 9.6. [5] A realization (A,B,C,D) of a discrete-time system G(z) =
D + C(zI − A)−1B is balanced if |λi(A)| < 1 for all i and there exists a positive
definite diagonal matrix of the form given in (9.3.5) such that

AΣA′ − Σ + BB′ = 0

A′ΣA − Σ + C ′C = 0.

1. Show that a given realization of a discrete-time system can be transformed
into a discrete-time balanced realization if and only if it is stable and minimal.

2. Suppose that (A,B,C,D) is a discrete-time balanced realization which is
partitioned as in (9.2.3) and (9.3.5). Show that A11 is asymptotically stable
(|λi(A11)| < 1 for all i).

3. Define

Ã(θ) = A22 + A21(e
jθI − A11)

−1A12

B̃(θ) = B2 + A21(e
jθI − A11)

−1B1

C̃(θ) = C2 + C1(e
jθI − A11)

−1A12.

Show that

Ã(θ)Σ2Ã
∗
(θ) − Σ2 + B̃(θ)B̃

∗
(θ) = 0

Ã
∗
(θ)Σ2Ã(θ) − Σ2 + C̃

∗
(θ)C̃(θ) = 0.

4. Suppose that A is asymptotically stable |λi(A)| < 1 for all i and that

AA∗ − I + BB∗ = 0

A∗A − I + C∗C = 0.

Show that σ[C(ejθI − A)−1B] < 2.

5. Show that (A11,
[

A12Σ
1
2

2 B1

]
,

[
A21Σ

1
2

2

C1

]
) is a balanced realization.

6. Suppose that G(z) = D + C(zI −A)−1B, in which (A,B,C,D) is a discrete-
time balanced realization. Let (A11, B1, C1,D) be an rth-order balanced trun-

cation of (A,B,C,D) and let Ĝ(z) = D + C1(zI − A11)
−1B1. Show that

‖G − Ĝ‖∞ < 2(σr+1 + . . . + σn).

Problem 9.7. [91, 6] Let (A,B,C,D) be a balanced realization of a continuous-
time system and let α be a nonnegative number. Define

Â = A11 + A12(αI − A22)
−1A21

B̂ = B1 + A12(αI − A22)
−1B2

Ĉ = C1 + C2(αI − A22)
−1A21

D̂ = D + C2(αI − A22)
−1B2,
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in which (A,B,C,D) are partioned as in (9.2.3) conformably with a partioning of Σ
in (9.4.2). The generalized singular perturbation approximation (GSPA) is defined

by GSr(A,B,C,D) = (Â, B̂, Ĉ, D̂).
1. Show that the GSPA reduced-order model results from replacing the dynam-

ics associated with x2 by the exponential system ẋ2 = αx2.
2. Show that the GSPA approximant has zero error at s = α.
3. Suppose that 0 < α < ∞ and define the linear fractional transformation

z = α+s
α−s , which maps the left-half plane to the unit circle. Suppose also that

we consider the equivalent discrete-time system defined by F (z) = G(α(z−1)
z+1 ).

Show that F = D̃ + C̃(zI − Ã)−1B̃, in which

Ã = (αI + A)(αI − A)−1 = (αI − A)−1(αI + A)

B̃ =
√

2α(αI − A)−1B

C̃ =
√

2αC(αI − A)−1

D̃ = D + C(αI − A)−1B.

Show that this realization of F is a discrete-time balanced realization.
4. Show that for 0 < α < ∞, GSPA is equivalent to: (a) mapping to discrete-

time via z = α+s
α−s ; (b) discrete-time balanced truncation (see Problem 9.6)

and (c) mapping back to continuous-time via s = α(z−1)
z+1 .

5. For 0 ≤ α ≤ ∞, show that reduced-order models obtained by GSPA en-
joy the same stability and infinity norm error bound properties as balanced
truncation and SPA.
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Optimal Model Reduction

10.1 Introduction

The motivation for the balanced truncation method of model reduction came from
energy transmission arguments. If a high-order model G maps u to y via y = Gu,
then the idea was to the select a low-order model Ĝ of degree r, which maps u to
ŷ, such that

e = sup
u∈L2(−∞,0]

(∫ ∞
0

(y − ŷ)′(y − ŷ) dt
∫ 0

−∞ u′u dt

)

is small when u(t) = 0 for t > 0. If t ≤ 0 represents the past and t ≥ 0 the future,
then this quantity can be thought of as the energy gain from past inputs to future
outputs. If the past-input-to-future-output energy gain is indeed a good basis upon
which to select a reduced-order model, it seems reasonable to seek to minimize it.
That is, choose Ĝ of McMillan degree r such that e is minimized. This is optimal
Hankel norm approximation and a method for determining Ĝ will now be given.

10.2 Hankel operators

The Hankel operator of a linear system is the prediction operator that maps (the
reflection of) past inputs to future outputs, assuming the future input is zero.1

Suppose the system G ∈ RH∞ is defined by the minimal state-space realization

ẋ = Ax + Bu, x(−∞) = 0, (10.2.1)

y = Cx + Du. (10.2.2)

1The reflection is introduced so that the Hankel operator is a map from L2[0,∞) to L2[0,∞),
rather than from L2(−∞, 0] to L2[0,∞).

341
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If u ∈ L2(−∞, 0], then future outputs are determined by the convolution integral

y(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ) dτ, t > 0.

If we set v(t) = u(−t), then y(t) = (ΓGv)(t) for t > 0, in which ΓG : L2[0,∞) 7→
L2[0,∞) is the Hankel operator defined by

(ΓGv)(t) =

∫ ∞

0

CeA(t+τ)Bv(τ) dτ. (10.2.3)

We say that ΓG is the Hankel operator with G as its symbol. Notice that because
D is not involved in prediction it plays no role in defining the Hankel operator.

If u ∈ L2(−∞, 0], then y(t) = CeAtx(0), for t > 0. The present state is given

by x(0) =
∫ 0

−∞ e−Aτu(τ) dτ .2 Therefore, in order to determine ΓGv, we only need
to know the present state x(0) that results from driving the system with u(t)—
all inputs that give rise to the same x(0) produce the same future output. Since
(A,B) is controllable, x(0) ranges over R

n as u ranges over L2(−∞, 0]. Since
(A,C) is observable, any two linearly independent initial states result in linearly
independent future outputs. Thus, the number of linearly independent outputs is
n, the dimension of a minimal realization of G. We conclude that the rank of the
Hankel operator ΓG (i.e., the number of linearly independent outputs) is equal to
the McMillan degree of G.3

10.2.1 The Hankel norm

The Hankel norm of a system is the L2[0,∞) induced norm of its associated Hankel
operator and we write

‖G‖H = ‖ΓG‖.
By definition of the induced norm we see that

‖G‖2
H = sup

u∈L2(−∞,0]

( ∫ ∞
0

y′y dt
∫ 0

−∞ u′u dt

)
.

Thus the future output energy resulting from any input is at most the Hankel norm
squared times the energy of the input, assuming the future input is zero. The
optimal Hankel norm model reduction problem is to find a Ĝ ∈ RH∞ of McMillan
degree r < n that minimizes ‖G − Ĝ‖H .

We use the arguments of Section 9.3.1 to compute the Hankel norm of a system.
Suppose u ∈ L2(−∞, 0] results in the current state x(0) = x0. Then

∫ ∞

0

y′(t)y(t) dt = x′
0Qx0 (10.2.4)

2We think of the time t = 0 as the present.
3The McMillan degree of a system is defined in books such as [105]—it is equal to the dimension

of a minimal state-space realization.
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and ∫ 0

−∞
u′u dt ≥ x′

0P
−1x0, (10.2.5)

in which P and Q are the controllability and observability gramians satisfying

AP + PA′ + BB′ = 0 (10.2.6)

A′Q + QA + C ′C = 0. (10.2.7)

(See Section 9.3.1 for details.) Note that P−1 exists because (A,B) is controllable.
Since the input u = B′e−A′tP−1x0 satisfies (10.2.5) with equality, we conclude that

‖G‖2
H = sup

x0

x′
0Qx0

x′
0P

−1x0

= σ(PQ). (10.2.8)

The Hankel norm of a system is bounded above by its infinity norm, because
for an arbitrary unit energy input in L2(−∞, 0], ‖G‖2

H is the least upper bound on
the energy of the future output and ‖G‖2

∞ is the least upper bound on the energy
of the total output.

To explore this connection in a little further, note that if F is any anticausal
system and u ∈ L2(−∞, 0], then (Fu)(t) is zero for t > 0.4 Thus the future output
is unaffected by the addition of any anticausal system F and it is immediate that
the inequality

‖G‖H ≤ ‖G − F ‖∞ (10.2.9)

is satisfied for any anticausal F . This simple observation is the cornerstone of the
solution to the optimal Hankel norm model reduction problem. Nehari’s theorem,
which is presented in detail later, shows that

‖G‖H = min
F∈H−

∞

‖G − F ‖∞.

It follows from the Paley-Wiener theorem that F ∈ H−
∞ implies that F is anticausal.

10.2.2 Hankel singular values and the Schmidt decomposi-

tion

The Schmidt decomposition is the singular value decomposition of ΓG:

ΓG(u) =
n∑

i=1

σi〈u, vi〉wi, (10.2.10)

in which vi ∈ L2[0,∞) and wi ∈ L2[0,∞) are sets of orthonormal functions.5 The
numbers σi > 0, which we will also denote σi(G), are the singular values of the

4A system is anticausal if it is causal in reverse time.
5That is, 〈vi, vj〉 = 0 and 〈wi, wj〉 = 0 for i 6= j with ‖vi‖2 = 1 and ‖wi‖2 = 1 for all i.
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Hankel operator ΓG and they are called the Hankel singular values of G. The
largest Hankel singular value is equal to the Hankel norm and we shall assume
that the Hankel singular values are ordered in descending order of magnitude. The
multiplicity of a Hankel singular value σi is the number of Hankel singular values
that are equal to σi. Generically, each Hankel singular value has unit multiplicity.

The pair (vi, wi), corresponding to the Hankel singular value σi, is called a
Schmidt pair. It follows from the orthogonality of the vi’s and the wi’s that

ΓGvi = σiwi

Γ∼
Gwi = σivi,

in which Γ∼
G is the adjoint operator.

We will now determine the Hankel singular values and the Schmidt pairs in
terms of a minimal realization (A,B,C,D) of the system G. Consider v(t) =
B′eA′tP−1x0. Then

(ΓGv)(t) = CeAt

(∫ ∞

0

eAτBB′eA′τ dτ

)
P−1x0

= CeAtx0,

since P =
∫ ∞
0

eAτBB′eA′τ dτ . In the same way, if w(t) = CeAtx0, then

(Γ∼
Gw)(t) =

∫ ∞

0

B′eA′(t+τ)C ′w(τ) dτ

= B′eA′t

(∫ ∞

0

eA′τC ′CeAτ dτ

)
x0

= B′eA′tQx0.

Therefore, Γ∼
GΓGv = σ2v if Qx0 = σ2P−1x0 and we conclude that the Hankel

singular values σi of G are given by

σi = λ
1
2

i (PQ), i = 1, . . . , n.

For notational convenience, we also define σ0 = ∞ and σn+1 = 0. To determine the

Schmidt vector corresponding to σi = λ
1
2

i (PQ), we need to choose an xi ∈ R
n such

that Qxi = σ2
i P−1xi, with the norm of xi scaled so that vi(t) = B′eA′tP−1xi has

unit L2[0,∞) norm. Now

‖vi‖2
2 = x′

iP
−1

(∫ ∞

0

eAτBB′eA′τ dτ

)
P−1xi

= x′
iP

−1xi

=
x′

iQxi

σ2
i

.
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Hence, if xi ∈ R
n satisfies PQxi = σ2

i xi and x′
iQxi = σ2

i , then

vi(t) = σ−2
i B′eA′tQxi, i = 1, . . . , n

wi(t) = σ−1
i CeAtxi, i = 1, . . . , n

is a Schmidt pair corresponding to σi. The Schmidt decomposition (10.2.10) is
therefore obtained by selecting a set of orthogonal vectors xi ∈ R

n such that PQxi =
σ2

i xi, x′
iQxi = σ2

i . If the realization (A,B,C,D) is a balanced realization (see
Definition 9.3.1), then

P = Q = Σ =




σ1 0 0

0
. . . 0

0 0 σn




and xi =
√

σiei, with ei the ith standard basis vector.

10.2.3 A lower bound on the approximation error

We now show that σr+1(G) is a lower bound on the Hankel norm of the error
incurred when approximating G by a stable system of McMillan degree r. It is a
consequence of this and the definition of the Hankel norm that the energy in the
prediction error signal is at least σ2

r+1 times the input energy, assuming the future
input is zero. In a later section, we will show that this lower bound can be attained.

Lemma 10.2.1 Suppose G ∈ RH∞ has Hankel singular values σ1, . . . , σn and let
Ĝ ∈ RH∞ have McMillan degree less than or equal to r < n. Then

‖G − Ĝ‖H ≥ σr+1. (10.2.11)

If equality holds and σr > σr+1, then Γ
Ĝ

vj = 0 for every Schmidt vector vj corre-
sponding to any Hankel singular value σj = σr+1.

Proof. Let Ĝ ∈ RH∞ have McMillan degree less than or equal to r < n and let
(vi, wi), i = 1 . . . n be the Schmidt pairs of G. Consider inputs of the form

v =
r+1∑

i=1

αivi.

Since v1, · · · , vr+1 span an r +1 dimensional space and the Hankel operator Γ
Ĝ

has
rank less than or equal to r, we can select the αi’s, not all zero, such that Γ

Ĝ
v = 0.

For such a v,

‖(ΓG − Γ
Ĝ

)v‖2
2 = ‖ΓGv‖2

2

= ‖
r+1∑

i=1

αiσiwi‖2
2
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=

r+1∑

i=1

α2
i σ

2
i

≥ σ2
r+1

r+1∑

i=1

α2
i

= σ2
r+1‖v‖2

2. (10.2.12)

Hence ‖ΓG − Γ
Ĝ
‖ ≥ σr+1.

If equality holds in (10.2.11), then equality also holds in (10.2.12). If σr > σr+1,
then σi > σr+1 for i = 1, . . . , r and we conclude that αi = 0 for i = 1, . . . , r. Since
the α’s are not all zero, σr+1 cannot be zero and we must have Γ

Ĝ
vr+1 = 0. Since

the labelling is arbitrary, we conclude Γ
Ĝ

vj = 0 for any i such that σj = σr+1.

Since the infinity norm is never smaller than the Hankel norm, it follows from
Lemma 10.2.1 that any Ĝ ∈ RH∞ of McMillan degree r satisfies

‖G − Ĝ‖∞ ≥ σr+1(G).

Thus σr+1 is also a lower bound on the infinity norm of the error incurred in

approximating G by Ĝ.

Main points of the section

1. The Hankel operator maps inputs that are nonzero only in negative
time to the future part of the output. The rank of the Hankel
operator ΓG is equal to the McMillan degree of its symbol G. The
Hankel norm is the square root of the energy gain from inputs that
are only nonzero in negative time to the future part of the output.

2. The Hankel norm is no greater than the infinity norm. Indeed,

‖G‖H ≤ ‖G − F ‖∞
for any anticausal system F . If F ∈ RH−

∞, then F is anticausal.

3. The singular values of the Hankel operator ΓG are given by

σi(G) = λ
1
2

i (PQ),

in which P and Q are the controllability and observability gramians
of a minimal realization of G.

4. The Schmidt decomposition is a singular value decomposition of the
Hankel operator ΓG. The Schmidt vectors are easily determined
from a state-space realization of G.

5. The Hankel norm of the error incurred in approximating G by a
system Ĝ of McMillan degree r is at least as large as σr+1(G). If
this lower bound is attained, ΓGvr+1 = 0 for any Schmidt vector
vr+1 corresponding to σr+1(G).
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10.3 Suboptimal Hankel norm approximations

The construction we will use for the solution of the optimal Hankel norm model
reduction problem involves embedding G in an allpass system with dimensions
exceeding those of G. To motivate this construction, suppose we can find a Ĝ ∈
RH∞ of McMillan degree r and an anticausal system F such that γ−1(G− Ĝ−F )

is allpass. Then ‖G− Ĝ−F ‖∞ = γ and we conclude from inequality (10.2.9) that

‖G− Ĝ‖H ≤ γ. We shall see that the construction can be performed for any value
of γ > σr+1(G), which shows that the lower bound of Lemma 10.2.1 is the infimal
error. A greater level of sophistication is required to show that this infimum can
be achieved (i.e., the infimum is a minimum); we postpone a consideration of this
case to Section 10.4.

10.3.1 Allpass embedding

Assume that G ∈ RH∞ is p × m with minimal realization (A,B,C,D). It is
important to note that this implies that A is asymptotically stable. Now write the
augmented system

Ga =

[
G 0
0 0

]

s
=




A B 0
C D 0
0 0 0



 =

[
A Ba

Ca Da

]
, (10.3.1)

in which the dimensions of the zero blocks will be fixed at a later stage. In the next
phase of the construction we use Theorem 3.2.1 to find a system Qa such that the
error system

Ea = Ga − Qa

satisfies
E∼

a Ea = γ2I. (10.3.2)

If Qa has realization

Qa
s
=

[
Â B̂

Ĉ D̂

]
,

Ea is given by

Ea
s
=




A 0 Ba

0 Â B̂

Ca −Ĉ Da − D̂


 =

[
Ae Be

Ce De

]
. (10.3.3)

By Theorem 3.2.1, Ea satisfies (10.3.2) if there exists a nonsingular Qe such that

A′
eQe + QeAe + C ′

eCe = 0 (10.3.4)
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D′
eCe + B′

eQe = 0 (10.3.5)

D′
eDe = γ2I. (10.3.6)

Our aim is to construct matrices Â, B̂, Ĉ, D̂ and a matrix Qe to satisfy these all-
pass equations. Before we begin the main construction, we determine a connection
between Qe defined by (10.3.4) and the controllability gramian Pe defined by

AePe + PeA
′
e + BeB

′
e = 0. (10.3.7)

Subtract Qe(10.3.7)Qe from γ2×(10.3.4) while making use of (10.3.5) to obtain

QeAe(γ
2I − PeQe) + (γ2I − QePe)A

′
eQe + C ′

e(γ
2I − DeD

′
e)Ce = 0.

At this point we fix the dimensions of the zero blocks in (10.3.1) so that Da and
De are square. If we make De (p + m) × (m + p), then the satisfaction of (10.3.6)
requires γ−2D′

e = D−1
e . Choosing γ−1De to be any (p + m) × (m + p) orthogonal

matrix, we see that

QeAe(γ
2I − PeQe) + (γ2I − QePe)A

′
eQe = 0.

If Ea is to have bounded infinity norm, it must not have any poles on the imaginary
axis. If the realization (Ae, Be, Ce,De) is to be minimal, Ae must not have imaginary
axis eigenvalues, Qe should be nonsingular and Pe and Qe should satisfy PeQe =
γ2I.

By examining the (1,1)-blocks of (10.3.4) and (10.3.7) we see that Qe and Pe

have the form

Pe =

[
P P12

P ′
12 P22

]
, Qe =

[
Q Q′

21

Q21 Q22

]
,

in which P and Q are the controllability and observability gramians of G (and of
Ga). From the (1, 1)-block of PeQe = γ2I we see that P12Q21 = γ2I − PQ. In the
suboptimal case that

γ 6= σi(G), i = 1, . . . , n, (10.3.8)

it is clear that P12Q21 must have rank n, since γ2 is not an eigenvalue of PQ,
which shows that the dimension of Â must be at least n. In order that Qa has the

least possible degree, we choose the dimension of Â to be n. This means that P12

and Q21 are square and nonsingular. Since the basis for the state-space of Qa is
arbitrary, we may use this freedom to scale the nonsingular matrix P12 to be the
identity matrix. Therefore Q21 = γ2I − PQ and the (2, 2)-blocks of Pe and Qe are
now determined from PeQe = γ2I. Summarizing, we have

Pe =

[
P I
I E−1Q

]
, Qe =

[
Q −E

−E′ PE

]
, (10.3.9)

in which
E = QP − γ2I. (10.3.10)
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The matrices Â, B̂ and Ĉ are now easily determined. The (1,1)-block of (10.3.5)
gives

B̂ = E−1(QBa + C ′
aDe), (10.3.11)

while the (1,1)-block of De(10.3.5)Pe yields

Ĉ = DeB
′
a + CaP. (10.3.12)

Finally, the (2,1)-block of (10.3.7) and the (1,2)-block of (10.3.4) yield

Â = −A′ − B̂B′
a (10.3.13)

and
Â = −E−1(A′E + C ′

aĈ) (10.3.14)

respectively, which are two alternative expressions for Â. The construction of Ga

is completed by choosing any D̂ such that γ−1De is a (p + m)× (m + p) orthogonal
matrix. The obvious choice is

D̂ =

[
D γIp

γIm 0

]
. (10.3.15)

In summary, we take (A,B,C,D), solve for the controllability and observability

gramians P and Q and define (Â, B̂, Ĉ, D̂) according to the above equations. Since
the allpass equations (10.3.4) to (10.3.6) are satisfied, Ea satisfies (10.3.2) as re-
quired. We note also that since Ea is square, we must have γ−2E∼

a = E−1
a , which

implies that EaE∼
a = γ2I.

Before proceeding to apply the allpass embedding to the solution of the Hankel
norm model reduction problem, we verify that the realizations (Ae, Be, Ce,De) and

(Â, B̂, Ĉ, D̂) are minimal. Since Qe and Pe are nonsingular, the minimality of
(Ae, Be, Ce,De) is assured provided Ae has no imaginary axis eigenvalues. Since Ae

is block diagonal and A is asymptotically stable, we need to show that Â has no
imaginary axis eigenvalues. The (2,2)-block of (10.3.4) is

PEÂ + Â′PE + Ĉ ′Ĉ = 0. (10.3.16)

If Âx = jωx, multiplying (10.3.16) on the left by x∗ and on the right by x gives

Ĉx = 0. From (10.3.14) we obtain A′Ex = −jωEx, which implies that x = 0 since

E is nonsingular and A is asymptotically stable. Thus Â has no imaginary axis
eigenvalue and we conclude that (Ae, Be, Ce,De) is minimal. From the structure

of the realization (Ae, Be, Ce,De), we conclude that (Â, B̂, Ĉ, D̂) is also minimal,
thereby establishing that the McMillan degree of Qa is n.
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10.3.2 One solution to the model reduction problem

The allpass embedding we have constructed has a number of properties we shall
need in order to solve the model reduction problem. In the first place, it is clearly
important to know about the number of poles of Qa in the left-half plane.

We now show that the dimension of the asymptotically stable subspace of Â
is the number of Hankel singular values of G that are larger than γ. Let V1 be a
(real) basis for the asymptotically stable subspace of Â and let ÂV1 = V1Λ. Then
V ′

1(10.3.16)V1 yields

(V ′
1PEV1)Λ + Λ′(V ′

1PEV1) + (ĈV1)
′(ĈV1) = 0.

Since Λ is asymptotically stable and (Λ, ĈV1) is observable (since (Â, Ĉ) is ob-
servable), we conclude that V ′

1PEV1 > 0. Similarly, if V2 is a (real) basis for the

antistable subspace of Â, then V ′
2PEV2 < 0.

If γ > σ1, then PE = P (QP −γ2I) is negative definite and we conclude that all

the eigenvalues of Â are in the open-right-half plane. If γ < σn, then PE is positive
definite and we conclude that Â is asymptotically stable. Finally, if

σr(G) > γ > σr+1(G), r = 1, . . . , n

then PE has r positive and n − r negative eigenvalues and we conclude that Â
has r eigenvalues in the open-left-half plane and n − r eigenvalues in the open-
right-half plane. It is convenient to introduce the notation RH−

∞(r) for a transfer
function matrix in RL∞ that has at most r poles in the open-left-half plane. Thus
σr(G) > γ > σr+1(G) implies that Qa ∈ RH−

∞(r).
The next property concerns the zeros of the (1, 2)- and (2, 1)-blocks of Qa, which

we will call Qa12 and Qa21 respectively. The realization of Qa has the form

Qa
s
=




Â B̂1 B̂2

Ĉ1 D γIp

Ĉ2 γIm 0


 .

From the definitions in (10.3.13) to (10.3.15) we obtain
[

Â − λI B̂1

Ĉ2 γI

]
=

[
−A′ − λI B̂1

0 γI

] [
I 0

−B′ I

]

[
Â − λI B̂2

Ĉ1 γI

]
=

[
I −E−1C ′

0 I

] [ −E−1A′E − λI 0

Ĉ1 γI

]
.

It is now clear that the zeros of Qa12 and Qa21, along with any uncontrollable or
unobservable modes, are all in the open-right-half plane since A is asymptotically
stable.

The allpass embedding and Lemma 10.2.1 establish the following result, which
gives one solution to the suboptimal Hankel norm model reduction problem.
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Theorem 10.3.1 If G ∈ RH∞, there exists a Ĝ ∈ RH∞ of McMillan degree at
most r and an F ∈ H−

∞ such that ‖G − Ĝ − F ‖∞ < γ if and only if γ > σr+1(G).

Proof. If ‖G − Ĝ − F ‖∞ < γ, then

γ > ‖G − Ĝ − F ‖∞ ≥ ‖G − Ĝ‖H ≥ σr+1(G).

Conversely, for any γ > σr+1(G), γ 6= σi(G), the construction given in Sec-
tion 10.3.1 results in Qa ∈ RH−

∞(r) such that ‖Ga − Qa‖∞ = γ. Since Qa12

and Qa21 have no zeros on the imaginary axis, we must have ‖G − Qa11‖∞ < γ.

Therefore, Ĝ and F are obtained from a stable/unstable decomposition of Qa11.

The reduced-order model we seek is any stable part of Qa11.
6 The choice of the

direct feedthrough term of the stable part is arbitrary because it is irrelevant to the
Hankel norm. It is of interest when we consider the infinity norm in Section 10.5.

10.3.3 All solutions to the model reduction problem

The allpass embedding described in Section 10.3.1 actually captures all solutions to
the Hankel norm model reduction problem. The proof uses the “small gain” results
for contractive linear fractional transformations from Chapter 4 .

Theorem 10.3.2 Let G ∈ RH∞ and γ be given such that σr(G) > γ > σr+1(G).
Then every Q ∈ RH−

∞(r) that satisfies

‖G − Q‖∞ < γ (10.3.17)

is generated by

Q = F`(Qa,U), U ∈ RH−
∞, ‖U‖∞ < 1/γ. (10.3.18)

Proof. Suppose Q is any function such that (10.3.17) holds. Since Qa12 and Qa21

are nonsingular on the imaginary axis and Qa22(∞) = 0, there exists a U ∈ RL∞
such that Q = F`(Qa,U) (just solve this equation for U). Thus

G − Q = F`(Ga − Qa,U) = F`(Ea,U),

in which γ−1Ea is allpass. It now follows from Theorem 4.3.2 that ‖U‖∞ < γ−1. If
Q ∈ RH−

∞(r), the proven properties of Qa and Lemma 4.3.4 imply that U ∈ RH−
∞.

Conversely, if Q is given by (10.3.18), the result is immediate from Theorem 4.3.2
and Lemma 4.3.4.

We obtain all solutions to the Hankel norm model reduction problem, i.e., all
Ĝ ∈ RH∞ of degree at most r satisfying ‖G − Ĝ‖H < γ, by selecting any stable
part of any system Q ∈ RH−

∞(r) that is generated by (10.3.18).

6A stable part of Qa11 ∈ RL∞ is any Ĝ ∈ RH∞ such that Qa11 − Ĝ ∈ RH−
∞. A stable part

is unique up to the direct feedthrough or D-matrix of the system. By the Paley-Wiener theorem,
this is equivalent to a causal/anticausal decomposition of the system and the nonuniqueness arises
because the present is considered part of the past and part of the future.
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Main points of the section

1. Provided γ 6= σi(G), there exists a Qa such that γ−1(Ga − Qa) is
square and allpass.

2. The system Qa has no poles on the imaginary axis. The number
of poles of Qa in the open-left (-right)-half plane is exactly the
number of Hankel singular values of G that are larger (smaller)
than γ.

3. There exists a Ĝ ∈ RH∞ of McMillan degree r or less such that
‖G−Ĝ‖H < γ if and only if γ > σr+1(G). In this case one solution
is the stable part of Qa11 as constructed in Section 10.3.1.

4. If σr(G) > γ > σr+1(G), then every solution to the suboptimal

Hankel norm model reduction problem of finding Ĝ of McMillan
degree (at most) r such that ‖G− Ĝ‖H < γ is generated by taking
the stable part of the linear fractional transformation F`(Qa,U), in
which Qa is constructed as shown in Section 10.3.1. The parameter
U ∈ RH−

∞ must satisfy ‖U‖∞ < γ−1.

10.4 Optimal Hankel norm approximation

We will now extend our analysis to the optimal case in which we seek a Ĝ ∈ RH∞
of McMillan degree at most r such that ‖G− Ĝ‖H = σr+1(G). This is the optimal
case, because σr+1(G) is the greatest lower bound on the achievable Hankel norm
(Theorem 10.3.1). In order to show that this lower bound is in fact achievable, we
reconsider the construction of the allpass embedding in Section 10.3.1.

10.4.1 Optimal allpass embedding

We return to the construction of Section 10.3.1 and instead of making the assump-
tion (10.3.8), which says that γ is not a Hankel singular value of G, we assume
that

γ = σr+1(G). (10.4.1)

Since γ = σr+1(G) and P12Q21 = γ2I − PQ, P12Q21 must have rank n − l where l
is the multiplicity of σr+1(G).

Suppose the realization of Ga is chosen so that

P =

[
P1 0
0 σr+1Il

]
, Q =

[
Q1 0
0 σr+1Il

]
. (10.4.2)

To see that this is always possible, we need only recall that an appropriately ordered
balanced realization of Ga has this form. By choosing the dimension of Â to be n−l,
we see that P12 and Q21 are full column rank and full row rank respectively and that
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we may use our freedom to choose the basis for the state space in the realization
of Qa to obtain P12 =

[
I 0

]′
. It now follows from the various partitions of

PeQe = γ2I that

Pe =




P1 0 I
0 γI 0
I 0 E−1

1 Q1



 , Qe =




Q1 0 −E1

0 γI 0
−E′

1 0 P1E1



 , (10.4.3)

in which
E1 = Q1P1 − γ2In−l. (10.4.4)

In order to determine the matrices Â, B̂ and Ĉ, we begin by partitioning A, B, C
conformably with P and Q, to get

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
,

C =
[

C1 C2

]
.

(10.4.5)

The (1, 1)-block of De(10.3.5)Pe gives

B̂ = E−1
1 (Q1

[
B1 0

]
+

[
C ′

1 0
]
De), (10.4.6)

and as before the (1,1)-block of (10.3.5) yields

Ĉ = De

[
B′

1

0

]
+

[
C1

0

]
P1. (10.4.7)

The (3, 1)-block of (10.3.7) gives

Â = −A′
11 − B̂

[
B′

1

0

]
(10.4.8)

while the (1, 3)-block of (10.3.4) yields the alternative expression

Â = −E−1
1 (A′

11E1 +
[

C ′
1 0

]
Ĉ). (10.4.9)

As part of the process of determining De, we note from the (1, 2)-blocks of (10.3.5)
that in addition to (10.3.6), De must satisfy

[
C ′

2 0
]
De + γ

[
B2 0

]
= 0. (10.4.10)

To see that such a De exists, we note from the (2, 2)-blocks of (10.3.4) and (10.3.7)
that B2B

′
2 = C ′

2C2. From this fact we obtain the following lemma.

Lemma 10.4.1 Suppose B2 ∈ R
l×m and C2 ∈ R

p×l satisfy B2B
′
2 = C ′

2C2 and let
` = rank(B2B

′
2). Then there exists a (p+m− `)× (m+ p− `) matrix De satisfying

(10.3.6) and (10.4.10). Moreover, the (m − `) × (p − `) (2, 2)-block of De can be
chosen to be zero.
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Proof. Since B2B
′
2 = C ′

2C2 there exists a p × m constant matrix U such that
B2 = C ′

2U with U ′U ≤ I and all the singular values of U either one or zero.7 If
B2B

′
2 has rank `, U has singular value decomposition

U =
[

Y1 Y2

] [
I` 0
0 0

] [
Z ′

1

Z ′
2

]
.

Some routine algebra shows that

De = −γ

[
U Y2

Z ′
2 0

]

has the required properties.

Since D̂ = Da − De, we obtain

D̂ =

[ m p − `

p D + γU γY2

m − ` γZ ′
2 0

]
(10.4.11)

as a suitable selection for D̂. The dimensions of the augmented realizations are
fixed and the construction of Qa is complete. The augmented systems have ` fewer
rows and columns than they did in the suboptimal case with 1 ≤ ` ≤ min(l,m, p).
In the single-input or single-output case ` = 1 and one of the dimensions of the
augmented systems is the same as the corresponding dimension of G.

In order to establish the minimality of the realization of Qa and Ea, we must

show that Â has no imaginary axis eigenvalues. It is easy to check that Â and Ĉ
satisfy

Â′P1E1 + P1E1Â + Ĉ ′Ĉ = 0. (10.4.12)

Hence Âx = jωx implies that Ĉx = 0 and multiplying (10.3.4) by
[

0 x′ ]′
yields

(jωI + A′)

[
E1

0

]
x = 0.

Since E1 is nonsingular and A is asymptotically stable, x must be zero and we
conclude that Â has no imaginary axis eigenvalue. It follows from the nonsingularity

of Qe and Pe that (Ae, Be, Ce,De) is minimal and consequently that (Â, B̂, Ĉ, D̂)
is minimal also.

10.4.2 One optimal Hankel norm approximant

We exhibit one solution to the optimal problem by following the approach used
in the suboptimal case. Arguments that are identical to those presented in the

7See Problem 9.1 or Lemma 3.5 in [71].
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suboptimal case show that the number of eigenvalues of Â in the open-left-half
plane is exactly the number of positive eigenvalues of P1E1. That is, the number
poles of Qa in the open-left-half plane is the number of Hankel singular values of
G that are larger than γ = σr+1(G).

We have established the following result:

Theorem 10.4.2 If G ∈ RH∞, there exists a Ĝ ∈ RH∞ of McMillan degree at
most r and an F ∈ H−

∞ such that ‖G − Ĝ − F ‖∞ ≤ γ if and only if γ ≥ σr+1(G).

Proof. If ‖G − Ĝ − F ‖∞ ≤ γ, then

γ ≥ ‖G − Ĝ − F ‖∞ ≥ ‖G − Ĝ‖H ≥ σr+1(G).

Conversely, if γ = σr+1(G) then the construction given in Section 10.4.1 results in

Qa ∈ RH−
∞(r) such that ‖Ga − Qa‖∞ = γ. Letting Ĝ be any stable part of Qa11

and F = Qa11 − G, we have that ‖G − Ĝ − F ‖∞ ≤ γ.

An optimal solution to the Hankel norm model reduction problem is obtained
by taking any stable part of Qa11 as constructed in Section 10.4.1.

10.4.3 All optimal approximants

Capturing all solutions to the optimal Hankel norm model reduction problem is
more complicated than in its suboptimal counterpart described in Section 10.3.3.
The added difficulty comes from the fact that Qa12 and Qa21 are no longer square.
As a result, a linear fractional map of the form F`(Qa,U) does not generate the
whole of RH−

∞(r). Nevertheless, as we will now demonstrate, it does still capture
all solutions. The proof relies on three facts. Firstly, Qa12 and Qa21 have full rank
in the closed-left-half plane. Secondly, the difference between any two error systems,
E1 = G − Q1 and E2 = G − Q2 say, have the properties

(E1 − E2)V r+1(−s) = 0

and
(E1 − E2)

∼W r+1(s) = 0,

in which the columns of V r+1 and W r+1 are the Laplace transforms of the Schmidt
vectors of ΓG corresponding to σr+1(G). As a consequence, and this is the third
point,

F`

([
0 Qa12

Qa21 Qa22

]
,U

)

generates the difference between every solution and the solution Qa11. We will now
prove these claims.
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As we have already shown, Qa has a realization of the form

Qa
s
=




Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 0


 .

The definitions of these matrices, as given in (10.4.8) to (10.4.11), may be used to
show that

[
Â − λI B̂1

Ĉ2 D̂21

]
=

[
−A′

11 − λI B̂1

0 D̂21

] [
I 0

−B′
1 I

]

[
Â − λI B̂2

Ĉ1 D̂12

]
=

[
I −E−1

1 C ′
1

0 I

] [
−E−1

1 A′
11E1 − λI 0

Ĉ1 D̂12

]
.

From the decomposition in (10.4.2), it follows that A11 is asymptotically stable (see
Lemma 9.4.1). We therefore conclude that Qa12 and Qa21 have full column rank
and full row rank respectively, except at the eigenvalues of −A11, which are in the
open-right-half plane.

With P and Q as in (10.4.2), the Schmidt pairs of Ga corresponding to the l
Hankel singular values that equal σr+1 are the columns of

Va(t) =
1

√
σr+1

B′
aeA′t

[
0
Il

]
, t ≥ 0

Wa(t) =
1

√
σr+1

CaeAt

[
0
Il

]
, t ≥ 0.

The Schmidt vectors of G corresponding to the Hankel singular values that equal
σr+1 are obtained by dropping the subscript a.

Lemma 10.4.3 Suppose G ∈ RH∞ has Hankel singular values σi with σr > σr+1.
Suppose also that

u(t) =

{
vj(−t) t ≤ 0

0 t > 0
,

in which vj is a Schmidt vector corresponding to any Hankel singular value σj =
σr+1. If Q ∈ RH−

∞(r) and
‖G − Q‖∞ ≤ σr+1, (10.4.13)

then

(G − Q)u(t) =

{
0 t < 0

σr+1wj(t) t ≥ 0.

If vj(s) and wj(s) denote the Laplace transforms of vj and wj, an equivalent state-
ment is

(G − Q)vj(−s) = σr+1wj(s).
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By applying this result to the system G′, we obtain the dual relationship

(G − X)∼wj(s) = σr+1vj(−s).

Proof. Let E = G − Q and divide the output y = Eu into y+ ∈ L2[0,∞) and
y− ∈ L2(−∞, 0]. By (10.4.13) and (10.2.9), any stable part of Q is an optimal
degree r Hankel norm approximation of G. Since y+ is only affected by the stable
part of Q, we conclude from Lemma 10.2.1 that y+ = σr+1wj . To see that y− = 0,
we note that since ‖u‖2 = 1 and ‖E‖∞ ≤ σr+1, we have

σ2
r+1 ≥ ‖y‖2

2 = ‖y+‖2
2 + ‖y−‖2

2 = σ2
r+1 + ‖y−‖2

2.

Hence y− = 0.

Remark 10.4.1. As a direct consequence of this lemma, if Q1 ∈ RH−
∞(r) and

Q2 ∈ RH−
∞(r) both satisfy (10.4.13), then

(Q1 − Q2)vj(−s) = 0

(Q1 − Q2)
∼wj(s) = 0.

This fact is essential in showing that F`(Q̂a,U) generates all optimal solutions.

Remark 10.4.2. We may apply Lemma 10.4.3 to the system Ga, with the system
Qa taking the role of Q, to obtain

Ea(s)V a(−s) = σr+1W a(s) (10.4.14)

E∼
a W a(−s) = σr+1V a(s), (10.4.15)

in which

V a(s) =
1

√
σr+1

B′
a(sI − A′)−1

[
0
Il

]
,

W a(s) =
1

√
σr+1

Ca(sI − A)−1

[
0
Il

]

are the Laplace transforms of the Schmidt pairs associated with the Hankel singular
values that are equal to σr+1(G). Since we have explicit formulas for Ea, these
identities can be verified by direct calculation as requested in Problem 10.3.

Lemma 10.4.4 Let P be a proper rational matrix partitioned such that

P =

[ m1 m2

p1 P 11 P 12

p2 P 21 P 22

]
,
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in which p1 ≥ m2 and m1 ≥ p2 and let X be a p1 × m1 rational tranfer function
matrix. Suppose that P 12 has a proper left inverse P L

12, that P 21 has a proper right
inverse P R

21 and that P 22(∞) = 0. Then

X = F`(P ,Φ) (10.4.16)

for some proper rational matrix Φ if and only if there exists a rational R such that
rank(R) ≥ p1 − m2 for almost all s and a rational S with rank(S) ≥ m1 − p2 for
almost all s such that

R
[

X − P 11 P 12

]
= 0, (10.4.17)

[
X − P 11

P 21

]
S = 0. (10.4.18)

Proof. The assumptions on P 12 and P 21 ensure the existence of an R with
rank(R) ≥ p1 − m2 and an S with rank(S) ≥ m1 − p2 such that RP 12 = 0
and P 21S = 0. For such an R and S, any X generated by (10.4.16) satisfies
(10.4.17) and (10.4.18), since F`(P ,Φ) = P 11 +P 12Φ(I−P 22Φ)−1P 21. Note that
P 22(∞) = 0 ensures that F`(P ,Φ) is proper.

Conversely, if R and S exist, we can choose a right inverse RR and a left inverse
SL such that [

P L
12

R

] [
P 12 RR

]
=

[
Im2

0
0 Ip1−m2

]

and [
P 21

SL

] [
P R

21 S
]

=

[
Ip2

0
0 Im1−p2

]
.

Hence

X − P 11 =
[

P 12 RR
] [

P L
12

R

]
(X − P 11)

[
P R

21 S
] [

P 21

SL

]

= P 12P
L
12(X − P 11)P

R
21P 21,

in which the second equality follows from R(X − P 11)S = 0. Defining Ψ =
P L

12(X − P 11)P
R
21 and Φ = Ψ(I + P 22Ψ)−1, which is proper since P 22(∞) = 0,

we see that (10.4.16) is satisfied.

Theorem 10.4.5 Let G ∈ RH∞ and γ be given such that σr > γ = σr+1(G).
Then every Q ∈ RH−

∞(r) that satisfies

‖G − Q‖∞ ≤ γ

is generated by

Q = F`(Qa,U), U ∈ RH−
∞, ‖U‖∞ ≤ σ−1

r+1. (10.4.19)

The system Qa is as defined in Section 10.4.1, with γ = σr+1.
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Proof. If Q is given by (10.4.19), Theorem 4.3.2 an the allpass nature of Ea

imply that ‖G − Q‖∞ ≤ γ. Furthermore, Lemma 4.3.4 and the established rank
properties of Qa12 and Qa21 imply that Q ∈ RH−

∞(r).
Conversely, if Q ∈ RH−

∞(r) and ‖G − Q‖∞ ≤ γ, then Lemma 10.4.4, together
with the Schmidt vector properties given in Lemma 10.4.3, show that there ex-
ists a proper rational U such that Q = F`(Qa,U). Since Qa22(∞) = 0, det(I −
Qa22U)(∞) = 1 and Theorem 4.3.2 implies that ‖U‖∞ ≤ σ−1

r+1(G). Finally, Theo-

rem 4.3.4 together with the rank properties of Qa12 and Qa21 prove that U ∈ RH−
∞.

Remark 10.4.3. In the optimal case the dimension of Qa drops from (p + m) ×
(p + m) to (p + m − `) × (p + m − `). This has the knock on effect of reducing
the dimension of the free parameter U from p × m to (p − `) × (m − `). Since
1 ≤ ` ≤ min(l,m, p), it is clear that the optimal solution will be unique in the
single-input or single-output case.

An important special case of this result is Nehari’s theorem, which is given next.

10.4.4 Nehari’s theorem

Theorem 10.4.6 Suppose G ∈ RH∞. Then

‖G‖H = min
F∈RH−

∞

‖G − F ‖∞.

Every F ∈ RH−
∞ such that ‖G − F ‖∞ = σ1(G) is generated by

F = F`(Qa,U), U ∈ RH−
∞, ‖U‖∞ ≤ σ−1

1 (G),

in which Qa is as constructed as in Section 10.4.1 with γ = σ1(G).

Proof. This is immediate from Theorem 10.4.5 by setting r = 0.

The system F is often referred to as a Nehari extension of G.

Main points of the section

1. The allpass embedding of Section 10.3.1 can be carried out even if
γ = σr+1 for some r. In this case, the dimensions of the augmented
system drop from (p + m) × (p + m) to (p + m − `) × (p + m − `)
with 1 ≤ ` ≤ min(l,m, p).

2. The number of poles of Qa in the open-left (right)-half plane is
exactly the number of Hankel singular values of G that are strictly
larger (smaller) than γ = σr+1(G).

3. There exists a Ĝ of McMillan degree r such that ‖G − Ĝ‖H ≤ γ

if and only if γ ≥ σr+1(G). In this case, a suitable Ĝ is (any)
stable part of the (1, 1)-block of the system Qa as constructed in
Section 10.4.1 with γ = σr+1(G).
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4. Provided σr(G) > σr+1(G), every Ĝ of McMillan degree r (or less)

that satisfies ‖G−Ĝ‖H ≤ σr+1 is generated by taking (any) stable
part of the linear fractional transformation F`(Qa,U), in which
σr+1U ∈ RH−

∞ is contractive. In the single input or single output
case, the optimal reduced-order system is unique up to a constant.

5. There exists an anticausal system F such that

‖G − F ‖∞ = ‖G‖H .

This is known as Nehari’s theorem.

10.5 The infinity norm error bound

Because reduced-order models are often used for robust controller design, it is natu-
ral to ask if minimizing the Hankel norm of the error will result in a good approxima-
tion in the infinity norm sense. This section develops a model reduction algorithm
which is optimal in the Hankel norm and which has an infinity norm error bound
equal to “the sum of the tail”. A bound of this type is therefore half the “twice the
sum of the tail” bound obtained for balanced truncation model reduction.

The basic connection between the infinity norm and the Hankel norm is Nehari’s
theorem, which says that

‖G − Ĝ‖H = ‖G − Ĝ − F ‖∞
for some F ∈ RH−

∞. This gives

‖G − Ĝ‖∞ = ‖G − Ĝ − F + F ‖∞
≤ ‖G − Ĝ − F ‖∞ + ‖F ‖∞
= ‖G − Ĝ‖H + ‖F ‖∞. (10.5.1)

Since we already know how to minimize ‖G − Ĝ‖H , it only remains for us to say
something about the size of ‖F ‖∞.

We can always choose F (∞) = 0 without affecting ‖G − Ĝ‖H and we know
from the results of Chapter 9 that ‖F ‖∞ = ‖F∼‖∞ is no larger than twice the sum
of the distinct Hankel singular values of F∼. As we will show, the removal of the
factor of two comes from making full use of the procedure for calculating optimal
Hankel norm approximations and of their properties.

10.5.1 Hankel singular values of optimal error systems

The improvement in the error bound follows from the properties of the Hankel
singular values of allpass systems, which we now derive. This result will be used to
relate the Hankel singular of Ĝ and F∼

a in the stable/antistable decomposition of

Qa = Ĝa + F a.
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Lemma 10.5.1 Suppose E
s
=

[
A B
C D

]
is square and satisfies the allpass equa-

tions of Theorem 3.2.1. Suppose also that A has dimension (n1 + n2) × (n1 + n2),
has n1 eigenvalues in the open-left-half plane and has n2 eigenvalues in the open-
right-half plane, with n1 > n2. If E = G + F with G, F∼ ∈ RH∞, then

σi(G) =

{
1 i = 1, · · · , n1 − n2

σi−(n1−n2)(F
∼) i = n1 − n2 + 1, · · · , n1.

Proof. Transform the given realization of E to the form

E
s
=




A1 0 B1

0 A2 B2

C1 C2 D



 with Reλi(A1) < 0 and Reλi(A2) > 0.

Therefore, for some matrix X,

G
s
=

[
A1 B1

C1 D − X

]
and F

s
=

[
A2 B2

C2 X

]
.

Let P and Q be the controllability and observability gramians of E and partition
them as

P =

[
P1 P2

P ′
2 P3

]
, Q =

[
Q1 Q′

2

Q2 Q3

]
.

Since PQ = I, P1Q1 = I − P2Q2 and since QP = I, Q2P2 = I − Q3P3. Hence

det(λI − P1Q1) = det
(
λI − (I − P2Q2)

)

= det
(
(λ − 1)I + P2Q2

)

= (λ − 1)n1−n2 det
(
(λ − 1)I + Q2P2

)

= (λ − 1)n1−n2 det(λI − Q3P3).

The result now follows from σ2
i (G) = λi(P1Q1) and σ2

i (F∼) = λi(P3Q3).

We now apply this result to the optimal error system.

Lemma 10.5.2 Assume σr(G) > σr+1(G) and let Ga and Qa be as constructed

in Section 10.4.1. Let Qa = Ĝa + F a with Ĝa, F∼
a ∈ RH∞. Then

σi(Ga − Ĝa) = σr+1(Ga), i = 1, · · · , 2r + l (10.5.2)

σi(F
∼
a ) = σi+2r+l(Ga − Ĝa), i = 1, · · · , n − r − l (10.5.3)

≤ σi+r+l(Ga), i = 1, · · · , n − r − l. (10.5.4)

Proof. The construction of Ea = Ga − Qa ensures that γ−1Ea satisfies the
allpass equations of Theorem 3.2.1, with γ = σr+1(Ga). Furthermore, Ae is a
(2n−l)×(2n−l) dimensional matrix which has n+r eigenvalues in the open-left-half
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plane and n−r− l eigenvalues in the open-right-half plane. Applying Lemma 10.5.1
to γ−1Ea, we obtain equations (10.5.2) and (10.5.3). The inequality in (10.5.4)
comes from our optimal Hankel norm approximation results (see Theorem 10.4.2)—
for any j ≥ r + 1

σj(Ga − Ĝa) = inf
K1∈RH−

∞(j−1)
‖Ga − Ĝa − K1‖∞

≤ inf
K2∈RH−

∞(j−r−1)
‖Ga − K2‖∞

= σj−r(Ga).

(Use the fact that K1 ∈ RH−
∞(j − 1) implies Ĝa + K1 has at least j − 1− r stable

poles.)

10.5.2 The error bound

In Chapter 9 we showed that ‖G−G(∞)‖∞ is no greater than twice the sum of the
distinct Hankel singular values of G. In the scalar case, this means that the Nyquist
diagram of g is within a circle centered at g(∞) and with radius no greater than
twice the sum of the distinct Hankel singular values of g. The next result shows that
the Nyquist diagram infact remains inside a circle centered on some point in the
complex plane and with radius no greater the sum of the distinct Hankel singular
values of g—the factor of two has been removed. This result is essential to proving
the “sum of the tail” error bound and is also of interest in its own right.

Example 10.5.1. Consider

g =
2

s + 1

s
=

[
−1

√
2√

2 0

]
.

The observability and controllability gramians are 1, so ‖g‖H = 1 and g(∞) = 0.
Therefore, the Nyquist diagram of g never strays outside the origin centered circle
of radius 2. The Nyquist diagram of g is actually a circle of radius 1 centered on 1.
It is no accident that

2

s + 1
− 1 =

1 − s

1 + s

is allpass. 5

Lemma 10.5.3 If G ∈ RH∞, there exists a constant matrix D̃ such that ‖G−D̃‖∞
is no larger than the sum of the distinct Hankel singular values of G.

Proof. Set γ = σn and construct Qa ∈ RH∞ as in Section 10.4.1. The system Qa

has McMillan degree n−l1, in which l1 is the multiplicity of σn and ‖Ga−Qa‖ = σn.
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Furthermore, the Hankel singular values of Qa are given by σi(G), i = 1, . . . , n− l1,
since

σ2
i (Q) = λi(P1E1(E1)

−1Q1)

= λi(P1Q1)

= σ2
i (G), i = 1, . . . , n − l1

with P1, Q1 and E1 defined in Section 10.4.1.
Now set γ = σn−l1 and construct an approximation for Qa, with error σn−l1 ,

degree n − l1 − l2 and Hankel singular values σi, i = 1, . . . , n − l1 − l2, with l2 the
multiplicity of σn−l1 . Now continue this process until only a constant D̃a remains
and define D̃ to be the p × m (1,1)-block of D̃a. The final bound follows from the
error incurred at each step of the reduction and the triangle inequality.

We are now in a position to prove the main result.

Theorem 10.5.4 Suppose G ∈ RH∞ has Hankel singular values σi and let r be
such that σr > σr+1. Then there exists a Ĝ ∈ RH∞ of McMillan degree r such

that ‖G − Ĝ‖∞ is no larger than the sum of the distinct Hankel singular values of
G that are strictly smaller than σr.

If all the Hankel singular values smaller than σr are distinct, then

‖G − Ĝ‖∞ ≤ σr+1 + . . . + σn.

The proof contains a constructive procedure for obtaining such a Ĝ.

Proof. Set γ = σr+1 and construct Qa as in Section 10.4.1. Divide Qa into stable

and unstable parts so that Qa = Ĝa + F a and note that Ĝa has McMillan degree
r. For any such decomposition,

‖Ga − Ĝa‖∞ = ‖Ga − Qa + F a‖∞
≤ ‖Ga − Qa‖∞ + ‖F a‖∞
= σr+1 + ‖F a‖∞.

By Lemma 10.5.2, the Hankel singular values of F∼
a are less than or equal to the

Hankel singular values of Ga that are strictly smaller than σr+1 . We can use the

construction described in Lemma 10.5.3 to choose D̂ = Ĝa(∞) in such a way that
‖F a‖∞ is no larger than the sum of the Hankel singular values of G that are strictly

smaller than σr+1. Hence, for such a decomposition, ‖Ga−Ĝa‖∞ is no greater than
the sum of the Hankel singular values of G that are strictly smaller than σr. We
now choose Ĝ to be the (1, 1)-block of such a Ĝa.
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Main points of the section

1. Suppose Qa is as constructed in Section 10.4.1 and that it is de-

composed as Qa = Ĝa+F a, in which Ĝa ∈ RH∞ and F a ∈ RH−
∞.

The Hankel singular values of F∼
a are less than or equal to the Han-

kel singular values of G that are strictly smaller than σr+1(G).

2. There exists a constant matrix D̃ such that ‖G− D̃‖∞ is less than
or equal to the sum of the distinct Hankel singular values of G.

3. There exists a system Ĝ ∈ RH∞ of McMillan degree (at most) r

such that ‖G − Ĝ‖∞ is no greater than the sum of the distinct
Hankel singular values of G that are strictly smaller than σr. Such
a Ĝ may be constructed by taking a particular stable part of Qa11

as constructed in Section 10.4.1.

10.6 Example

This example illustrates the optimal Hankel norm model reduction of the flexible
structure model described in [58]. We used the same model to illustrate balanced
truncation model reduction in Section 9.6.

The four lightly damped modes and eight Hankel singular values of the model g

are given in Section 9.6. Since the fifth Hankel singular value of g is σ5 = 0.069856,
the Hankel norm of the error incurred in approximating g by a system with at
most four stable poles is at least 0.06985. Because the infinity norm cannot be
less than the Hankel norm, the infinity norm of the approximation error must also
be at least this large. The sum of the Hankel singular values smaller than σ4

is σ5 + . . . + σ8 = 0.1505, so there is a stable fourth-order system ĝ such that
‖g − ĝ‖∞ ≤ 0.1505. One such ĝ is given by the realization8

ĝ
s
=




0.0095755 −1.1342323 −0.5729631 0.6037008 0.0825993

0.28458172 −0.0106736 0.0499715 0.0963557 −0.0008078

0.0000000 0.0000000 −1.0700576 −9.7441671 0.0067206

0.0000000 0.0000000 1.7099590 1.0627683 −0.1219712

−0.0051978 0.5471814 0.0267315 −0.0236216 0.0002923




.

If the direct feedthrough term is set to zero rather than 0.0002923, the resulting
reduced-order system satisfies the error bound 2(σ5 + . . . + σ8). Figure 10.1 shows
the magnitude of g, ĝ and ĝ − ĝ(∞).

Figure 10.2 shows the upper bound σ5+. . .+σ8, |g(jω)−ĝ(jω)|, |g(jω)−
(
ĝ(jω)−

ĝ(∞)
)
| and the lower bound σ5. The lower bound σ5 is exactly the error that would

be incurred if we allowed ourselves to include unstable poles in the reduced-order

8This reduced-order model was calculated using the ohkapp function in the MATLAB Robust
Control Toolbox. (MATLAB is a registered trademark of The MathWorks, Inc.) The direct
feedthrough gain was computed by using ohkapp recursively on the adjoint of the anticausal part.
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Figure 10.1: Flexible structure models. Full-order model g (solid), a nonstrictly
proper optimal Hankel norm approximant ĝ (dashed) and a strictly proper optimal
Hankel norm approximant ĝ − ĝ(∞) (dash-dot).

model. Comparing Figure 10.2 with Figure 9.2, we observe that although the bound
for optimal Hankel norm approximation is half the balanced truncation bound, the
actual performance of the two methods is comparable on this example.

Notice that the σ5 lower bound is a result of the optimal Hankel norm theory. It
is important because it provides an absolute standard against which the performance
of any particular reduced-order model can be assessed. No model with at most
four stable poles can better the infinity norm performance of the approximations
computed by the optimal Hankel norm or balanced truncation methods by more
than a factor of about 1.8 (5.1 dB) on this flexible structure.

10.7 Notes and References

Twentieth-century functional analysts and operator theorists have had a continu-
ing interest in extension and interpolation problems. Interestingly, problems such
as Nevanlinna-Pick interpolation and the Nehari extension are equivalent. The in-
terconnectedness and long history of this work means that we are only able to give
those references most directly related to the material covered in this chapter.
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Figure 10.2: Model reduction error and bounds. Sum-of-the-tail upper bound
(solid), nonstrictly proper approximation error |g(jω) − ĝ(jω)| (dashed), strictly
proper approximation error ĝ − ĝ(∞) (dash-dot) and lower bound σ5 (dotted).

Nehari [155] was interested in obtaining necessary and sufficient conditions for
the boundedness of a bilinear form. His main result, Nehari’s theorem, states that
a bilinear form γ(u, v) =

∑∞
k=0

∑∞
m=0 γk+mukvm is bounded by M (i.e., |γ(u, v)| ≤

M for arbitrary sequences u, v such that
∑∞

k=0 |uk|2 = 1,
∑∞

m=0 |vm|2 = 1) if and
only if the sequence γn, n = 0, 1, . . . admits an extension γn, n = −1,−2 . . . such
that the numbers γn are the Fourier coefficients of a function f(ejθ) in L2 (on the
unit circle) such that |f(ejθ)| ≤ M for (almost all) θ ∈ [0, 2π). As a corollary,
Nehari also showed that the boundedness of the form γ(u, v) by M is equivalent to
the existence of a function q(z), analytic in |z| < 1, such that |γ(z)∗ + q(z)| ≤ M

for |z| < 1, in which γ(z) =
∑∞

n=0 γ∗
nzn, which is a statement of Nehari’s theorem

that looks more like Theorem 10.4.6.
Adamjan, Arov and Krein published several papers dealing with infinite Hankel

matrices and approximation problems associated with them. Reference [1] contains
a version of Theorem 10.4.5 for the case of scalar L∞ functions on the unit disc
including a linear fractional parametrization of all solutions.

Multivariable generalizations of these interpolation and extension problems were
considered by Adamjan, Arov and Krein [2], Sarason [191] and Szokefalvi-Nagy and



10.7 NOTES AND REFERENCES 367

Foias [203] during the late 1960s. The work of Nehari, Adamjan, Arov and Krein,
Sarason and Szokefalvi-Nagy and Foias is not restricted to the rational case. A
brief treatment of these results may be found in the book by Young [222] and an
extended coverage is given in the books of Power [168] and Partington [161].

Nehari’s theorem and Nevanlinna-Pick interpolation became known to the sys-
tem theory and control community through work on the synthesis of passive circuits
by Youla and Saito [221], the broadband matching problem by Helton [90], optimal
prediction by Dewilde, Vieira and Kailath [48] and optimal sensitivity synthesis by
Zames [227].

Nehari’s theorem formed the basis of a solution to H∞ control problems of the
one-block type (see Doyle [52], Francis [65] and Limebeer and Hung [134]).9 For
such problems, perfect control can always be achieved if the closed-loop stability
constraint is ignored.10 The optimal performance level that can be achieved by
a stable closed loop is determined by how well a possibly unstable system can be
approximated by a stable one. It follows from this and Nehari’s theorem that the
optimal performance level for any one-block problem is determined by a Hankel
norm calculation.

The state-space construction of the allpass embedding and the infinity norm
bounds for optimal Hankel norm approximation are due to Glover [71, 75]. The
infinity norm bounds put Hankel norm model reduction on an honest footing and
the computational and theoretical simplicity of the state-space approach has led to a
widespread appreciation and application of these results. The state-space formulas
for the calculation of Nehari extensions are at the center of the four-block approach
to the computation of H∞ optimal controllers [52, 65].

The free parameter U in the parametrization of all solutions to Nehari’s prob-
lem, or the optimal Hankel norm model reduction problem, may be used to satisfy
additional performance criteria. One suggestion is to choose U to minimize an en-
tropy integral, which leads to the very satisfying choice of U = 0 [134, 80]. An
alternative, introduced by Young [223], is to minimize not only the maximum sin-
gular value (i.e., the infinity norm) of the error, but also all subsequent singular
values of the error. This is the superoptimal Hankel norm approximation problem
and a state-space approach is considered in Limebeer, Halikias and Glover [133].

A state-space theory of Nehari and Adamjan, Arov and Krein extensions for
discrete-time is due to Ball and Ran [25]. These results have been generalized by
Al-Hussari, Jaimoukha and Limebeer [4] to the optimal case by considering the
problem in a descriptor system framework.

Despite the motivation for the Hankel norm criterion as a sensible basis for
model reduction, our real interest is in the infinity norm. The only known meth-
ods of tackling the optimal infinity norm model reduction problem are based on
nonconvex parameter optimization. Because the cost function (the infinity norm

9A one-block H∞ control problem is one in which the off-diagonal blocks of the generalized
plant are square. This means that all the constraints are analytic in nature and are a result of the
closed-loop stability requirement.

10Just set K = −(I − P−1
12 P11P−1

21 P22)−1P−1
12 P11P−1

21 .
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of the error) is expensive to compute and may contain multiple local minima, it is
important to have a good initial guess at what the optimal infinity norm approxi-
mant might be. Obvious candidates for the initial guess are the balanced truncation
or optimal Hankel norm approximations. The improvement over the initial guess
obtainable by parameter optimization, however, may not represent a worthwhile
saving. We know that the infinity norm of the error in approximating G by a
system of McMillan degree r will exceed σr+1 and we also know that an optimal
Hankel norm approximant can achieve an infinity norm error that does not exceed
σr+1 + . . . + σn.

10.8 Problems

Problem 10.1. This problem considers the decomposition of a system into a
sum of stable and antistable subsystems or, equivalently, causal and anticausal
subsystems.

1. Show that F ∈ RH−
∞ implies FH−

2 ⊂ H−
2 . Conclude that F ∈ RH−

∞ defines
an anticausal system (i.e., one that is causal in reverse time).

2. Show that if G ∈ RL∞, then a stable/antistable decomposition G = G+ +
G−, with G+ ∈ RH∞ and G− ∈ RH−

∞, is equivalent to a causal/anticausal
decomposition of the system.

3. Give a state-space algorithm for determining a causal/anticausal decomposi-
tion of a system G ∈ RL∞.

Problem 10.2. Suppose (A,B,C,D) is a minimal realization of a square system
G. Show that G satisfies G∼G = I if and only if

QA + A′Q + C ′C = 0

D′C + B′Q = 0

D′D = I.

(Hint: Sufficiency may be established by direct calculation. For necessity use the
fact that G∼ = G−1 and then observe that a minimal realization is unique up to a
state-space co-ordinate transformation.) Conclude that the Hankel singular values
of any square, stable allpass system are unity.

Problem 10.3. Verify equations (10.4.14) and (10.4.15) by direct calculation.

Problem 10.4. Suppose g ∈ RH∞ is a scalar transfer function. Show that the
unique q ∈ RH−

∞(r) such that ‖g − q‖∞ = σr+1 is given by

q = g − σr+1
wr+1(s)

vr+1(−s)
,

in which vr+1(s) and wr+1(s) are the (Laplace transforms of) the Schmidt vectors
associated with σr+1(g). Conclude that optimal degree r Hankel norm approxi-
mants ĝ ∈ RH∞ differ only by a constant.
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Problem 10.5. Consider the generalized plant with state-space realization

[
P 11 P 12

P 21 P 22

]
s
=




A B1 B2

C1 0 I
C2 I 0



 ,

in which (A,B2) is stabilizable and (C2, A) is detectable. We shall find the optimal
solution to this one-block H∞ controller synthesis problem using Nehari’s theorem.

1. Using the parametrization of all stabilizing controllers in Appendix A, show
that

F`(P ,K) = T 11 + T 12QT 21

for some Q ∈ RH∞. Give state-space formulas for the T ij ’s in terms of the
realization of P and two matrices F and H such that A−B2F and A−HC2

are asymptotically stable.
2. Suppose A−B2C1 and A−B1C2 have no eigenvalues on the imaginary axis

and let X and Y be the stabilizing solutions to the Riccati equations

X(A − B2C1) + (A − B2C1)
′X − XB2B

′
2X = 0

(A − B1C2)Y + Y (A − B1C2)
′ − Y C ′

2C2Y = 0.

If F = C1 + B′
2X and H = B1 + Y C ′

2, show that the systems T 12 and T 21

in Item 1 are square and allpass. Conclude that for this choice of F and H

‖F`(P ,K)‖∞ = ‖R + Q‖∞,

in which R = T∼
12T 11T

∼
21 ∈ RH−

∞.
3. Use Nehari’s theorem to conclude that ‖(R∼)+‖H is the infimal norm that

can be achieved with a stabilizing controller. By calculating a realization of
R, show that (R∼)+ = R∼ and conclude that ‖R∼‖H is the infimal norm
that can be achieved with a stabilizing controller.

4. Describe how a state-space formula for all H∞ optimal controllers could be
obtained.

Problem 10.6. (Glover [73]) A simple one-block problem is the additive robust-
ness margin problem in which we seek a controller K that stabilizes all plants of
the form G + ∆, that have the same number of unstable poles as G, and which
satisfy ‖∆‖∞ ≤ ε. In Chapter 2 it was shown that this requires us to choose K so
‖K(I − GK)−1‖∞ < 1

ε .11

1. Suppose G has no stable poles (i.e., G ∈ RH−
∞) and let ε0 be the smallest

Hankel singular value of G∼. Show that there is a Ĝ ∈ RH−
∞ with (strictly)

fewer poles than G such that ‖G−Ĝ‖∞ ≤ ε if and only if ε ≥ ε0. Show that if

11Assume that any indicated LFT is well posed; i.e., you may assume that I −G(∞)K(∞) and

I − Ĝ(∞)K̂(∞) are nonsingular.
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ε > ε0, then for some matrix M , some l > 0 and all 0 < δ < δ0 = (ε−ε0)/‖M‖
the family of plants

G + ∆ = Ĝ +
δM

(s − 1)l

has the same number of poles in the right-half plane as G, satisfies ‖∆‖∞ < ε
and cannot be stabilized by a single controller. Conclude that inf ‖K(I −
GK)−1‖∞ ≥ 1/ε0, where the infimim is taken over the class of stabilizing
controllers.

2. Suppose G = G+ + G−, in which G+ ∈ RH∞ and G− ∈ RH−
∞. Show that

K = K̂(I + G+K̂)−1 results in

K(I − GK)−1 = K̂(I − G−K̂)−1.

Show further that K stabilizes G if and only if K̂ stabilizes G−. Conclude
that inf ‖K(I − GK)−1‖∞, where the infimum is taken over the class of
stabilizing controllers, is greater than or equal to the inverse of the smallest
Hankel singular value of G∼

−.
Hence the optimal (additive) stability margin is no greater (and in fact is
equal to) the smallest Hankel singular value of G∼

− . (This means that systems
whose unstable part is easy to approximate—σmin[G∼

−] small—have little
robustness to additive uncertainty.)

3. Show that the generalized plant for this problem is

[
P 11 P 12

P 21 P 22

]
s
=




A 0 B
0 0 I
C I 0



 ,

in which (A,B,C, 0) is a realization of G. Explain why G(∞) = 0 can be
assumed without loss of generality.
Use your answer to Problem 10.5 to show that inf ‖K(I −GK)−1‖∞, where
the infimum is taken over the class of stabilizing controllers, is equal to the
inverse of the smallest Hankel singular value of G∼

−. (Assume that A has no
eigenvalue on the imaginary axis.)

Problem 10.7. The Hankel operator associated with a discrete-time system
is defined to be the operator that maps (the reflection of) the past input to the
future output, assuming the future input is zero. Now consider the strictly causal,
discrete-time, scalar convolution system

yn =

n−1∑

k=−∞
hn−kuk.
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1. Show that the Hankel operator associated with the system may be represented
by the semi-infinite Hankel matrix

Γ =




h1 h2 h3 . . .
h2 h3 h4 . . .
h3 h4 h5 . . .
...

...
...

. . .


 .

2. Nehari’s bounded linear form is the inner product v∗Γu, in which {u}∞k=1

and {v}∞k=1 are `2 sequences. The problem is to find the least number M
such that |v∗Γu| ≤ M‖v‖2‖u‖2. In other words, the problem is to find ‖Γ‖,
the `2-induced norm of Γ. Nehari’s theorem, in its original form, states that
|v∗Γu| ≤ M‖v‖2‖u‖2 if and only if there exists a function in f ∈ L2 (on the
unit circle) such that

hk =
1

2π

∫ 2π

0

f(ejθ)ejkθ dθ, k = 1, 2, . . .

and |f(ejθ)| ≤ M for (almost) all θ.
Consider Hilbert’s Hankel matrix

ΓH =




1 1
2

1
3 . . .

1
2

1
3

1
4 . . .

1
3

1
4

1
5 . . .

...
...

...
. . .




(i.e., hn = 1
n , n = 1, 2, . . .). It is not at all clear whether ‖ΓH‖ is finite and

even if it is, it would appear to be far from obvious what the value of ‖ΓH‖
is. Use Nehari’s theorem to show that ‖ΓH‖ ≤ π by considering the function
f(ejθ) = j(θ − π).12 Show that this implies the inequality

∣∣∣∣∣

∞∑

k=1

∞∑

m=1

v̄kuk

k + m − 1

∣∣∣∣∣ ≤ π

{ ∞∑

1

|vk|2
} 1

2
{ ∞∑

1

|uk|2
} 1

2

,

which is known as Hilbert’s inequality.
3. One application of Nehari’s theorem is in finite impulse response approx-

imation (Kootsookos, Bitmead and Green [121]). Suppose we are given a
possibly infinite number of filter coefficients h0, h1, h2, . . . and we seek a finite

number of coefficients ĥ0, ĥ2, . . . , ĥN−1 such that |f(ejθ) − f̂(ejθ)| ≤ M for
all θ, in which

f(ejθ) =

∞∑

k=0

hke−jkθ and f̂(ejθ) =

N−1∑

k=0

ĥke−jkθ

12Hilbert showed that ‖ΓH‖ was bounded; it was Schur [194] who showed that ‖ΓH‖ = π.
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are the frequency responses of the filters. Show that this is possible only
if ‖tN‖H ≤ M , in which tN (z) = zN−1

∑∞
k=N hkz−k is the “tail” func-

tion. (‖tN‖H denotes the Hankel norm, i.e., the norm of the matrix Γkm =
hk+m+N−2.)

Problem 10.8. In the case of rational discrete-time systems, the Hankel norm is
easy to compute. If Hi = CAi−1B, i = 1, 2, . . ., show that the Hankel operator Γ

associated with the discrete-time convolution system

yn =

n−1∑

k=−∞
Hn−kuk.

can be written as Γ = OC, in which

C =
[

B AB A2B . . .
]
, O =




C
CA
CA2

...


 .

Conclude that the Hankel singular values are given by

σ2
i = λi(PQ),

in which P = CC′ and Q = O′O are the controllability and observability gramians,
respectively, associated with the realization (A,B,C).

Problem 10.9. (Glover [71]) In this problem another algorithm for finding a
reduced-order system that satisfies a “sum of the tail” error bound is considered.

1. Suppose G ∈ RH∞ has Hankel singular values σi, i = 1, . . . , n and let σn

have multiplicity l. Show that there exists a Ĝ ∈ RH∞ of McMillan degree
n − l such that

‖G − Ĝ‖∞ = σn.

2. Show that the Ĝ in Item 1 may be chosen so that its Hankel singular values
are the first n − l Hankel singular value of G.

3. By iterating the results of Items 1 and 2, conclude that there exists a Ĝ of
McMillan degree r such that ‖G − Ĝ‖∞ is less than or equal to the sum of
the distinct Hankel singular values of G that are strictly smaller than σr.

4. Let Ĝ be the one-step approximant of G constructed in Item 1 and let G̃ be

the balanced truncation approximation of G of the same degree as Ĝ. Show

that σ−1
n (G̃a − Qa) is allpass (G̃a is an augmentation of G̃ and Qa is the

optimal allpass embedding constructed from Ga with γ = σn). Use this to
show that ‖G − G̃‖∞ ≤ 2σn.
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The Four-Block Problem

11.1 Introduction

An early example of a four-block problem comes from work on extension theorems
for Hankel operators. Suppose a square summable sequence of complex numbers
a = (a1, a2, · · ·) is given and that we define the Hankel operator via the semi-infinite
matrix representation

Γ =




. . .
...

...
...

· · · . . .
... a3

· · · · · · a3 a2

· · · a3 a2 a1




.

Is it possible to extend this sequence and the associated Hankel operator without
increasing the norm ‖Γ‖? The famous answer to this question is yes. A modern
proof follows from the one-step-ahead extension problem of finding

inf
x

∥∥∥∥∥∥∥∥∥∥




. . .
...

...
...

· · · . . .
... a2

· · · · · · a2 a1

· · · a2 a1 x




∥∥∥∥∥∥∥∥∥∥

,

which is an example of a four-block problem. A more general problem of this type
was studied by Parrott, who considered the problem of finding

inf
Q

∥∥∥∥
[

A B

C Q

]∥∥∥∥ ,

373
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in which each of the four entries are linear operators on Hilbert space. It turns out
that

inf
Q

∥∥∥∥
[

A B

C Q

]∥∥∥∥ = max

{∥∥∥∥
[

A

C

]∥∥∥∥ ,
∥∥[

A B
]∥∥

}
,

which is known as Parrott’s theorem. In the matrix case, the infimizing Q is hardly
ever unique and Parrott gave a representation formula for all the minimizing Q’s.

We shall consider this problem for the case of rational transfer function matrices,
with additional restrictions imposed on Q. For example, we might insist that the
Q’s are stable.

Problem statement

Suppose the transfer function matrices Rij ∈ RL∞ are given and that we seek a
Q ∈ RL∞ such that ∥∥∥∥

[
R11 R12

R21 R22 − Q

]∥∥∥∥
∞

< 1. (11.1.1)

The dimensions of each of the Rij ’s is specified by

[ m1 m2

p1 R11 R12

p2 R21 R22

]
,

with Q of dimension p2 × m2. There are a number of different versions of this
problem that are of interest. The differences relate to the assumptions on the
transfer function matrix Q.

An early solution to the generalized regulator problem uses the parametrization
of all stabilizing controllers to reduce the controller synthesis problem to one of the
form given in (11.1.1). The transfer function matrices Rij turn out to be com-
pletely unstable, while Q is required to be stable (i.e., an element of RH∞). This
requirement on Q is equivalent to the requirement that the controller is internally
stabilizing.

A four-block problem also arises in the solution of the frequency weighted model
reduction problem, in which we seek a stable Ĝ of McMillan degree r such that

‖W−1
1 (G − Ĝ)W−1

2 ‖∞

is small. The transfer function matrices W i are frequency dependent weighting
functions. In this case, the matrices Rij in (11.1.1) turn out to be stable and we
seek a Q that has no more than r stable poles. That is, Rij ∈ RH∞ and we seek
a Q ∈ RH−

∞(r).
Although one of our problems places a restriction on the number of left-half-

plane poles, while the other places a restriction on the number of right-half-plane
poles, the theory of the four-block problem may be developed for only one of these
formulations. This follows since the change of complex variable s → −s renders
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them mathematically identical.1 Our aim is to find necessary and sufficient condi-
tions for the existence of a Q ∈ RH−

∞(r) such that (11.1.1) is satisfied. When such
Q exist, we would like a parametrization of all of them.

The requirement that strict inequality holds in (11.1.1) relieves us from the
technically difficult optimal case in which

inf
Q∈RH−

∞(r)

∥∥∥∥
[

R11 R12

R21 R22 − Q

]∥∥∥∥
∞

= 1.

A complete solution of the optimal case has appeared in the literature—this is
the only method that has dealt comprehensively with the synthesis of H∞ optimal
controllers. Towards the end of this chapter we will show how a generalized state-
space representation may be used to perform the calculations associated with the
synthesis of optimal controllers, but no proofs will be supplied.

11.2 The constant matrix problem

As a preliminary step to the solution of the four-block problem, we solve the constant
matrix problem of finding every D such that

∥∥∥∥
[

D11 D12

D21 D

]∥∥∥∥ < 1. (11.2.1)

Here, ‖·‖ denotes the matrix norm induced by the Euclidean norm, which is given by
the maximum singular value of the matrix. Necessary conditions for the existence
of a solution are

∥∥[
D11 D12

]∥∥ < 1 (11.2.2)
∥∥∥∥
[

D11

D21

]∥∥∥∥ < 1, (11.2.3)

since the induced norm of any submatrix cannot exceed that of the whole matrix.
It is much harder to see that these conditions are also sufficient. We shall do this
by showing that conditions (11.2.2) and (11.2.3) facilitate the construction of the
dilated matrix

Daa =




m1 m2 p1 p2

p1 D11 D12 D13 0
p2 D21 D22 D23 D24

m1 D31 D32 D33 D34

m2 0 D42 D43 0


, (11.2.4)

1If the Rij are not in RH∞, pre-multiplication and post-multiplication by suitable (norm pre-
serving) allpass transfer function matrices will give R11, R12, R21 ∈ RH∞. Also, any component
of R22 ∈ RH−

∞ may be absorbed into Q.
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which has the property D′
aaDaa = I. Notice that D′

aaDaa = I implies that

[
D11 D12

D21 D22

]′ [
D11 D12

D21 D22

]
≤ I.

Equality cannot hold if

[
D31 D32

0 D42

]
is nonsingular—we shall show that this is the

case—and we may therefore conclude that D = D22 is one solution to (11.2.1). We
will also show that the construction of Daa will actually enable us to parametrize
all solutions D that satisfy (11.2.1).

Construction of the dilation

We now turn to the construction of the dilation Daa. The condition (11.2.2) can
be written as

Ip1
−

[
D11 D12

] [
D11 D12

]′
> 0.

This implies that there is a nonsingular p1 × p1 matrix D13, which may be found
by Cholesky factorization, such that

D11D
′
11 + D12D

′
12 + D13D

′
13 = Ip1

.

Similarly, condition (11.2.3) ensures the existence of a nonsingular m1 ×m1 matrix
D31 such that

D′
11D11 + D′

21D21 + D′
31D31 = Im1

.

Since D13 is nonsingular, the rank of
[

D12 D13

]
is p1 and the right null space

of
[

D12 D13

]
has rank m2. Let

[
D42 D43

]′
, in which D42 is m2 ×m2, be an

orthogonal basis for the right nullspace of
[

D12 D13

]
. From

[
D12 D13

] [
D′

42

D′
43

]
= 0

we obtain
D′

43 = −D−1
13 D12D

′
42,

which shows that the rank of D′
42 is equal to the rank of

[
D42 D43

]′
, which

is m2. This means that D42 is nonsingular. Similarly, the nonsingularity of D31

guarantees the existence of the orthogonal basis
[

D′
24 D′

34

]
for the left null space

of
[

D′
21 D′

31

]′
such that D24 is nonsingular.

It remains to find the central 2 × 2 block matrix of Daa. By ordering the rows
and columns of Daa as 1, 4, 2, 3, we see that all the unknowns are in the bottom-right
2 × 2 block matrix. That is, we have the problem of finding X such that

[
A′ C ′

B′ X ′

] [
A B
C X

]
=

[
I 0
0 I

]
,
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with B and C square. If ‖A‖ < 1, then C is nonsingular and it follows from the
(1, 2)-block that

X = −(C ′)−1A′B.

Returning to our original problem, we see that A =

[
D11 0
0 0

]
and either of the

conditions (11.2.2) or (11.2.3) implies that ‖A‖ < 1. Hence C =

[
D21 D24

D31 D34

]
is

nonsingular and

[
D22 D23

D32 D33

]
= −

[
D′

21 D′
31

D′
24 D′

34

]−1 [
D′

11 0
0 0

] [
D12 D13

D42 D43

]
.

This completes the construction of Daa.
To generate all solutions D to (11.2.1), we note that if D is any p2 ×m2 matrix,

then the linear fractional transformation F`(Daa,

[
0 0
0 Φ

]
), with Φ = D−1

24 (D −

D22)D
−1
42 , gives

F`

(
Daa,

[
0 0
0 Φ

])
=

[
D11 D12

D21 D22 + D24ΦD42

]
(11.2.5)

=

[
D11 D12

D21 D

]
.

By invoking Theorem 4.3.1, we conclude that D satisfies (11.2.1) if and only if
‖Φ‖ < 1.

Main points of the section

1. A necessary condition for the existence of a solution to the four-
block problem for constant matrices is that the norm of each of the
known submatrices is less than unity.

2. The necessary condition is sufficient. This may be established by
considering an allpass dilation, which also enables us to generate
all solutions.

3. Extending the results to the case of transfer function matrices in
RL∞ is straightforward, since we may replace the Cholesky fac-
torizations with spectral factorizations. As mentioned in the intro-
duction, Parrott showed that the result holds for linear operators
on Hilbert spaces.
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11.3 Suboptimal solutions

With the treatment of the constant matrix problem behind us, we now seek neces-
sary and sufficient conditions for the existence of a Q ∈ RH−

∞(r) satisfying
∥∥∥∥
[

R11 R12

R21 R22 − Q

]∥∥∥∥
∞

< 1. (11.3.1)

In (11.3.1), each of the transfer function matrices Rij is in RH∞. The strict
inequality in (11.3.1) avoids the need to consider the optimal cases. The treatment
of the optimal Hankel norm approximation problem in Chapter 10 provides some
insight into the complexity of treating optimal cases, but we will not consider these
intricacies in the four-block case.

We begin by considering necessary conditions, and a state-space dilation. The
necessary conditions are then shown to be sufficient by an allpass embedding con-
struction reminiscent of that used in Section 10.3.1.

11.3.1 The necessary conditions

Suppose that there exists a Q ∈ RH−
∞(r) satisfying (11.3.1). Since the infinity

norm of a submatrix can never exceed the infinity norm of the whole matrix, we
obtain the following necessary conditions:

∥∥[
R11 R12

]∥∥
∞ < 1,

∥∥∥∥
[

R11

R21

]∥∥∥∥
∞

< 1. (11.3.2)

It follows from Parrott’s theorem that these conditions are also sufficient for the
existence of a Q ∈ RL∞ that satisfies (11.3.1), but additional conditions come into
play when we also require that Q ∈ RH−

∞(r).
A further necessary condition may be obtained from the results of Chapter 10,

in which it is shown that there exists a Q̃ ∈ RH−
∞(r) such that ‖R − Q̃‖∞ < 1 if

and only if σr+1(R) < 1. It follows that

σr+1

([
R11 R12

R21 R22

])
< 1 (11.3.3)

is necessary for the existence of Q ∈ RH−
∞(r) satisfying (11.3.1). The conditions

(11.3.2) and (11.3.3) are not, however, sufficient for the existence of Q ∈ RH−
∞(r).

In this section we develop a necessary condition in terms of the Hankel singular
values of a partial dilation of the original problem. The dilation can be constructed
whenever the necessary condition (11.3.2) holds. It turns out that this more sophis-
ticated Hankel singular value condition is also sufficient.

The dilated Hankel singular value condition

We now construct a dilated system that will provide a Hankel singular value con-
dition for the existence of a Q ∈ RH−

∞(r) satisfying (11.3.1).
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Theorem 11.3.1 Suppose

[
R11 R12

R21 R22

]
∈ RH∞ and that there exists a Q ∈

RH−
∞(r) such that E22 = R22 − Q satisfies

∥∥∥∥
[

R11 R12

R21 E22

]∥∥∥∥
∞

< 1. (11.3.4)

Then:

1. Condition (11.3.2) holds. Consequently there exists a p1×p1 transfer function
matrix R13 ∈ RH∞ such that R−1

13 ∈ RH∞ and

R11R
∼
11 + R12R

∼
12 + R13R

∼
13 = I. (11.3.5)

Also, there exists a m1 × m1 transfer function matrix R31 ∈ RH∞ such that
R−1

31 ∈ RH∞ and

R∼
11R11 + R∼

21R21 + R∼
31R31 = I. (11.3.6)

2. The transfer function matrix Ea defined by

Ea = (T−1
1 )∼T 2(T

−1
3 )∼ (11.3.7)

has the form

Ea =




R11 R12 R13

R21 E22 E23

R31 E32 E33



 , (11.3.8)

and satisfies ‖Ea‖ = 1. In (11.3.7),

T 1 =




I 0 R11

0 I R21

0 0 R31



 ,

T 2 =




R11 R12 I
R21 E22 0
I 0 R∼

11



 ,

T 3 =




I 0 0
0 I 0

R11 R12 R13



 .

3. Define Ra ∈ RH∞ to be

Ra =




(T−1
1 )∼




R11 R12 0
R21 R22 0
0 0 0



 (T−1
3 )∼





+

, (11.3.9)
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in which (·)+ denotes any stable part.2 Then σr+1(Ra) < 1.

Proof. Condition (11.3.2) is seen to be necessary by noting that the induced norm
of a submatrix can never exceed the induced norm of the matrix it forms part of.
To see this, one may consider the dynamic problem on a frequency-by-frequency
basis. The existence of the transfer function matrices R13 and R31 then follows
from standard spectral factorization theory (see Section 3.7).

Now construct Ea according to the definition (11.3.7). The structure of Ea

given in (11.3.8) can be verified by direct calculation. To show that ‖Ea‖∞ = 1, we
first establish that ‖Ea‖∞ ≤ 1 and then show that equality holds. The inequality
‖Ea‖∞ ≤ 1 is equivalent to I − EaE∼

a ≥ 0. Multiplying this inequality on the left
by T∼

1 and on the right by T 1 we see that ‖Ea‖∞ ≤ 1 is equivalent to the inequality

T∼
1 T 1 − T 2(T

−1
3 )∼(T−1

3 )T∼
2 ≥ 0.

Multiplying this out, we see that all but one of the nine blocks are zero and the
nonzero block shows that ‖Ea‖∞ ≤ 1 is equivalent to the inequality

I − R21R
∼
21 − E22E

∼
22 − E23E

∼
23 ≥ 0.

We now verify that this inequality is satisfied. From (11.3.4), we see that

I −
[

R11 R12

R21 E22

] [
R∼

11 R∼
21

R∼
12 E∼

22

]
> 0.

Substituting for I − R11R
∼
11 + R12R

∼
12 using (11.3.5) and noting that

R21R
∼
11 + E22R

∼
12 + E23R

∼
13 = 0

by definition of E23, we obtain the inequality

[
R13R

∼
13 R13E

∼
23

E23R
∼
13 I − R21R

∼
21 − E22E

∼
22

]
> 0.

Taking the Schur complement with respect to the (1,1)-block now yields the desired
inequality

I − R21R
∼
21 − E22E

∼
22 − E23E

∼
23 > 0.

The fact that ‖Ea‖∞ = 1 follows from




R11 R12 R13

R21 E22 E23

R31 E32 E33








I
0
0



 =




R11

R21

R31



 ,

2A stable part of G ∈ RL∞ is any G+ ∈ RH∞ such that G − G+ ∈ RH−
∞. A stable part

is unique up to the direct feedthrough or D-matrix of the system. By the Paley-Wiener theorem,
this is equivalent to a causal/anticausal decomposition of the system and the nonuniqueness arises
because the present is considered part of the past and part of the future.
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since the infinity norm of the right-hand side is unity by (11.3.6).
To prove the Hankel singular value condition, we decompose Ea as

Ea = Ra +




(T−1
1 )∼




R11 R12 0
R21 R22 0
0 0 0



 (T−1
3 )∼





−

+ (T−1
1 )∼




0 0 I
0 Q 0
I 0 R∼

11



 (T−1
3 )∼.

The second term is in RH−
∞ by definition (it is the antistable part of something) and

the third term is in RH−
∞(r), since (T−1

1 )∼, (T−1
3 )∼ and R∼

11 are all terms in RH−
∞

and Q ∈ RH−
∞(r). Since ‖Ea‖∞ = 1, the Hankel norm approximation results

of Chapter 10 ensure that σr+1(Ra) ≤ 1 (see Lemma 10.2.1 or Theorem 10.4.2).
We now show that strict inequality holds using a contradiction argument involving
Schmidt vectors.

Suppose, to obtain a contradiction, that σr+1(Ra) = 1. Let v ∈ RH2 and w ∈
RH2 be the Laplace transforms of the Schmidt pair associated with σr+1(Ra) = 1.
Since ‖Ea‖∞ = 1, Ea is an optimal Hankel norm extension of Ra. Therefore, by
Lemma 10.4.3, we have

Eav(−s) = w(s). (11.3.10)

Indeed, if we construct Ea(∆) by replacing T 2 in (11.3.7) by

T 2(∆) =




R11 R12 I
R21 E22 − ∆ 0
I 0 R∼

11



 ,

then ∆ ∈ RH−
∞ implies Q + ∆ ∈ RH−

∞(r) and

‖∆‖∞ < 1 −
∥∥∥∥
[

R11 R12

R21 E22

]∥∥∥∥
∞

(11.3.11)

implies that ‖Ea(∆)‖∞ = 1. Thus Ea(∆) is also an optimal Hankel norm extension
of Ra and therefore

(Ea(∆) − Ea)v(−s) = 0.

Multiplying by T∼
1 we obtain




0 0 0
0 ∆ 0
0 0 0



 (T−1
3 )∼v(−s) = 0.

Since this is true for arbitrary ∆ ∈ RH−
∞ satisfying (11.3.11), we see that

[
0 I 0

]
(T−1

3 )∼v(−s) = 0.
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That is, the second block-row of (T−1
3 )∼v(−s) is zero. Thus

T 2(T
−1
3 )∼v(−s) =




R11 0 (I − R11R

∼
11)(R

−1
13 )∼

R21 0 −R21R
∼
11(R

−1
13 )∼

I 0 0



v(−s).

Examining the last row of (11.3.10) now gives

(R−1
31 )∼

[
−R∼

11 −R∼
21 I

]



R11 0 (I − R11R

∼
11)(R

−1
13 )∼

R21 0 −R21R
∼
11(R

−1
13 )∼

I 0 0



 v(−s)

=
[

0 0 I
]
w(s).

Simplifying the left-hand side using (11.3.6), we obtain
[

I 0 −R∼
11(R

−1
13 )∼

]
v(−s) =

[
0 0 R−1

31

]
w(s).

Since the left-hand side of this equality is in RH−
2 and the right-hand side is in

RH2, we conclude that both sides must be zero. This shows that that the first
block-row of (T−1

3 )∼v(−s) is zero. Examining the implications of this on (11.3.10),
we obtain [

0 0 (R−1
13 )∼

]
v(−s) =

[
I 0 0

]
w(s).

Once again, the left-hand side of this equality is in RH−
2 and the right-hand side is

in RH2, so both sides are zero. This means that third block-row of (T−1
3 )∼v(−s) is

zero. That is, we have now shown that (T−1
3 )∼v(−s) = 0. Hence v = 0 and w = 0,

which is a contradiction, since Schmidt pairs cannot be zero. This means that Ra

has no Schmidt pair corresponding to a Hankel singular value σr+1(Ra) = 1 and
we conclude that σr+1(Ra) < 1.

It is important to note that the dilated system Ra can be constructed without
knowing Q ∈ RH−

∞(r). Thus, a check of the necessary conditions involves checking
(11.3.2) and, if this test is passed, we construct Ra and check the Hankel singular
value condition. This can be done via an explicit state-space construction of Ra.

11.3.2 State-space construction of the dilation

The aim of this section is to construct the dilated transfer function Ra given in
(11.3.9) in the state-space. This requires a state-space construction of the two spec-
tral factors R13 and R31, which involves two Riccati equations. This construction
leads to a simple re-statement of the necessary conditions in terms of state-space
quantities.

Lemma 11.3.2 Suppose

[
R11 R12

R21 R22

]
s
=




A B1 B2

C1 D11 D12

C2 D21 ∗



 ,
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in which A is an n × n matrix that is asymptotically stable (Reλi(A) < 0). Then
the condition (11.3.2) holds if and only if there exists a nonsingular matrix D31,
and matrices C3 and Y ≥ 0 satisfying

Y A + A′Y +
[

C ′
1 C ′

2

] [
C ′

1 C ′
2

]′
+ C ′

3C3 = 0 (11.3.12)
[

D′
11 D′

21

] [
C ′

1 C ′
2

]′
+ D′

31C3 + B′
1Y = 0 (11.3.13)

D′
11D11 + D′

21D21 + D′
31D31 = I

such that A − B1D
−1
31 C3 is asymptotically stable, and there exists a nonsingular

matrix D13, and matrices B3 and X ≥ 0 satisfying

AX + XA′ +
[

B1 B2

] [
B1 B2

]′
+ B3B

′
3 = 0 (11.3.14)

[
B1 B2

] [
D11 D12

]′
+ B3D

′
13 + XC ′

1 = 0 (11.3.15)

D11D
′
11 + D12D

′
12 + D13D

′
13 = I

such that A − B3D
−1
13 C1 asymptotically stable.

In this case, the system Ra defined in (11.3.9) has a state-space realization of
the form

Ra
s
=




A B1 B2 B3

C1 D11 D12 D13

C2 D21 ∗ ∗
C3 D31 ∗ ∗


 , (11.3.16)

and the Hankel singular values of Ra are given by

σr+1(Ra) =
√

λr+1(XY ), r = 0, 1, 2, . . . , n − 1.

Consequently, there exists a Q ∈ RH−
∞(r) satisfying

∥∥∥∥
[

R11 R12

R21 R22 + Q

]∥∥∥∥
∞

< 1

if and only if D13, D31, X and Y as above exist and λr+1(XY ) < 1.

Proof. The two infinity norm inequalities of (11.3.2) are equivalent to the existence
of D13, D31, X and Y as stated by the bounded real lemma (Theorem 3.7.1). See, in
particular, the spectral factorization proof of the bounded real lemma. The spectral
factors R13 and R31 are given by

R13
s
=

[
A B3

C1 D13

]
, R31

s
=

[
A B1

C3 D31

]
.

Now expand Ra in (11.3.9) as

Ra =









R11 R12 R13

R21 R22 (2, 3)
R31 (3, 2) (3, 3)









+

,
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in which

(2, 3) = −
[

R21 R22

] [
R∼

11

R∼
12

]
(R−1

13 )∼

(3, 2) = −(R−1
31 )∼

[
R∼

11 R∼
21

] [
R12

R22

]

(3, 3) = (R−1
31 )∼

[
R∼

11 R∼
21

] [
R12

R22

]
R∼

12(R
−1
13 )∼ − R31R

∼
11(R

−1
13 )∼.

The realization in (11.3.16) therefore matches Ra in the R11, R12, R13, R21, R31

and R22 locations; it remains for us to verify that the (3,2), (2,3) and (3,3) locations
of (11.3.16) match the corresponding entries in (11.3.9).

Direct calculations, which are facilitated by using the state-space interconnection
formulas of Problem 3.6, give

(R−1
31 )∼

[
R∼

11 R∼
21

]

s
=

[
−(A − B1D

−1
31 C3)

′ C ′
3(D

−1
31 )′

[
D′

11 D′
21

]
−

[
C ′

1 C ′
2

]

(D−1
31 )′B′

1 (D−1
31 )′

[
D′

11 D′
21

]
]

and

[
R∼

11

R∼
12

]
(R−1

13 )∼ =




−(A − B3D

−1
13 C1)

′ C ′
1(D

−1
13 )′[

D′
11

D′
12

]
(D−1

13 )′B′
3 −

[
B′

1

B′
2

] [
D′

11

D′
12

]
(D−1

13 )′



 .

Equations (11.3.13) and (11.3.12) give

(R−1
31 )∼

[
R∼

11 R∼
21

] [
C1

C2

]
(sI − A)−1

= −C3(sI − A)−1 + {terms analytic in Re(s) > 0}.

And (11.3.15) and (11.3.14) give

(sI − A)−1
[

B1 B2

] [
R∼

11

R∼
12

]
(R−1

13 )∼

= −(sI − A)−1B3 + {terms analytic in Re(s) > 0}.

From these calculations, we see that the (2,3)- and (3,2)-blocks of Ra are indeed as
given in (11.3.16). Now observe that

{(3,3)}+ = −{
[

R31 R32

] [
R∼

11

R∼
12

]
(R−1

13 )∼}+

= C3(sI − A)−1B3 + {a constant matrix},
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which shows that the (3,3)-block of Ra is also of the form given in (11.3.16). (The
details of these state-space calculations are left as an exercise.)

To conclude the proof, we observe from (11.3.14) and (11.3.12) that X and Y
are the controllability and observability gramians respectively of the realization in
(11.3.16). Therefore,

√
λr+1(XY ) are the Hankel singular values of Ra. Combining

this information with Theorem 11.3.1, we have the desired state-space conditions
for necessity.

11.3.3 The sufficient conditions

In this section, we show that the necessary conditions given in Theorem 11.3.1 are
also sufficient. In doing so, we shall construct every Q ∈ RH−

∞(r) such that

∥∥∥∥
[

R11 R12

R21 R22 − Q

]∥∥∥∥
∞

< 1. (11.3.17)

We shall establish sufficiency via an allpass embedding in which we assemble a
transfer function matrix of the form

Eaa =




R11 R12 R13 0
R21 E22 E23 −Q24

R31 E32 E33 −Q34

0 −Q42 −Q43 −Q44




such that Eaa is allpass, which generalizes the construction used in the constant
matrix case in Section 11.2. Each of the entries Eij may be decomposed as Eij =
Rij − Qij , with Rij ∈ RH∞, and

Qaa =




0 0 0 0
0 Q22 Q23 Q24

0 Q32 Q33 Q34

0 Q42 Q43 Q44


 ∈ RH−

∞(r). (11.3.18)

As in the constant matrix case, the allpass nature of Eaa ensures that the inequality
(11.3.17) holds, provided that at least one of the off-diagonal 2 × 2 blocks of Eaa

is nonsingular. The construction of Eaa from Ra will be accomplished using state-
space arguments familiar from Section 10.3.1.

Construction of the allpass embedding

Adding an extra block-row and block-column to Ra gives

Raa =

[
Ra 0
0 0

]
s
=

[
A Baa

Caa 0

]
,
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in which

Baa =
[

B1 B2 B3 0
]

C ′
aa =

[
C ′

1 C ′
2 C ′

3 0
]
.

We seek

Qaa
s
=

[
Â B̂aa

Ĉaa Daa

]

such that Â has no more than r eigenvalues in the left-half plane, and such that the
resulting Eaa = Raa − Qaa satisfies E∼

aaEaa = I.
Assuming that λi(XY ) 6= 1 for all i, we apply the construction of Section 10.3.1

to Raa given by the realization (11.3.16) to obtain

B̂aa = Z−1(Y Baa + C ′
aaDaa) (11.3.19)

Ĉaa = DaaB′
aa + CaaX, (11.3.20)

and
Â = −A′ − B̂aaB′

aa. (11.3.21)

In the above,
Z = Y X − I,

which is nonsingular because we have assumed that no Hankel singular value of Ra

is unity. The matrix Â has no eigenvalues on the imaginary axis, and the number
of eigenvalues of Â in the left-half plane is precisely the number of Hankel singular
values of Ra that are larger than unity. Thus, if σr+1(Ra) < 1 and σr(Ra) > 1,

then Â has exactly r eigenvalues in the left-half plane—these facts are immediate
from the allpass embedding construction of Section 10.3.1. The new twist is that we
choose Daa as given in (11.2.4) in the construction of all solutions to the constant
matrix problem.

In order to show that Qaa is zero in the first block-row and block-column, as

indicated in (11.3.18), partition Ĉaa and B̂aa as

B̂aa =
[

B̂1 B̂2 B̂3 B̂4

]

Ĉ ′
aa =

[
Ĉ ′

1 Ĉ ′
2 Ĉ ′

3 Ĉ ′
4

]
.

We now show that Ĉ1 = 0 and B̂1 = 0. From the definition of B̂aa in (11.3.19) and
(11.3.13), we have

B̂1 = Z−1(Y B1 +
[

C ′
1 C ′

2 C ′
3

]



D11

D21

D31



) = 0.
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Similarly, it follows from (11.3.20) and (11.3.15) that

Ĉ1 = C1X +
[

D11 D12 D31

]



B′

1

B′
2

B′
3



 = 0.

Theorem 11.3.3 Suppose A is asymptotically stable and R ∈ RH∞ is given by

[
R11 R12

R21 R22

]
s
=




A B1 B2

C1 D11 D12

C2 D21 ∗



 . (11.3.22)

If
∥∥[

R11 R12

]∥∥
∞ < 1,

∥∥∥∥
[

R11

R21

]∥∥∥∥
∞

< 1,

and σr+1(Ra) < 1, then there exists a Q ∈ RH−
∞(r) such that

∥∥∥∥
[

R11 R12

R21 R22 − Q

]∥∥∥∥
∞

< 1. (11.3.23)

When σr+1(Ra) < 1 < σr(Ra), every Q ∈ RH−
∞(r) satisfying (11.3.23) is given by

Q = F`

([
Q22 Q24

Q42 Q44

]
,U

)
(11.3.24)

for some U ∈ RH−
∞ such that ‖U‖∞ < 1. In (11.3.24),

[
Q22 Q24

Q42 Q44

]
s
=




Â B̂2 B̂4

Ĉ2 D22 D24

Ĉ4 D42 0


 .

The Dij’s are as in (11.2.4), and the remaining matrices are given by the appropri-
ate partitions of (11.3.19), (11.3.20) and (11.3.21).

Proof. We prove the existence of a Q ∈ RH−
∞(r) satisfying (11.3.23) using the

construction of Eaa in this section. Assume that no Hankel singular value of Ra is
unity. Construct Eaa and note that Qaa ∈ RH−

∞(r), since no more than r Hankel
singular values of Ra are larger than unity. Since Eaa is allpass,

∥∥∥∥
[

R11 R12

R21 R22 − Q22

]∥∥∥∥
∞

≤ 1.

In order to show that strict inequality holds, rather than simply inequality, we need
to show that Q42 is nonsingular on the imaginary axis, since we already known that
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R31 is nonsingular on the imaginary axis. We shall in fact show that Q−1
42 (and

Q−1
24 ) are in RH−

∞. The A-matrix of Q−1
42 is given by

Â − B̂2D
−1
42 Ĉ4 = −A′ − B̂aaB′

aa + B̂2D
−1
42 (D42B

′
2 + D43B

′
3)

= −A′ − (B̂3 − B̂2D
−1
42 D43)B

′
3.

Since Daa is orthogonal, we have D−1
42 D43 = −D′

12(D
−1
13 )′ (see Problem 11.4), giving

B̂3 − B̂2D
−1
42 D43 =

[
B̂2 B̂3

] [
D′

12

D′
13

]
(D−1

13 )′

= B̂aaD′
aa




I
0
0
0


 (D−1

13 )′

= Z−1(Y BaaD′
aa




I
0
0
0


 + C ′

1)(D
−1
13 )′ by (11.3.19)

= Z−1(I − Y X)C ′
1(D

−1
13 )′ by (11.3.15)

= −C ′
1(D

−1
13 )′.

Hence Â − B̂2D
−1
42 Ĉ4 = −(A − B3D

−1
13 C1)

′ and since A − B3D
−1
13 C1 is asymptoti-

cally stable we see that Q−1
42 ∈ RH−

∞. A similar argument gives Â − B̂4D
−1
24 Ĉ2 =

−Z−1(A − B1D
−1
31 C3)

′Z (see Problem 11.5) and hence that Q−1
24 ∈ RH−

∞. We
conclude that Q22 ∈ RH−

∞(r) and that (11.3.23) holds. Thus σr+1(Ra) < 1 is
sufficient for the existence of a Q ∈ RH−

∞(r) satisfying (11.3.23).
We now verify that (11.3.24) generates all solutions when σr+1(Ra) < 1 <

σr(Ra). Since Q24 and Q42 have inverses in RH−
∞, any Q ∈ RH−

∞(r) can be
generated by setting

U = (I + ΨQ44)
−1Ψ, Ψ = Q−1

24 (Q − Q22)Q
−1
42 .

Since [
R11 R12

R21 R22 − Q

]
= F`(Eaa,

[
0 0
0 U

]
),

with Eaa allpass, Lemma 4.3.2 ensures that (11.3.23) holds if and only if ‖U‖∞ <
1. From the allpass nature of Eaa, we also see that ‖Q44‖∞ ≤ 1, and therefore
‖U‖∞ < 1 implies ‖Q44U‖∞ < 1. Lemma 4.3.4 now ensures that U ∈ RH−

∞ if
and only if Q ∈ RH−

∞(r).

Optimal solution of the four-block problem

The theory of optimal solutions to the four-block problem is intricate, due to the
several possible ways in which optimality can occur.
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If the Parrott conditions of (11.3.2) hold, there exists a Q ∈ RL∞ that satisfies
the norm objective, but it may or may not have only r poles in the left-half plane.
Under these conditions, we may construct the dilated matrix Ra and test the Hankel
singular value condition σr+1(Ra) ≤ 1. If equality holds, we have an optimal
problem in which the constraint that Q contains only r stable poles is the limiting
factor. This type of optimality is easily dealt with by constructing an optimal
allpass embedding Eaa as in Section 10.4.1 to obtain all optimal solutions.

If one of the Parrott conditions of (11.3.2) holds with equality, the overall so-
lution procedure is similar to the suboptimal case in that we may still construct a
dilated matrix Ra. However, we cannot demand that R13 and R31 are nonsingular,
which makes a consideration of this case technically difficult. The interested reader
will find all these details in [78].

Main points of the section

1. If

[
R11 R12

R21 R22

]
∈ RH∞, then there exists a Q ∈ RH−

∞(r) such

that ∥∥∥∥
[

R11 R12

R21 R22 − Q

]∥∥∥∥
∞

< 1

if and only if each of the following three conditions hold:
∥∥[

R11 R12

]∥∥
∞ < 1;

∥∥∥∥
[

R11

R21

]∥∥∥∥
∞

< 1;

σr+1(Ra) < 1.

2. The conditions in Item 1 are equivalent to the existence of the
Cholesky factors D13 and D31, and stabilizing, nonnegative definite
solutions X and Y to the algebraic Riccati equations (11.3.14) and
(11.3.12) such that λr+1(XY ) < 1.

3. When the conditions of Item 1 hold and σr(Ra) > 1, an allpass
embedding construction provides an explicit parametrization, given
in (11.3.24), of all solutions Q.

4. The optimal case, while straightforward in principle, is intricate
when the Parrott condition (11.3.2) holds with equality.

11.4 Frequency weighted model reduction

The frequency weighted model reduction problem is concerned with the selection of
a Ĝ ∈ RH∞ of McMillan degree r such that the frequency weighted error

‖W−1
1 (G − Ĝ)W−1

2 ‖∞ (11.4.1)
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is small. In (11.4.1), G ∈ RH∞ is a given system (of McMillan degree n > r),
and W 1 and W 2 are given frequency dependent weighting functions. Ideally, we
would like to minimize the objective (11.4.1), but at present nonconvex parameter
optimization is the only means by which this might be achieved. As noted in
Chapter 10, parameter optimization approaches are hampered by the possibility
of multiple local minima and the difficulty of computing the infinity norm. It is
therefore desirable to have an alternative procedure, even if only to initialize a
parameter optimization based solution. Our approach is to find a Q with at most
r poles in the left-half plane such that ‖W−1

1 (G − Q)W−1
2 ‖∞ is minimized. This

problem has a closed-form algebraic solution and we may then choose Ĝ to be the
stable part of the minimizing Q. This results in a lower bound on the minimum
value of the criterion (11.4.1), which provides an absolute standard of comparison
for any candidate reduced-order model. An upper bound on the criterion (11.4.1)
will also be derived.

Frequency weighted model reduction problems arise in many areas of engineer-
ing. For example, one may wish to reduce the order of a filter in such a way as
to ensure smaller modelling errors in the stop-band than in the pass-band. One
method of achieving this is to consider a relative error model reduction criterion
instead of the absolute error criterion considered in Chapters 9 and 10. This is a spe-
cial case of a frequency weighted model reduction problem, in which the magnitude
of frequency dependent weighting function matches that of the plant.

As another example, there are many reasons why it might be desirable to imple-
ment a simpler, reduced-order approximation to a controller resulting from a LQG
or H∞ synthesis procedure. In selecting a reduced-order controller, the closed-loop
environment in which the controller is to operate should be taken into consideration.
For the unity feedback configuration shown in Figure 11.1, a reasonable objective

f sK G- - - -
6

r yu

−

Figure 11.1: Unity feedback configuration.

is that the reduced-order controller match the closed-loop performance of the full-
order controller. Since y = (I + GK)−1GKr, we seek a reduced-order controller

K̂ such that
‖(I + GK)−1GK − (I + GK̂)−1GK̂‖∞

is minimized. The difficulties of selecting K̂ are compounded by the fact that K̂ ap-
pears nonlinearly in this criterion. To simplify things, we make the assumption that

(I +GK̂)−1 can be approximated by (I +GK)−1, which leads to the approximate
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objective

‖(I + GK)−1G(K − K̂)‖∞.3

11.4.1 Problem formulation and a lower bound

Suppose a stable p×m transfer function G of McMillan degree n is given, together
with two frequency dependent weights W 1 of dimension p×p and W 2 of dimension
m × m. Let n1 and n2 denote the McMillan degrees of W 1 and W 2 respectively.
We would like to find

γr+1 = inf
Q∈RH−

∞(r)
‖W−1

1 (G − Q)W−1
2 ‖∞ (11.4.2)

and all the infimizing Q’s.
A lower bound on γr+1 may be determined from the Hankel norm approximation

results as follows. Let M1 ∈ RH∞ and M2 ∈ RH∞ be spectral factors satisfying

M∼
1 M1 = W 1W

∼
1 , M1,M

−1
1 ∈ RH∞,

M2M
∼
2 = W∼

2 W 2, M2,M
−1
2 ∈ RH∞.

Multiplying the weighted error W−1
1 (G−Q)W−1

2 by the allpass factors M∼−1
1 W 1

and W 2M
∼−1
2 gives

γr+1 = inf
Q∈RH−

∞(r)
‖W−1

1 (G − Q)W−1
2 ‖∞

= inf
Q∈RH−

∞(r)
‖M∼−1

1 (G − Q)M∼−1
2 ‖∞

≥ inf
X∈RH−

∞(r)
‖(M∼−1

1 GM∼−1
2 )+ − X‖∞

≥ σr+1(M
∼−1
1 GM∼−1

2 )+.

Here, we have used the fact that

X = M∼−1
1 QM∼−1

2 − (M∼−1
1 GM∼−1

2 )−

is in RH−
∞(r) if and only if Q is. To see that this lower bound is attainable, suppose

X ∈ RH−
∞(r) is an optimal approximant of (M∼−1

1 GM∼−1
2 )+ and define

Q = M∼
1

(
X + (M∼−1

1 GM∼−1
2 )−

)
M∼

2 .

Because M∼
1 and M∼

2 are in RH−
∞, we see that Q ∈ RH−

∞(r), and by definition
we have

‖W−1
1 (G − Q)W−1

2 ‖∞ = ‖(M∼−1
1 GM∼−1

2 )+ − X‖∞
= σr+1(M

∼−1
1 GM∼−1

2 )+.

3Many other formulations of the controller reduction problem are possible. The main idea is
that the reduction procedure should take account of the closed-loop environment in which the
controller operates.
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Hence
γr+1 = σr+1(M

∼−1
1 GM∼−1

2 )+.

As in the case of Hankel norm approximation, a stable reduced-order system of
McMillan degree r may be obtained from Q ∈ RH−

∞(r) by taking the stable part.

Setting Q = Ĝ+F with Ĝ ∈ RH∞ and F ∈ RH−
∞, we can then bound the infinity

norm error via

‖W−1
1 (G − Ĝ)W−1

2 ‖∞ ≤ γr+1 + ‖W−1
1 FW−1

2 ‖∞.

The second term is difficult to bound a priori and might be arbitrarily large. Of
course, it can always be calculated or bounded a posteriori. In what follows, we
shall reformulate the frequency weighted model reduction problem as a four-block
problem, obtaining all solutions and an easily computable a priori bound on the
infinity norm (11.4.1).

11.4.2 Reformulation as a four-block problem

To solve the problem in (11.4.2) as a four-block problem, choose α1 > ‖W 1‖∞,
α2 > ‖W 2‖∞ and define R12 and R21 via the spectral factorization equations

R21R
∼
21 = I − α−2

1 W 1W
∼
1 , R21,R

−1
21 ∈ RH∞

R∼
12R12 = I − α−2

2 W∼
2 W 2, R12,R

−1
12 ∈ RH∞.

Setting E = G − Q, we have

∥∥W−1
1 EW−1

2

∥∥
∞ < γ

⇔ (W−1
1 E)∼(W−1

1 E) < γ2W∼
2 W 2

⇔ R∼
12R12 + (W−1

1 E)∼(W−1
1 E)/(γ2α2

2) < I

⇔
∥∥∥∥
[

R12

W−1
1 E/(γα2)

]∥∥∥∥
∞

< 1

⇔
[

R12

E/(γα2)

] [
R12

E/(γα2)

]∼
<

[
I 0
0 W 1W

∼
1

]

⇔
[

0
R21

] [
0 R∼

21

]
+

[
R12

E/(γα1α2)

] [
R12

E/(γα1α2)

]∼
< I

⇔
∥∥∥∥
[

0 R12

R21 (G − Q)/(γα1α2)

]∥∥∥∥
∞

< 1. (11.4.3)

This four-block is of exactly the form studied in Section 11.3. The fact that
(1,1)-block is zero and γ affects only the (2,2)-block makes it is possible to obtain
an explicit formula for the least γ such that (11.4.3) holds—we already know that
a Hankel norm calculation determines γr+1, the optimal performance level.
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11.4.3 Allpass dilation

The four-block theory provides necessary and sufficient conditions under which
(11.4.3) has a solution in terms of a dilated operator Ra. Although we already
have the necessary and sufficient condition γ ≥ σr+1(M

∼−1
1 GM∼−1

2 )+, the exer-
cise of constructing the dilation will be useful in developing an upper bound on the
infinity norm of the approximation error.

Suppose that G has the state-space realization

G
s
=

[
A B

C 0

]
.

We may assume that G(∞) = 0 without loss of generality because it can always be
absorbed into Q. The spectral factorizations that define R12 and R21 are standard
state-space computations (see the spectral factorization proof of the bounded real
lemma in Section 3.7) and we therefore assume that they have been calculated to
give

R21 =

[
A1 B1

C1 D21

]
, R12 =

[
A2 B2

C2 D12

]
.

Thus, our four-block problem is characterized by the state-space system

[
0 R12

R21 R22

]
=




A1 0 0 B1 0
0 A2 0 0 B2

0 0 A 0 εB
0 C2 0 0 D12

C1 0 εC D21 0




, (11.4.4)

in which ε = (α1α2γ)−1/2.
We can now apply Theorem 11.3.3 to determine conditions for the existence of

a solution. Since ‖R12‖∞ < 1 and ‖R21‖∞ < 1 by construction, there exists a
solution to (11.4.3) if and only if λr+1 (X(ε)Y (ε)) < 1, with X(ε) and Y (ε) being
the stabilizing, nonnegative definite solutions to the Riccati equations (11.3.14) and
(11.3.12). Examining (11.3.14), we find that

X(ε) =




X11 0 0
0 X22 εX23

0 εX ′
23 ε2X33



 , B3 =




0

B32

εB33



 ,

in which:

1. X11 is the solution to the Lyapunov equation

A1X11 + X11A
′
1 + B1B

′
1 = 0.
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2. X22 is the stabilizing, nonnegative definite solution to the Riccati equation

A2X22 + X22A
′
2 + B2B

′
2 + B32B

′
32 = 0 (11.4.5)

and
B32 = −(B2D

′
12 + X22C

′
2)(D

−1
13 )′. (11.4.6)

3. X23 is the solution to the linear equation

(A2 − B32D
−1
13 C2)X23 + X23A

′ + (B2 − B32D
−1
13 D12)B

′ = 0.

There is a unique solution to this equation, since A and A2 − B32D
−1
13 C2 are

asymptotically stable (X22 is the stabilizing solution to (11.4.5)).

4. B33 is given by
B33 = −(BD′

12 + X ′
23C

′
2)(D

−1
13 )′.

5. X33 is the solution to the Lyapunov equation

AX33 + X33A
′ + BB′ + B33B

′
33 = 0.

Similarly, it may be observed that Y (ε) and C3 have the form

Y (ε) =




Y11 0 εY13

0 Y22 0
εY ′

13 0 ε2Y33



 , C3 =
[

C31 0 εC33

]
,

in which the various matrices may be obtained from an examination of (11.3.12).
The minimum value of γ is attained when λr+1

(
X(ε)Y (ε)

)
= 1. We therefore

consider the characteristic equation det
(
I − X(ε)Y (ε)

)
= 0. Defining

Z =




Z11 0 Z13

Z21 Z22 Z23

Z31 Z32 Z33



 =




X11Y11 0 ε−3X11Y13

ε2X23Y
′
13 X22Y22 ε−1X23Y33

ε3X33Y
′
13 εX ′

23Y22 X33Y33



 ,

we have

det (I − X(ε)Y (ε))

= ε4 det








I 0 0
0 I 0
0 0 ε−4I



 −




Z11 0 Z13

Z21 Z22 Z23

Z31 Z32 Z33







 . (11.4.7)

In order to proceed, we need to show that I −Z11 and I −Z22 are nonsingular. To
see this, we note that R∼

21R21 + R∼
31R31 = I. Thus

∥∥∥∥
[

R21

R31

]∥∥∥∥
∞

= 1
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and, since the Hankel norm never exceeds the infinity norm, we have the Hankel
norm inequality ∥∥∥∥

[
R21

R31

]∥∥∥∥
H

≤ 1.

If equality holds, then

[
R21

R31

]
is its own optimal Nehari extension, which implies

(Lemma 10.4.3) that there exist Schmidt vectors v and w in RH2 such that
[

R21

R31

]
v(−s) = w(s).

But R21R
−1
31 is a coprime factorization, since R−1

31 ∈ RH∞, which implies (see
Appendix A) there exist U and V in RH∞ such that UR21 + V R31 = I. Conse-
quently

v(−s) =
[

U V
]
w(s),

which is a contradiction, since the left-hand side is in RH−
2 and the right-hand side

is in RH2. Thus ∥∥∥∥
[

R21

R31

]∥∥∥∥
H

< 1.

Since X11 and Y11 are, respectively, the controllability and observability gramians
of

[
R21

R31

]
s
=




A1 B1

C1 D21

C31 D31



 ,

we conclude that ρ(X11Y11) < 1, which implies that I − Z11 = I − X11Y11 is
nonsingular. A similar argument using R12 and R13 shows that I−Z22 = I−X22Y22

is also nonsingular (see Problems 11.9 and 11.10). We may therefore take Schur
complements with respect to the upper-left 2 × 2 block in (11.4.7) to obtain the
characteristic equation

0 = det

(
ε−4I − Z33 −

[
Z31 Z32

] [
I − Z11 0
−Z21 I − Z22

]−1 [
Z13

Z23

])
.

This shows that ε−4 is an eigenvalue of the matrix

Z33 +
[

Z31 Z32

] [
I − Z11 0
−Z21 I − Z22

]−1 [
Z13

Z23

]
= Fu (Z, In1+n2

) ,

in which Fu(·, ·) denotes the upper linear fractional transformation. Indeed, since Z
is the product of two nonnegative definite matrices, the number of positive eigenval-

ues of

([
I 0
0 ε−4I

]
− Z

)
is monotonically increasing as ε decreases, from which

we conclude that
α1α2γr+1 = λ

1/2
r+1

(
Fu(Z, In1+n2

)
)
.
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We leave it as an exercise for the reader to show that

σr+1(M
∼−1
1 GM∼−1

2 )+ =
1

α1α2
λ

1/2
r+1

(
Fu (Z, In1+n2

)
)
,

which means that the two necessary and sufficient conditions we have derived are
indeed identical. For any γ > γr+1, every Q satisfying (11.4.3) can be generated by
Theorem 11.3.3 and the corresponding state-space manipulations.

In the case of the special four-block problem (11.4.3) associated with the fre-
quency weighted model reduction problem, the optimal case is quite easy to treat.
This is because the optimal level is always determined by the Hankel singular value
condition, since the Parrott conditions (11.3.2) are satisfied by construction. This
means that all optimal solutions can be obtained by applying Theorem 10.4.5 to
the dilated system Ra. This construction may be found in [77].

11.4.4 Infinity norm error bounds

In the last section we showed how one might find every Q ∈ RH−
∞(r) that satisfies

‖W−1
1 (G − Q)W−1

2 ‖∞ ≤ γ with γ minimized. The minimum level γr+1 can be
determined by an eigenvalue calculation. For any Q that attains the minimum level
γr+1, set Q = Ĝ+F with Ĝ ∈ RH∞ and F ∈ RH−

∞. The triangle inequality gives

‖W−1
1 (G − Ĝ)W−1

2 ‖∞ ≤ γr+1 + ‖W−1
1 FW−1

2 ‖∞. (11.4.8)

In order to bound ‖W−1
1 (G − Ĝ)W−1

2 ‖∞, we seek a bound for ‖W−1
1 FW−1

2 ‖∞.
It follows from the material in Section 11.3.3 that the allpass error system cor-

responding to (11.4.3) is of the form

Eaa = Raa(γr+1) − Qaa

=




0 R12 R13 0
R21 γ−1

r+1R22 R23 0
R31 R32 R33 0
0 0 0 0


 −




0 0 0 0
0 Q22 Q23 Q24

0 Q32 Q33 Q34

0 Q42 Q43 Q44


 ,

with R22 = G/α1α2. Now decompose Qaa as

Qaa = Ĝaa + F aa

=




0 0 0 0

0 Ĝ22 Ĝ23 Ĝ24

0 Ĝ32 Ĝ33 Ĝ34

0 Ĝ42 Ĝ43 Ĝ44


 +




0 0 0 0
0 F 22 F 23 F 24

0 F 32 F 33 F 34

0 F 42 F 43 F 44


 ,

in which the matrix Ĝaa ∈ RH∞ is of degree r and F aa ∈ RH−
∞ is of degree

≤ n + n1 + n2 − r − l, with l being the multiplicity of σr+1

(
Ra(γr+1)

)
. Applying

Lemma 10.5.2 to Raa(γr+1) we see that the Hankel singular values of F∼
aa are less
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than or equal to the Hankel singular values of Raa(γr+1) that are strictly smaller
than σr+1

(
Raa(γr+1)

)
. Iterative allpass embedding arguments that parallel those

in Section 10.5 establish the following theorem:

Theorem 11.4.1 Suppose Raa and Qaa are as above and α1α2γr+1Q22 = Ĝ+F ,

with Ĝ ∈ RH∞ of McMillan degree r and F ∈ RH−
∞. Then

1. ‖W−1
1 (G − Ĝ)W−1

2 ‖∞ is bounded above by γr+1 plus twice the sum of the
distinct Hankel singular values of M−1

2 F∼M−1
1 . If all the Hankel singular

values of M−1
2 F∼M−1

1 are distinct, we have

‖W−1
1 (G − Ĝ)W−1

2 ‖∞ ≤ γr+1 + 2

n+n1+n2−r−l∑

i=1

σi(M
−1
2 F∼M−1

1 ).

2. There exists a D such that ‖W−1
1

(
G − (Ĝ + D)

)
W−1

2 ‖∞ is bounded above

by γr+1 plus ‖W−1
1 ‖∞‖W−1

2 ‖∞ times the sum of the distinct Hankel singular
values of Raa that are strictly smaller than γr+1. For the case when all these
Hankel singular values are distinct, we have

‖W−1
1

(
G − (Ĝ + D)

)
W−1

2 ‖∞

≤ γr+1 + ‖W−1
1 ‖∞‖W−1

2 ‖∞
n+n1+n2−r−l∑

i=1

σi+r+l

(
Raa(γr+1)

)
.

11.4.5 Relative error model reduction

In many cases, it is desirable that the model reduction process produces a model
that is a good relative error approximation to the full-order model. This is achieved
by choosing a weighting function whose magnitude matches the magnitude of the
full-order model. We now briefly indicate how this problem may be tackled using
the techniques of Section 11.3.

Suppose G ∈ RH∞ is given and α is such that ‖G‖∞ < α. We seek Ĝ ∈ RH∞
of McMillan degree r such that

Ĝ = (∆ + I)G, (11.4.9)

with ‖∆‖∞ small. If G has full column rank (almost everywhere), there exists a

spectral factor M ∈ RH∞ with M−1 ∈ RH∞ such that G∼G = MM∼. If Ĝ is
given by (11.4.9), then

‖(G − Ĝ)M∼−1‖∞ = ‖∆GM∼−1‖∞
≤ ‖∆‖∞.
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Conversely, for any Ĝ, defining ∆ = (Ĝ − G)(G∼G)−1G∼ gives Ĝ = (∆ + I)G
and

‖∆‖∞ = ‖(G − Ĝ)M∼−1M−1G∼‖∞
≤ ‖(G − Ĝ)M∼−1‖∞.

Therefore, (11.4.9) with ‖∆‖∞ ≤ γ is equivalent to

‖(G − Ĝ)M∼−1‖∞ ≤ γ. (11.4.10)

Since ĜM∼−1 ∈ RH−
∞(r), we have that

‖(G − Ĝ)M∼−1‖∞ ≥ σr+1(GM∼−1)+ (11.4.11)

by the results of Chapter 10. The matrix GM∼−1 is known as the phase matrix
associated with the system G.

The problem (11.4.10) is also equivalent to the two-block problem
∥∥∥∥
[

R12

ε(G − Ĝ)

]∥∥∥∥
∞

≤ 1, (11.4.12)

in which
R∼

12R12 = I − α−2G∼G

and ε = (αγ)−1. Using the bounded real lemma to determine R12, we see that

R12
s
=

[
A B

C̄ D12

]
,

in which Y = Y ′ ≥ 0, C̄ and D12 satisfy
[

A′Y + Y A + α−2C ′C Y B + α−2C ′D
B′Y + α−2D′C −I + α−2D′D

]
= −

[
C̄ ′

D′
12

] [
C̄ D12

]

and A − BD−1
12 C̄ is asymptotically stable.

We now construct the dilated operator associated with the two-block problem
(11.4.12). Since ‖R12‖∞ < 1, the bounded real lemma implies that there exists an
X = X ′ ≥ 0, a B̄ and D13 such that

[
AX + XA′ + BB′ XC̄ ′ + BD12

C̄X + D12B
′ −I + D12D

′
12

]
= −

[
B̄

D13

] [
B̄′ D′

13

]
,

with A−B̄D−1
13 C̄ asymptotically stable. Therefore, the dilated operator correspond-

ing to the relative error model reduction problem is given by

Ra =

[
R12 R13

εG R23

]
s
=




A B B̄

C̄ D12 D13

εC εD 0



 . (11.4.13)



11.4 FREQUENCY WEIGHTED MODEL REDUCTION 399

Since R12R
∼
12 + R13R

∼
13 = I, R−1

12 R13 is a normalized left coprime factorization,

and it follows that ‖
[

R12 R13

]
‖H < 1. If Z is the observability gramian of G,

then some elementary algebra shows that the observability gramian of

[
R12 R13

] s
=

[
A B B̄

C̄ D12 D13

]
(11.4.14)

is given by Y − α−2Z. Since X is the controllability gramian of (11.4.14), we see
that ρ

(
(Y − α−2Z)X

)
< 1. Arguments paralleling those given in Section 11.4.3

show that the lowest achievable value of ‖∆‖∞ in (11.4.9) are given by

γr+1 = λ
1/2
r+1

(
F`(

[
0 α−2Z
I Y − α−2Z

]
,X)

)
. (11.4.15)

The number γr+1 can be shown to be equal to σr+1

(
(GM∼−1)+

)
, so the bounds

(11.4.11) and (11.4.15) are identical.

11.4.6 Example

We conclude this section with an example illustrating the frequency weighted Hankel
norm model reduction of an eighth-order elliptic filter. An absolute error method of
model reduction will destroy the stop-band performance of the filter; some frequency
weighting that insists that the errors must be small compared with the magnitude
of the filter needs to be introduced. A relative error criterion is perhaps a natural
choice, but this is fraught with difficulties because elliptic filters have all their zeros
on the imaginary axis. It can be shown that this results in the phase matrix GM∼−1

being a stable allpass matrix, which implies that all its Hankel singular values are
unity (see Lemma 10.5.1), so the relative error incurred is at least unity. We are
therefore forced to consider the general frequency weighted problem. We aim to
retain both the pass-band and stop-band behavior of the filter. The importance of
the transition-band, however, will be de-emphasized.

The frequency weights we have chosen for this example are given by

W 1 =
0.014(s + 1)2(s + 2)2

(s2 + 0.2s + 1.45)(s2 + 0.2s + 0.65)
, W 2 = I; (11.4.16)

the scaling term in W 1 was introduced to ensure that ‖W 1‖∞ < 1. The Bode
magnitude plot for this weight is illustrated in Figure 11.2 and it is clear from this
diagram that the model reduction error between roughly 0.6 rad/s and 1.5 rad/s
will be de-emphasized in the reduction process. A computation shows that the
γr’s for this example are given by the values in Table 11.1. For the purpose of
illustration, we have selected a reduced model order of five, and the corresponding
Hankel singular values of Ra(γ6) are given in Table 11.2. Figure 11.3 shows plots

of |W−1
1 (jω)| and |(G − Ĝ)(jω)|, and it is clear that the frequency response of

|(G − Ĝ)(jω)| is being modulated by |W−1
1 (jω)| in the required manner.
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Figure 11.2: The frequency weight magnitude response.

Figure 11.4 shows the Bode magnitude plots of the eighth-order elliptic filter,
the frequency weighted fifth-order approximation and an unweighted fifth-order
optimal Hankel approximation. The unweighted reduced-order model is an inferior
approximation, as compared with the frequency weighted approximation, in the
frequency ranges 0 to 0.7 rad/s, and 1.5 rad/s to high frequency. This is consistent
with the fact that the weight has been chosen in a way that de-emphasizes the
transition region behavior of the weighted approximation. A Bode magnitude plot
of W−1

1 (G − Ĝ)(jω) is shown in Figure 11.5, and we see that the weighted error
peaks at about −4.96 dB at 2.21 rad/s. Finally, it follows from further computation
that

−10.736 dB ≤ ‖W−1
1 (G − Ĝ)‖∞ = −4.96 dB ≤ 2.073 dB.

7.9132 2.5924 1.3073 0.9718
0.5860 0.2905 0.0969 0.0536

Table 11.1: Hankel singular values of (GW−1)+.
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7.5336 2.3394 1.2074 0.9401 0.5557 0.2905
0.1431 0.1207 0.0701 0.0451 0.0148 0.0134

Table 11.2: Hankel singular values of Ra(γ6).

The lower bound is γ6 (in dB) while the upper bound follows from inequality given
in Item 1 of Theorem 11.4.1. Notice that the upper and lower bounds are about
a factor of two (6 dB) higher and lower than the true frequency weighted error.
In general, it is difficult to deduce whether the bounds are overly conservative or
whether a different approximation scheme could more closely approach the lower
bound.

Main points of the section

1. The frequency weighted model reduction problem may be solved
using the Hankel norm approximation theory of Chapter 10. The
minimum achievable Hankel norm is determined by a Hankel sin-
gular value calculation.

2. The frequency weighted model reduction problem may be solved by
recasting it as a four-block problem via two spectral factorizations.
This four-block problem has a special structure, which enables an
eigenvalue formula for the minimum achievable Hankel norm to be
given.

3. The allpass embedding solution of the four-block problem provides
a parametrization of all solutions to the frequency weighted model
reduction problem and a priori computable upper bounds on the
infinity norm of the weighted approximation error.

4. The relative error model reduction problem, which is a special case
of the frequency weighted model reduction, may be recast as a
two-block problem.

11.5 All H∞ optimal controllers

Theorem 8.3.2 gives a representation formula for all internally-stabilizing controllers
that satisfy an H∞ norm constraint of the form ‖F`(P ,K)‖∞ < γ. This is known
as the suboptimal case, because γ cannot be equal to the minimum achievable
norm if strict inequality is imposed. One derivation of this result, which uses the
theory of linear quadratic differential games, is developed in Chapters 6 to 8. In its
present form this approach does not yield a solution of the optimal problem in which
equality is permitted. An alternative approach is based on reducing the controller
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Figure 11.3: W−1(jω) (dashed line) and (G − Ĝ)(jω) (solid line).

synthesis problem to a four-block problem. This approach uses the parametrization
of all stabilizing controllers (see Appendix A) to show that

F`(P ,K) = T 11 + T 12QT 21,

in which Q ∈ RH∞ and the T ij ’s are also in RH∞. Selecting the nominal controller
(i.e., the controller corresponding to Q = 0) to be the LQG optimal controller
results in T∼

12T 12 = I and T 21T
∼
21 = I. We then write

F`(P ,K) = T 11 +
[

T̂ 12 T 12

] [
0 0
0 Q

] [
T̂ 21

T 21

]
,

in which T̂ 12 and T̂ 21 are such that
[

T̂ 12 T 12

]
and

[
T̂

∼
21 T∼

21

]∼
are square

and allpass. Since multiplication by an allpass system does not change the norm,
we have

‖F`(P ,K)‖∞ =

∥∥∥∥
[

T̂
∼
12

T∼
12

]
T 11

[
T̂

∼
21 T∼

21

]
+

[
0 0
0 Q

]∥∥∥∥
∞

=

∥∥∥∥
[

R11 R12

R21 R22 + Q

]∥∥∥∥
∞

.
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Figure 11.4: Eigth-order elliptic filter (dashed), frequency weighted approximation
(solid) and an unweighted approximation (dot-dash).

It turns out that

[
R11 R12

R21 R22

]
∈ RH−

∞ and we seek Q ∈ RH∞ such that

‖F`(P ,K)‖∞ < γ. This is a four-block problem of the form considered in this
chapter, provided we interchange the role of the left and right-half planes, which
may be done via the change of variable s → −s. Solving this four-block problem
yields all controllers by combining the parametrization of all Q’s with the para-
metrization of all stabilizing controllers. This approach has provided a complete
treatment of all the optimal cases, but is too intricate for inclusion in this book.
Despite this, we will state the necessary and sufficient conditions for the existence
of an H∞ optimal controller and the representation formula for all such controllers.

Suppose we are given the generalized plant

P =

[
P 11 P 12

P 21 P 22

]
s
=




A B1 B2

C1 D11 D12

C2 D21 D22



 (11.5.1)

and that we require all controllers that internally stabilize P and satisfy

‖F`(P ,K)‖∞ ≤ γ. (11.5.2)

The assumptions are:
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Figure 11.5: Frequency-weighted modelling error magnitude.

1. (A,B2, C2) is stabilizable and detectable.

2. The problem has been scaled so that D21D
′
21 = Iq and D′

12D12 = Im; this
assumption clearly pre-supposes that rank(D12) = m and that rank(D21) = q.

3. rank

([
jωI − A −B2

C1 D12

])
= n + m for all real ω.

4. rank

([
jωI − A −B1

C2 D21

])
= n + q for all real ω.

5. D11 = 0 and D22 = 0. As explained in Chapter 4, this assumption may be
removed by loop shifting.

In the following results, we introduce D⊥ and D̃⊥, which have been chosen so

that
[

D⊥ D12

]
and

[
D̃′

⊥ D′
21

]
are orthogonal. The necessary and sufficient

conditions for a solution to exist are as follows.

Theorem 11.5.1 Suppose that P in (11.5.1) is given, and that assumptions (1)
to (5) above are satisfied. Then for any γ > 0 there exists an internally-stabilizing
controller such that ‖F`(P ,K)‖∞ ≤ γ if and only if:
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1. There exists [
X∞1

X∞2

]
∈ R

2n×n

of rank n such that:

(i) H∞

[
X∞1

X∞2

]
=

[
X∞1

X∞2

]
TX , Reλi(TX) ≤ 0 for all i, and

(ii) X ′
∞1X∞2 = X ′

∞2X∞1,

where

H∞ =

[
A − B2D

′
12C1 γ−2B1B

′
1 − B2B

′
2

−C ′
1D⊥D′

⊥C1 −(A − B2D
′
12C1)

′

]
.

2. There exists [
Y∞1

Y∞2

]
∈ R

2n×n

of rank n such that:

(i) J∞

[
Y∞1

Y∞2

]
=

[
Y∞1

Y∞2

]
TY , with Reλi(TY ) ≤ 0 for all i, and

(ii) Y ′
∞1Y∞2 = Y ′

∞2Y∞1,

where

J∞ =

[
(A − B1D

′
21C2)

′ γ−2C ′
1C1 − C ′

2C2

−B1D̃
′
⊥D̃⊥B′

1 −(A − B1D
′
21C2)

]
.

3.

Π(γ) =

[
X ′

∞2X∞1 γ−1X ′
∞2Y∞2

γ−1Y ′
∞2X∞2 Y ′

∞2Y∞1

]
≥ 0. (11.5.3)

Proof. See [78].

In the case that X∞1 and Y∞1 are nonsingular, the full-information control and
H∞ filter Riccati equation solutions X∞ and Y∞ are given by

X∞ = X∞2X
−1
∞1, Y∞ = Y∞2Y

−1
∞1 .

In this case, (11.5.3) holds if and only if

0 ≤
[

X∞ γ−1X∞Y∞
γ−1Y∞X∞ Y∞

]

=

[
I 0

γ−1Y∞ I

] [
X∞ 0
0 Y∞(I − γ−2X∞Y∞)

] [
I γ−1Y∞
0 I

]
.

This shows that under these conditions (11.5.3) is equivalent to the three conditions:
X∞ ≥ 0; Y∞ ≥ 0; and ρ(X∞Y∞) ≤ γ2. Theorem 8.3.2, which deals with the
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suboptimal case, shows that a suboptimal solution exists if and only if stabilizing
solutions X∞ ≥ 0 and Y∞ ≥ 0 exist and ρ(X∞Y∞) < γ2.

When designing a controller using an H∞ synthesis procedure, it is rarely the
case that the first attempt provides a totally satisfactory controller; usually, some
adjustment of the design weighting matrices is desirable. In this process, it is
helpful to know the limiting design factor. That is, which aspect of the problem is
preventing the performance level γ from being decreased. In order to provide some
insight into this, we make the following remarks:

• If it is the condition (11.5.3) that prevents γ being reduced, the design is sta-
bility limited. That is, the norm objective could be achieved if the controller
did not also have to stabilize the system. This means that analytic con-
straints, such as Bode’s conservation of sensitivity theorem, are the limiting
factor in the design. Typically, this means that there is insufficient frequency
separation between the high-gain objectives and the low-gain objectives.4

The number of negative eigenvalues of the matrix Π(γ) on the left-hand side of
(11.5.3) gives the number of unstable closed-loop poles that must be allowed
in order to meet the infinity norm objective. If X ′

∞2X∞1 ≥ 0, but Π(γ)
has negative eigenvalues, the problem is limited by the estimation problem;
one could achieve the objective with a stabilizing full-information controller,
but not with a stabilizing measurement feedback controller. If X ′

∞2X∞1 has
negative eigenvalues, one cannot achieve the objective even with a stabilizing
full-information controller.

• If the existence of
[

X ′
∞1 X ′

∞2

]′
or

[
Y ′
∞1 Y ′

∞2

]′
is what prevents γ

being reduced, the design is norm limited. That is, it is the norm objec-
tive associated with Parrott’s theorem that is fixing the lower bound on the
achievable norm. No controller, stabilizing or otherwise, could achieve the
objective. This means that algebraic constraints, such as S − GKS = I, in
which S = (I − GK)−1 is the sensitivity operator, are the limiting factor
in the design. The situation may be improved by introducing a frequency
weighting function to de-emphasize one of the constraints.

If the existence of
[

X ′
∞1 X ′

∞2

]′
is the limiting factor, the problem is con-

trol limited—even a full-information controller could not achieve the objective.

In our final result, we characterize all the controllers that achieve the objective.

Theorem 11.5.2 If the three conditions of Theorem 11.5.1 are satisfied, all finite-
dimensional, internally-stabilizing controllers K that satisfy ‖F`(P ,K)‖∞ ≤ γ are
given by K = F`(Ka,U), in which U ∈ RH∞ with ‖U‖∞ ≤ γ and det

(
I −

K22(∞)U(∞)
)
6= 0. The generator of all controllers Ka is given by

Ka =

[
0 I
I 0

]
+

[
Ck1

Ck2

]
(sEk − Ak)#

[
Bk1 Bk2

]
, (11.5.4)

4As explained in Section 2.5.6, a rapid gain roll-off from high gain to low gain can result in
closed-loop instability or a small stability margin.



11.5 ALL H∞ OPTIMAL CONTROLLERS 407

in which (·)# denotes a generalized inverse and

Ek = Y ′
∞1X∞1 − γ−2Y ′

∞2X∞2 (11.5.5)

Bk1 = Y ′
∞1B1D

′
21 + Y ′

∞2C
′
2 (11.5.6)

Bk2 = Y ′
∞1B2 + γ−2Y ′

∞2C
′
1D12 (11.5.7)

Ck1 = −(D′
12C1X∞1 + B′

2X∞2) (11.5.8)

Ck2 = −(C2X∞1 + γ−2D21B
′
1X∞2) (11.5.9)

Ak = EkTX + Bk1Ck2 (11.5.10)

= T ′
Y Ek + Bk2Ck1.

Proof. See [78] and Problem 11.6.

There are two possible consequences of Ek in (11.5.5) being singular. Firstly,
sEk −Ak may have eigenvalues at infinity—these infinite eigenvalues do not appear
as poles of Ka. Secondly, sEk − Ak may be identically singular (singular for all
values of s).

We will now outline how to derive a reduced-order controller representation
formula when Ek is singular; the state dimension of Ka is reduced by the rank
defect of Ek. There is also a reduction in the dimension of the free parameter U

and we will show explicitly how this comes about. This reduction in dimension
leads to the optimal controller in the single-input-single-output case being unique.

Write Ka as the descriptor system

Ek ζ̇ = Akζ +
[

Bk1 Bk2

] [
y
r

]

[
u
s

]
=

[
Ck1

Ck2

]
ζ +

[
0 I
I 0

] [
y
r

]
.

Let U and V be orthogonal matrices such that

UEkV =

[
Êk 0
0 0

]
, det(Êk) 6= 0.

Introducing a new state variable ξ = V ′ζ and multiplying the state dynamical
equation by U ′, we obtain

[
Êk ξ̇1

0

]
=

[
Âk11 Âk12

Âk21 Âk22

] [
ξ1

ξ2

]
+

[
B̂k11 B̂k12

B̂k21 B̂k22

] [
y
r

]

[
uk

sk

]
=

[
Ĉk11 Ĉk12

Ĉk21 Ĉk22

] [
ξ1

ξ2

]
+

[
0 I
I 0

] [
y
r

]
,

in which

Âk = UAkV =

[
Âk11 Âk12

Âk21 Âk22

]
,
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B̂k = U
[

Bk1 Bk2

]
=

[
B̂k11 B̂k12

B̂k21 B̂k22

]
,

Ĉk =

[
Ck1

Ck2

]
V =

[
Ĉk11 Ĉk12

Ĉk21 Ĉk22

]
.

(All the partitioning is conformable with that of Ek.) The algebraic equation that
determines ξ2 can always be solved (see [78]) giving

ξ2 = −Â†
k22(Âk21ξ1 +

[
B̂k21 B̂k22

] [
y
r

]
) + ν,

in which (·)† denotes the Moore-Penrose generalized inverse and ν ∈ ker(Âk22). It
can also be shown ([78]) that

ker(Âk22) ⊂ ker




Âk12

Ĉk12

Ĉk22


 ,

which means that ν has no effect on the controller transfer function. Thus, elimi-
nating ξ2, we obtain the state-space representation

ξ̇1 = Akrξ1 +
[

Bkr1 Bkr2

] [
y
r

]

[
u
s

]
=

[
Ckr1

Ckr2

]
ξ1 +

[
Dkr11 Dkr12

Dkr21 Dkr22

] [
y
r

]
,

in which

Akr = Ê−1
k (Âk11 − Âk12Â

†
k22Âk21)

[
Bkr1 Bkr2

]
= Ê−1

k

[
I −Âk12Â

†
k22

]
B̂k,

[
Ckr1

Ckr2

]
= Ĉk

[
I

−Â†
k22Âk21

]
,

[
Dkr11 Dkr12

Dkr21 Dkr22

]
=

[
0 I
I 0

]
−

[
Ĉk12

Ĉk22

]
Â†

k22

[
B̂k21 B̂k22

]
.

To show explicitly the reduction in dimension of the free parameter, U , we select
orthogonal matrices Y and Z (which always exist) such that

Y
[

Ckr2 Dkr21

]
=

[
C̄kr2 D̄kr21

0 0

]
,

[
Bkr2

Dkr12

]
Z =

[
B̄kr2 0
D̄kr12 0

]
,

Y Dkr22Z =

[
D̄kr22 0

0 γ−1I

]
.



11.6 NOTES AND REFERENCES 409

This means that only the (1,1)-block of U has a role to play. We may therefore
eliminate the redundant pieces of the controller generator to obtain

K̄a =

[
Dkr11 D̄kr12

D̄kr21 D̄kr22

]
+

[
Ckr1

C̄kr2

]
(sI − Akr)

−1
[

Bkr1 B̄kr2

]
,

which is a reduced degree, reduced dimension generator for all optimal controllers.
An example of this optimal behavior is considered in Problem 11.7.

Main points of the section

1. The H∞ controller synthesis problem may be recast as a four-block
problem using the parametrization of all stabilizing controllers.

2. The optimal solution of the four-block problem enables a com-
plete solution of the optimal H∞ controller synthesis problem to be
given. The conditions for a solution to exist are in terms of bases
for the stable invariant subspaces of two Hamiltonian matrices.

3. In contrast to the one-block problem, which is considered in Chap-
ter 10, there are several mechanisms by which optimality may arise.
The stability constraint is the limiting factor if condition (11.5.3)
determines the optimal performance level. Otherwise, it is the
norm constraint itself that is the limiting factor.

4. A descriptor system representation for all optimal controllers can
be given.

5. When Ek in the descriptor system representation of the controller
generator is singular, it may always be reduced to a normal state-
space system, which has state dimension lower than that of the
generalized plant. In these cases, there is also a reduction in the
dimensions of the free parameter U .

11.6 Notes and References

An early example of a four-block problem may be found in the work of Parrott [160],
who was motivated by problems involving the extension and approximation of Han-
kel operators. The book by Power [168] is a useful reference on the subject and
Young’s book [222] also contains a nice treatment of Parrott’s theorem.

Interest in the four-block problem by the control community dates from the
work of Doyle [52]. Motivated by the work of Davis, Kahan and Weinberger [39],
he showed that the generalized regulator problem was equivalent to the four-block
problem. It was also shown that the four-block problem could be reduced to a
classical Nehari problem (see Doyle [52], Chu, Doyle and Lee [36] and Francis [65]).
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Although this method provided a complete mathematical solution to the H∞ con-
troller synthesis problem, it was not considered satisfactory because of its complex-
ity, a lack of control system insight and a host of numerical and degree inflation
problems.

The state-space approach to the four-block problem based on allpass dilation
is due to Glover, Limebeer, Doyle, Kasenally and Safonov [78]. This produced an
explicit state-space formula for the linear fractional transformation that generates
all the controllers in terms of a state-space realization of the generalized plant and
the solutions of two algebraic Riccati equations. The simplicity of the final answer
suggested that a more insightful and direct approach might be possible, resulting
in the separation theory approach of Doyle, Glover, Khargonekar and Francis [54],
which is the basis for Chapters 6 to 8.

Other solutions to the four-block problem have been given by Foias and Tan-
nenbaum [64], Ball and Jonckheere [24] and Feintuch and Francis [60].

A solution to the frequency weighted model reduction problem was developed
by Anderson and Latham [10, 127] using the optimal Hankel norm approximation
techniques of Chapter 10. However, the infinity norm bounds resulting from this
approach are rather conservative. Glover, Limebeer and Hung [77] showed that
the frequency weighted model reduction problem may be recast as a four-block
problem, which could be solved using the allpass dilation arguments developed in
[78]. Truncation-based approaches to the frequency weighted model reduction have
been given by Enns [57] and Al-Saggaf and Franklin [6].

The relative error model reduction problem was considered by Glover [72] using
the optimal Hankel norm approach that Anderson and Latham [10, 127] had devel-
oped for the general frequency weighted case. Truncation based methods for relative
error approximation have also be developed—see Desai and Pal [45], Green [83] and
Safonov and Wang [208].

11.7 Problems

Problem 11.1. Suppose

[
C
D

]
is an orthogonal basis for the right null space

of
[

A B
]
. If B is nonsingular, show that C must be nonsingular also.

Problem 11.2. Let

X =

[
X11 X12

X21 X22

]

be a partitioned complex matrix. Show that

trace(X∗X) = trace(X∗
11X11) + trace(X∗

12X12)

+ trace(X∗
21X21) + trace(X∗

22X22),
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and hence prove that

inf
X22

∥∥∥∥
[

X11 X12

X21 X22

]∥∥∥∥
2

=

∥∥∥∥
[

X11 X12

X21 0

]∥∥∥∥
2

,

in which ‖X‖2
2 = trace(X ′X).

Problem 11.3. Use equations (11.3.14), (11.3.12) and (11.3.21) to verify that

ÂY (Z−1)′ + Z−1Y Â′ + B̂aaB̂′
aa = 0.

Problem 11.4. Consider the matrix Daa given in (11.2.4). Use the fact that
this matrix is orthogonal to prove:

1. D−1
42 D43 = −D′

12(D
−1
13 )′.

2. D34D
−1
24 = −(D−1

31 )′D′
21.

Problem 11.5. Show that Q−1
24 is antistable as follows:

1. Show that an alternative expression for Â is

Â = −Z−1(A′Z + C ′
aaĈaa).

2. Show that

Â − B̂4D
−1
24 Ĉ2 = −Z−1

(
A′Z + C ′

3(Ĉ3 + (D−1
31 )′D′

21Ĉ2)
)
.

3. Show that
Ĉ3 + (D−1

31 )′D′
21Ĉ2 = −(D−1

31 )′B′
1Z.

4. Hence, show that

Â − B̂4D
−1
24 Ĉ2 = −Z−1(A − B1D

−1
31 C3)

′Z.

Problem 11.6. By substituting X∞ = X∞2X
−1
∞1 and Y∞ = (Y ′

∞1)
−1Y ′

∞2 into
Theorem 8.3.2, derive the descriptor representation formula in Theorem 11.5.2.

(Hint: You will need to use the Hamiltonian matrix relationships given in The-
orem 11.5.1.)

Problem 11.7. (Kasenally and Limebeer [111] ) Consider the mixed sensitivity
problem of finding

γopt = inf
K

∥∥∥∥
[

GK(I − GK)−1

(I − GK)−1

]∥∥∥∥
∞

,

in which the infimum is taken over the set of stabilizing controllers.
1. Show that the generalized plant for this problem is

P =





[
0
I

] [
−G

G

]

−I −G



 s
=




A 0 B[
C
C

] [
0
I

] [
D
D

]

C I D


 .
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2. If D is nonsingular, show that D12 may be orthogonalized by re-scaling the
problem as

P̃
s
=




A 0 1√
2
BD−1

[
C
C

] [
0
I

] [
1√
2
I

1√
2
I

]

C I 1√
2
I




.

3. Show that
[

D12 D⊥
]

=
1√
2

[
I −I
I I

]
.

4. Show that the LQG Riccati equations (5.4.11) and (5.4.12) associated with
this problem are

(A − BD−1C)′X + X(A − BD−1C) − 1

2
XB(D′D)−1B′X = 0

and
AY + Y A′ − Y C ′CY = 0.

(Note, however, that the LQG cost for this problem is infinite, for any con-
troller, because D′

⊥D11 6= 0.)
5. Show that the H∞ Riccati equations for this problem are

(A−BD−1C)′X∞+X∞(A−BD−1C)− γ2 − 1

2(γ2 − 1/2)
X∞B(D′D)−1B′X∞ = 0.

and
Y∞A′ + AY∞ − (1 − γ−2)Y∞C ′CY∞.

6. By comparing terms, show that

X∞ =
γ2 − 1

2

γ2 − 1
X, Y∞ =

γ2

γ2 − 1
Y.

7. Show that γopt = 1 when G is either stable or minimum phase (but not
both). If G is stable with at least one right-half-plane zero, show that
limγ→1 ‖X∞(γ)‖ = ∞. If G is unstable and minimum phase show that
limγ→1 ‖Y∞(γ)‖ = ∞.

8. If G is stable and minimum phase show that γopt = 1/
√

2.
(Hint: Show that K = −ρG−1 is a stabilizing controller, and then consider

d

dρ

∥∥∥∥
[

GK(I − GK)−1

(I − GK)−1

]∥∥∥∥
∞

= 0.)
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Problem 11.8. A normalized right coprime factorization of a plant G is given
by

G = ND−1,

in which N ,D ∈ RH∞ satisfy

[
D∼ N∼ ] [

D

N

]
= I.

Show that ∥∥∥∥
[

D

N

]∥∥∥∥
H

< 1.

(Hint: Exploit the analyticity properties of the maximal Schmidt pair of a Hankel
operator [79].)

Problem 11.9. Show that the dilated D-matrix associated with the four block
problem (11.4.4) is given by




0 D12 D13 0
D21 0 0 D24

D31 0 0 D34

0 D42 D43 0


 .

Problem 11.10. For the four-block problem (11.4.4) associated with model
reduction, show that

A′
2Y22 + Y22A2 + C ′

2C2 = 0

and
A2X22 + X22A

′
2 + B2B

′
2 + B32B

′
32 = 0

and consequently that ρ(X22Y22) < 1.

Problem 11.11. Show that the representation formula given in Theorem 11.3.3
may be written in the following generalized state-space form:

[
Q22 Q24

Q42 Q44

]
=

[
Ĉ2

Ĉ4

]
(sZ ′ − A′ − Y AX + C ′

aaDaaB′
aa)−1

[
B̂2 B̂4

]

+

[
D22 D24

D42 0

]
,

in which [
Ĉ2

Ĉ4

]
=

[
C2X

0

]
+

[
D21 D22 D23

0 D42 D43

] 


B′

1

B′
2

B′
3





and
[

B̂2 B̂4

]
=

[
Y B2 0

]
+

[
C ′

1 C ′
2 C ′

3

]



D12 0
D22 D24

D32 D34



 .
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Design Case Studies

12.1 Introduction

The generalized regulator theory presupposes the existence of a linear model of
the plant and a number of frequency dependent weighting functions, which are
selected to represent closed-loop performance specifications. Once the weights and
plant model have been chosen, the lowest achievable infinity norm determines if
the specifications can be met. If they can, the evaluation of a controller is a fully
automated process. Although we have these necessary and sufficient conditions for
the existence of a controller, theorems cannot design control systems.

The central difficulty with using the generalized regulator to solve design prob-
lems is interfacing the engineering requirements to the mathematical optimization
process. The most obvious of these interfacing difficulties concerns the treatment
of the discrepancy between the plant and the model we use to represent it. All
hardware systems are nonlinear, and as a consequence, any linear model we use to
represent them only provides an approximate representation of their true dynamical
behavior.1 The design optimization process must therefore be set up so that the
discrepancy between the plant and the model we use to represent it, is taken into
account. Precautions must be taken against the possible degradation of the sys-
tem’s performance as one ranges over all possible plant behaviors—the worst type
of performance degradation is the onset of closed-loop instability.

To alleviate the design difficulties associated with nonlinearities and changes in
the system’s characteristics, one might deliberately design the control system so that
the plant is constrained to operate in an approximately linear part of the operating
regime where the system dynamics are accurately represented by a linear model.
The maintenance of system linearity is not always appropriate and may involve a

1No model, linear or nonlinear, can completely represent a physical system’s behavior.

415
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sacrifice in performance; an example that comes to mind is the design of guidance
systems for certain high-performance military missiles, where bang-bang controllers
produce much better performance than linear controls. However, we may be forced
to take a linear approach because of our inability to design controllers for some
truly nonlinear systems.

The attenuation of unknown disturbances is an important design issue, which is
dealt with by limiting the gain between the signal’s point of entry and the outputs
we would like to maintain as disturbance free. Controllers that meet a combination
of time-domain and frequency-domain robust performance specifications are often
required. One of our case studies shows how a class of these problems may be
addressed using two-degree-of-freedom (TDF) controller structures. This study
shows how the general theory may be used to produce good results in terms of
time-domain specifications.

A problem that is closely related to the plant modelling issue is controller
complexity—complex plant models will usually lead to high-order controllers and
the difficulties associated with implementing them. On the assumption that we
have ways of dealing with the “modelling gap”, it would seem reasonable that we
consider the possibility of replacing complex plant models with simpler ones. Simple
models simplify the process of understanding the design limitations. The controller
synthesis computations will be faster, will require less in the way of storage and will
be less prone to numerical difficulties. In addition, the implementation of the re-
sulting controller is simplified, because the controller degree is reduced. The model
reduction ideas introduced in Chapters 9 to 11 therefore play a central role in the
design process.

The objectives of this chapter are relatively modest. We are not going to attempt
a survey of contemporary design techniques, or to produce a detailed prescriptive
methodology that can be applied to every design problem. It would be a fool’s
errand to attempt to develop a theory that foresees and encompasses all possible
applications. Rather, our aim is to concentrate on a single, simple approach to
control system design which uses H∞ optimization and which has produced good
results on our case studies. When applying these ideas to their own design problems,
readers may find it necessary to extend some of the ideas and make modifications
that are appropriate to their circumstances. We hope that this book will provide
them with the tools necessary to extend and modify the ideas to suit their own
purposes and handle their own particular problems.

The next section introduces the theoretical background associated with robust
stabilization theory for normalized coprime factor model error representations. Af-
ter that, we will present two case studies. The first study is concerned with the
stabilization of the vertical dynamics of the elongated plasma in a tokamak. It
includes a consideration of actuator saturation and bumpless transfer. The second
study looks at the design of a product-composition controller for a high-purity dis-
tillation column. Our hope is that these case studies will communicate some of
the current thinking behind the use of H∞ optimization in the solution of design
problems.
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12.2 Robust stability

A fundamental performance requirement for any feedback control system is its abil-
ity to maintain the stability of the closed loop. By closed-loop stability, we mean
the stability of an uncertain plant, rather than just the stability of the nominal
linear finite-dimensional model used to represent the plant. Designing a controller
to stabilize a linear model is trivial provided certain stabilizability and detectability
conditions are satisfied. On the other hand, designing a controller to stabilize an
uncertain hardware system may be much more difficult, or even impossible.

The design of a robust controller usually proceeds in two steps. First, one seeks
to characterize a plant model set G, say, which “contains” the hardware system.
A closed-loop system is called robustly stable if it is stable for every plant model
G ∈ G. In the second step one attempts to design a controller that stabilizes every
model G ∈ G.

In Chapter 2, representations of the model set are given in terms of a nominal
model G and an additive model error ∆A or a multiplicative model error ∆M .
Robust stability results were developed for the the model sets

Aγ = {(G + ∆A) : ∂(G) = ∂(G + ∆A), ‖∆A‖∞ < γ−1} (12.2.1)

Mγ = {(I + ∆M )G : ∂(G) = ∂
(
(I + ∆M )G

)
, ‖∆M‖∞ < γ−1}, (12.2.2)

in which ∂(·) denotes the number of closed-right-half-plane poles of the transfer
function matrix. These representations of model error are handicapped by the
side condition on the number of right-half-plane poles. This somewhat artificial
constraint was introduced so that simple robustness theorems could be proved using
homotopy arguments. To illustrate the limitations of the model sets (12.2.1) and
(12.2.2), we consider a system with a pair of poles on the imaginary axis. If the
resonant frequencies of these poles are uncertain, the uncertainty cannot be captured
by (12.2.1) or (12.2.2) with a perturbation of finite norm.

Example 12.2.1. Consider the two systems

G =
2
√

2

s2 + 1
, G∆ =

2
√

2

s2 + 1 + α
.

It can be verified that

∆A = − 2
√

2α

(s2 + 1)(s2 + 1 + α)

and
∆ = − α

(s2 + 1 + α)
,

which are both unbounded in the infinity norm for any α > 0. 5
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12.2.1 Normalized coprime factor perturbations

This section introduces the normalized coprime factor model error representation,
which has no restriction on the number of right-half-plane poles and which is capable
of representing a wider class of systems than either (12.2.1) or (12.2.2). If G is a
given plant model, then

G = M−1N

is a normalized left coprime factorization of G if M ,N ∈ H∞ are coprime (see
Appendix A) and satisfy

MM∼ + NN∼ = I. (12.2.3)

Normalized coprime factorizations have a number of interesting properties that can
be found in the references given in the notes at the end of the chapter.

Given such a normalized left coprime factorization, we define the model set

Gγ =

{
(M − ∆M )−1(N + ∆N ) :

[
∆N ∆M

]
∈ H∞,

‖
[

∆N ∆M

]
‖∞ < γ−1

}
. (12.2.4)

Note that if
y = (M − ∆M )−1(N + ∆N )u,

then
(M − ∆M )y = (N + ∆N )u.

This may be re-written as

My = Nu +
[

∆N ∆M

] [
u
y

]
,

which is illustrated in Figure 12.1.

f
fs

N M−1

∆N ∆M

- - - -

¾¾- -

? yu

φ

Figure 12.1: Plant with coprime factor perturbations.

Notice that if y and u arise from the nominal model y = M−1Nu, we have
My − Nu = 0. If y and u do not arise from the nominal model, we have the
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“equation error” My − Nu = φ. The norm bound in the normalized coprime
factor model set requires that the equation error φ satisfies the two-norm bound

‖φ‖2 < γ−1

∥∥∥∥
[

u
y

]∥∥∥∥
2

,

[
u
y

]
6= 0.

To illustrate the benefits of the normalized coprime factor representation of
model error, we return to Example 12.2.1.

Example 12.2.2. As before,

G =
2
√

2

s2 + 1
, G∆ =

2
√

2

s2 + 1 + α
.

A normalized coprime factorization of G is

[
N M

]
=

1

s2 + 2s + 3

[
2
√

2 s2 + 1
]
.

Since

G∆ =

(
s2 + 1

s2 + 2s + 3
+

α

s2 + 2s + 3

)−1

× 2
√

2

s2 + 2s + 3
,

we see that ∆N = 0 and ∆M = α
s2+2s+3 . Hence G∆ ∈ Gγ for any γ−1 >

‖ α
s2+2s+3‖∞. 5

We now give a brief summary of the theory of robust stability optimization for
normalized coprime factors and loop-shaping design. We refer the reader to the
notes and references at the end of the chapter for details regarding the relevant
literature.

The optimization problem

We are interested in the stabilization of closed-loop systems constructed from plants
Gp ∈ Gγ , with Gγ the normalized coprime factor perturbation model set defined in
(12.2.4). The aim is to design a controller that minimizes the achievable value of
γ, thereby maximizing the size of the admissible perturbation. Figure 12.2 gives an
illustration of the optimization problem we are about to solve. From this diagram
we see that

[
u
y

]
=

[
K

I

]
(I − GK)−1M−1φ

φ =
[

∆N ∆M

] [
u
y

]
.

Therefore, by the small gain theorem (see Theorems 3.4.1 and Theorem 3.6.1),
∥∥∥∥
[

K

I

]
(I − GK)−1M−1

∥∥∥∥
∞

≤ γ (12.2.5)
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f f
f

s
s

N M−1

∆N ∆M

K
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?

¾

6

yur

φ

Figure 12.2: The robust controller design problem for the normalized coprime factor
model error representation.

ensures that the loop will be stable for all plant in the normalized coprime factor
perturbation model set Gγ defined by (12.2.4). Indeed, (12.2.5) ensures that the
closed-loop will be stable provided

[
∆M ∆N

]
is stable and has incremental

gain less than γ−1, a generalization that allows for nonlinear and time-varying
perturbations. In order to maximize the robust stability of the closed-loop, we
require a stabilizing feedback controller that minimizes γ.

Since
[

N M
]

is normalized and
[

G I
]

= M−1
[

N M
]
,

∥∥∥∥
[

K

I

]
(I − GK)−1M−1

∥∥∥∥
∞

=

∥∥∥∥
[

K

I

]
(I − GK)−1

[
G I

]∥∥∥∥
∞

. (12.2.6)

As explained in Chapter 2, each of the four transfer function matrices on the right-
hand side has a performance and/or robust stability interpretation. Thus, minimiz-
ing γ in (12.2.5) has many robust stability and performance interpretations via the
identity (12.2.6).

State-space models for normalized coprime factors

If G has stabilizable and detectable realization (A,B,C,D), then

[
N M

] s
=

[
A − HC B − HD H

− R− 1
2 C R− 1

2 D R− 1
2

]
(12.2.7)

are normalized coprime factors of G if H = (BD′ + Y C ′)R−1 and R = I + DD′.
The matrix Y ≥ 0 is the unique stabilizing solution to the Kalman filter algebraic
Riccati equation

(A − BS−1D′C)Y + Y (A − BS−1D′C)′ − Y C ′R−1CY + BS−1B′ = 0,
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in which S = I+D′D. The fact that (12.2.7) defines a left coprime factorization fol-
lows from results presented in Appendix A. Since the matrix Y is the controllability
gramian of the given realization of

[
N M

]
and

R− 1
2

[
D I

] [
B′ − D′H ′

H ′

]
− R− 1

2 CY = 0

R− 1
2

[
D I

] [
D′

I

]
R− 1

2 = I,

Theorem 3.2.1 implies that
[

N M
]

satisfies (12.2.3). Therefore (12.2.7) defines
a normalized left coprime factorization.

The optimal stability margin

If X ≥ 0 is the unique stabilizing solution to the general control algebraic Riccati
equation

X(A − BS−1D′C) + (A − BS−1D′C)′X − XBS−1B′X + C ′R−1C = 0,

the theory of Chapter 8 (see Problem 8.12) can be used to show that the lowest
achievable value of γ is

γopt =
√

1 + λmax(XY ). (12.2.8)

An alternative formula for γopt is

γopt = (1 − ‖
[

M N
]
‖2

H)−
1
2 (12.2.9)

where ‖ · ‖H denotes the Hankel norm. We will not verify this fact here, but a
reference to the relevant literature appears in the notes.

An optimal controller

A controller K0 that achieves the bound (12.2.5) can be derived via the results of
Chapter 8 (see Problem 8.12). One such controller is described by the descriptor
state-space equations

W ˙̂x =
(
W (A − BF ) − γ2Y C ′(C − DF )

)
x̂ + γ2Y C ′y (12.2.10)

u = −B′Xx̂ − D′y, (12.2.11)

in which

F = S−1(D′C + B′X)

W = (γ2 − 1)I − Y X.

This controller always satisfies the norm criterion (12.2.5), but it is a stabilizing
controller if and only if γ ≥ γopt. When γ = γopt, it follows from (12.2.8) that the
matrix W is singular and the controller degree is reduced.
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12.2.2 Loop-shaping design procedure

We now summarize the design procedure we shall use in both of our case stud-
ies. In the first step of the design, the transfer function matrix G is shaped using
a dynamic weighting function W so that the singular values of GW have desir-
able characteristics. Typically, we would like high low-frequency gain to ensure
adequate attenuation of low-frequency disturbances and accurate tracking of step
commands. Model errors and limits on actuator bandwidth usually require that
the high-frequency gain be kept low. For example, we may require that the sin-
gular values of GW do not enter the cross-hatched areas in Figure 12.3. These
“forbidden” areas are problem dependent and may be constructed from the design
specifications. Roughly speaking, any penetration of the lower region constitutes a
violation of the robust performance specifications, while a penetration of the upper
region leads to a violation of the robust stability specifications. We remind the
reader that these issues have been treated in detail in Chapter 2.
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Figure 12.3: The standard loop shaping situation.

In a typical application, W will be used to increase the low-frequency gain, since
this leads to better closed-loop reference tracking and forward-path disturbance
attenuation. It will also be used to reduce the roll-off rate of GW in the unity-
gain range of frequencies. This is motivated by the Bode gain-phase relations (and
their multivariable generalizations), which imply that the lower the rate of gain
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reduction through the cross-over frequency, the smaller the phase lag. Thus a
low rate of gain reduction through the unity-gain range of frequencies will help
ensure the phase margin is not too small and that the closed-loop step response is
reasonably well damped.2 Finally, W will be used to roll off the open-loop gain at
high frequencies. Here, the motivation comes from a need to ensure adequate robust
stability margins—the plant model is usually least reliable at high frequencies. Since
rolling off GW also has the effect of reducing the controller bandwidth, it will also
result in a reduction in the high-frequency actuator activity and actuator saturation.

Since the first stage takes no account of the phase of GW , a second design step is
required to secure the stability of the closed loop.3 This is achieved by synthesizing
a controller that robustly stabilizes a normalized left coprime factorization of the
shaped closed-loop transfer function matrix GW . If the resulting value of γopt in
equation (12.2.8) is small, the controller will not have to adjust the loop shape too
much—the loop shape is consistent with ensuring a high level of stability robustness.
If on the other hand γopt is too large, the loop should be reshaped (usually by
compromising on some aspect of the desired performance) until an acceptable value
is achieved. The fact that γopt is an upper bound on the infinity norm of the four
transfer functions in (12.2.6) should be used in assessing the effectiveness of the
design.

A four stage procedure is now given:

1. Loop shaping: Select an open-loop pre-compensator W so that the singular
values of GW satisfy the robust performance specifications. If this is not
possible, adjustments will have to be made to the specifications, the plant or
both.

2. Robust stabilization: Determine the optimal stability margin γopt for the
shaped plant GW from (12.2.8). If the resulting value of γopt is too high,
modify W and repeat until a satisfactory compromise is found. Once a loop
shape that produces an acceptable γopt has been obtained, compute the cor-
responding optimal controller K0 from (12.2.10) and (12.2.11).

3. Weight absorption: Because W is not part of the plant, it must be absorbed
into the controller by replacing K0 with K = WK0. The final controller
degree will be bounded above by the degree of the plant plus twice that of the
weight. Since K is obtained by post-multiplying K0 by W , it is clear that
rolling off W will roll off K.

2A high rate of gain reduction incurs a large phase-lag penalty. Thus, a high rate of gain
reduction through the unity-gain range of frequencies results in small phase margins and therefore
a poorly damped closed-loop step response.

3The selection of the loop shape is guided primarily by gain considerations. However, the
Bode gain-phase relation and its consequences need to be kept in mind, which is why we do not
attempt to select a loop shape that has a rapid gain roll-off through the cross-over frequency.
Thus, although phase is not explicitly a part of the loop shape selection, a naive approach that
completely ignores the likely consequences of the chosen loop shape will result in many unnecessary
design iterations.
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4. Prefilter: If W contains integral action (which it often does), accurate low-
frequency command tracking will be achieved if the constant prefilter −K(0)
is introduced. To see how this works, refer to Figure 12.2 and observe that
if u(0) = 0, then K(0)y(0) = −r where r is the constant reference being fed
into the loop. If the reference r is generated by the prefilter r = −K(0)ydes,
then K(0)y(0) = K(0)ydes. Therefore, provided K(0) has full column rank,
we have y = ydes as required.4

Main points of the section

1. To use the additive and multiplicative model error representations,
we must know the number of right-half-plane poles in the system,
and this must be constant for all plants in the model set. A further
disadvantage of these model error representations is that they can-
not represent uncertain resonances (poles on the imaginary axis).

2. The representation of model errors as a stable perturbation to the
factors of a normalized coprime factorization of the nominal plant
model provides a more general robust stability problem formula-
tion.

3. The optimal stability margin for normalized coprime factor per-
turbations provides a bound on the infinity norm of other transfer
function matrices of interest in assessing closed-loop performance
and robustness.

4. The robust stability margin for normalized coprime factor pertur-
bations can be computed via an eigenvalue calculation from the
solution of two Riccati equations—no so called “γ iteration” is re-
quired.

5. The loop-shaping design procedure is based on selecting a weighting
function such that the weighted loop gain has desirable magnitude
characteristics as assessed by singular value plots, followed by a
robust stabilization of the weighted loop gain.

12.3 Tokamak plasma control

Radioactive waste and greenhouse gases represent an escalating problem associated
with conventional methods of electric power generation. The successful development
of a nuclear fusion reactor will offer an almost limitless source of power which
does not produce greenhouse gases or long-lived radioactive by-products such as
plutonium.

4Note that u(0), K(0), and so on, denote evaluations of frequency domain representations of
the signals and systems. That is, K(0) is the steady-state or DC gain of the controller and u(0)
is the steady-state value of u.
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Nuclear fusion occurs when light nuclei fuse to form heavier ones with a sub-
sequent release of energy. One such reaction, which is the basis of modern fusion
reactors, occurs between deuterium and tritium, which are both isotopes of hydro-
gen:

2
1D + 3

1T → 4
2He + 1

0n + 17.6 MeV.

To achieve reactor conditions, in which there is a net output of energy, a hot dense
mixture of deuterium and tritium must be confined for a sufficiently long time.
If a gaseous mixture of deuterium and tritium is held at an average temperature
of 5 KeV (approximately 50 million degrees Kelvin), ignition will occur once the
product of particle density and the energy confinement time exceeds 3×1020 m−3s,
which is known as the Lawson criterion. At these high temperatures, the gaseous
mixture is completely ionized—it is in the plasma state. To achieve these very high
temperatures and maintain the plasma purity in a practical engineering system,
the plasma must avoid any contact with physical materials. In a tokamak, the
plasma containment is achieved with the aid of a complex system of magnetic fields,
which form a “magnetic cage” around the plasma. The main component of the
magnetic field is produced by the toroidal field coils, which are shown in Figure 12.4.
This field, together with that produced by the plasma current, form the basis of
the magnetic confinement system. In addition to the toroidal field coils there are
poloidal and active control coils, which are used to shape and position the plasma.
These coils may be seen in Figure 12.5.

The field produced by the plasma current “pinches” the plasma, thereby provid-
ing a force balance between the kinetic and magnetic pressures. It has been shown
that by increasing the plasma current both the particle density and the plasma
temperature can be increased. The drawback is the need for an associated increase
in the toroidal field in order to maintain magnetohydrodynamic (MHD) stability.
In order to increase the plasma current stably, for a fixed toroidal field, the plasma
cross-section is deliberately elongated by the application of external quadrupole
fields. Unfortunately, the shaping process gives rise to a vertical instability in the
plasma’s centroid position with a fast growth rate. The aim of our work is to design
a control system that will regulate the voltage applied to the active control coils
in such a way as to stabilize the elongated plasma’s vertical position. This vertical
position instability can be observed in the open-loop nonlinear simulations shown
in Figure 12.6, which show the plasma drifting into the containment vessel wall.

12.3.1 The system model

In order to describe the vertical dynamics of the plasma, it was necessary to model
the main electromagnetic features of the reactor. This task was accomplished by
making a number of simplifying assumptions regarding the geometry of the mag-
netic part of the structure and ignoring µ and certain other aspects of the plasma’s
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Figure 12.4: The magnetic confinement system of a toroidal fusion reactor.

behavior.5 By linearizing a finite element model around various operating condi-
tions, it was possible to obtain low-order, time-invariant, state-space models that
describe the local vertical dynamics of the plasma. These models will be used only
for design. A full nonlinear MHD model is used in all the controller simulation
tests.

In the study we make use of two low-order models that map changes in the
applied field control voltage to changes in the vertical component of the plasma
position. The first is associated with a steady-state plasma current of 10 MA,
while the second corresponds to a plasma current of 22 MA. The 10 MA model is
given by

G10
s
=




−7.1355e + 00 −3.9087e − 01 −5.0764e + 00 0 8.2143e − 02
3.9087e − 01 −3.5346e − 01 −3.4166e + 01 0 −2.2168e − 03

−5.0764e + 00 3.4166e + 01 −8.6596e + 01 0 2.9531e − 02
0 0 0 9.8987e + 00 8.6248e + 02

−8.2143e − 02 −2.2168e − 03 −2.9531e − 02 1.0400e − 05 0




5µ is the plasma viscosity.
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Figure 12.5: Cross-section of a large fusion reactor.

and the 22 MA model us given by

G22
s
=




−7.7366e + 00 6.6515e + 00 −7.8538e − 01 0 5.7242e − 02
6.6515e + 00 −6.8347e + 01 2.8251e + 01 0 −2.5144e − 02
7.8538e − 01 −2.8251e + 01 −2.0050e + 00 0 −2.8772e − 03

0 0 0 3.0762e + 01 1.2588e + 03
−5.7242e − 02 2.5144e − 02 −2.8772e − 03 3.9832e − 06 0




.

Since the (4, 4)-entries of the A-matrices in the above models indicate the pres-
ence of a pole in the right-half plane, the vertical dynamics of the plasma are
unstable. In addition, one can see that the instability growth rate increases with
plasma current.

12.3.2 The design problem

Although the instability in the plasma’s vertical position may be slowed down by
surrounding the plasma with a set of damping coils, in much the same way that
damping coils are used in electrical machines, the instability can only be removed
completely with active control. The key objectives for such a control system are:
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Figure 12.6: The evolution of the plasma shape after a small disturbance: (a) 0.2 s
after the disturbance and (b) 0.5 s after the disturbance.

1. The robust stabilization of the plasma’s vertical position.

2. The control voltage demand must not exceed ± 1 kV —these are the saturation
limits of the power amplifiers driving the control coils.

3. The settling time should be no greater than 50 ms.

4. There should be a nonoscillatory return of the plasma to the reference equi-
librium position.

5. There should be a high level of output disturbance attenuation.

6. There should be a high level of sensor error attenuation.

Because of the crude modelling of the plasma’s vertical dynamics and the presence of
unpredictable changes in the plasma’s state during the machine’s operation, robust
stabilization is an important feature of the control system. Any loss of vertical
control will terminate the tokamak discharge in a disruptive manner, which will
induce severe electromagnetic and thermal loads on the containment structures.
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Power amplifier saturation can lead to system instability and must therefore be
considered, and if possible, prevented. The disturbance attenuation requirement
stems from the need to reject time-varying error fields. Since it is impossible to
measure the plasma position directly, there are “sensor disturbances” associated
with any vertical position estimation procedure, and it is therefore important to
guarantee good sensor error attenuation.

The control system design is based on the normalized coprime factor loop-
shaping procedure introduced in Section 12.2.2.

12.3.3 Control system design

The aim of this section is to evaluate the control system design procedure presented
in Section 12.2.2 on the tokamak plasma stabilization problem. We restrict our
presentation to the results obtained for the 22 MA plasma model.

When selecting the loop-shaping (or weighting) function, our aim was to satisfy
the six requirements listed in Section 12.3.2 and to find a controller with a high
low-frequency gain and a low bandwidth. The loop-shaping function we selected to
achieve these goals was

w =
6.4 × 104(s + 1)

s(10−4s + 1)(2.5 × 10−4s + 1)
,

and Figure 12.7 gives the corresponding shaped and unshaped open-loop frequency
responses.

The weighting function was selected by considering the low, intermediate and
high ranges of frequency separately. Briefly,

1. The integrator in the weighting function increases the low-frequency gain.

2. The zero at −1 decreases the unity-gain roll-off rate. This roll-off rate reduc-
tion has a beneficial effect on the damping of the closed-loop response.

3. The poles at −4000 and −104 increase the controller’s high-frequency roll-off
rate.

This loop-shaping function gives γopt = 2.1271 for the normalized coprime factor
robustness problem associated with gw. Figure 12.8 gives a number of closed-loop
frequency responses relevant to this design. The plot of |(1 − gk)−1|, shown in
Figure 12.8 (a), highlights the effect of integral action on the sensitivity function.
This weighting function results in very good low-frequency output disturbance at-
tenuation. Figure 12.8 (b) shows |(1 − gk)−1g|, from which one deduces that the
closed loop is able to attenuate both low-frequency and high-frequency disturbances
at the plant input. The low-frequency disturbance attenuation comes from the in-
tegral action while the high-frequency disturbance attenuation comes about due
to the strictly proper nature of gw. Figure 12.8 (c) shows the allowable additive
plant uncertainty as given by 1/|k(1 − gk)−1|. For frequencies below 100 rad/s,
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Figure 12.7: The unshaped (solid) and shaped (dashed) open-loop Bode magnitude
for the 22 MA model.

the closed-loop system tolerates a level of additive uncertainty comparable to the
magnitude of the plant. This is because 1/|k(1−gk)−1| ≈ |g| when gk À 1. Figure
12.8 (d) shows 1/|gk(1 − gk)−1|, which has a robustness interpretation when the
uncertainty is represented in a multiplicative form.

Preliminary simulation study

In order to assess the performance of this control system, it was tested by simulation
in a full nonlinear MHD environment. Figure 12.9 shows the transient performance
of the closed-loop system for an initial plasma displacement of 1 cm. The design
specifications are met in that the closed-loop is stable, the plasma current centroid
returns to its initial equilibrium position in about 50 ms and the maximum control
voltage magnitude is approximately 1 kV . The system response shows a small
overshoot with no oscillations.

12.3.4 Antiwindup scheme

The power amplifiers that drive the active coil can only produce voltages between
±1 kV . If integral action is combined with such actuators, integrator windup may
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Figure 12.8: (a) The sensitivity function magnitude |(1−gk)−1|. (b) The tolerance
to plant input disturbance: |(1 − gk)−1g|. (c) The robustness to additive uncer-
tainty: 1/|k(1−gk)−1| (solid) and |g| (dashed). (d) The robustness to multiplicative
uncertainty: 1/|gk(1 − gk)−1| (solid) and |g| (dashed).

occur whenever the actuator saturates. In the event of large persistent commands,
the integrator builds up a large output thereby forcing the actuator to remain
saturated for an extended period of time.

In this section we consider the antiwindup scheme illustrated in Figure 12.10,
which inhibits the unlimited growth of the controller output. The scheme consists
of a feedback loop around the controller that is activated as soon as u > umax (or
< umin). If u = uc, everything proceeds as normal in a linear manner. If u saturates
at umax (alternatively umin), we see that

uc = k
(
e − f(uc − umax/min)

)

= (1 + kf)−1k(e + fumax/min).

By choosing a constant f such that |f | À 1 and |fk| À 1, we get

uc ≈ (fk)−1k(e + fumax/min)

≈ umax/min.

Thus, during saturation, uc is clamped at umax/min and windup is prevented. The
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Figure 12.9: The transient performance with the robust coprime factor controller
for the 22 MA model. (a) The plasma vertical position. (b) The active coil amplifier
voltage.

controller will then come out of saturation as soon as e returns to normal levels.
Figures 12.11 (a) and (b) show the closed-loop performance of the 22 MA plasma

for a 10 cm step change in the set-point position demand; both the antiwindup
protected mode and the unprotected mode are illustrated. The initial responses of
the protected and unprotected loops are similar, since the amplifier is only saturated
at +1 kV for 10 ms. When the applied voltage switches to −1 kV , however, the
antiwindup protected system goes into saturation for approximately 20 ms while
the unprotected system applies −1 kV to the active coils for over 95 ms. The
antiwindup compensator allows the protected system to come out of saturation a
long time before its unprotected counterpart. As a result the plasma settles to its
steady-state position in approximately 60 ms with very little overshoot. In contrast,
the unprotected system overshoots by 150% and takes 160 ms to reach the 10 cm off-
set position. The large overshoot associated with the unprotected controller causes
the plasma to make contact with the shields that protect the vessel walls. Frequent
contact between the protective shields and the plasma cannot be sustained, because
impurities enter the plasma causing its temperature and current to drop, thereby
inducing MHD instabilities. These instabilities result in the catastrophic collapse of
the plasma current and large stresses are induced in the vessel superstructure. The
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Figure 12.10: Antiwindup scheme for plant input saturation.

applied voltage evolution plots shown in Figure 12.11 (b) show that the protected
and unprotected systems behave very differently after 10 ms. The control voltage
in the protected system drops to −400 V after 50 ms, while the unprotected system
continues to fluctuate for over 200 ms.

12.3.5 Bumpless transfer scheme

It is often the case that a nonlinear plant cannot be controlled by a single, linear
controller, because the plant dynamics vary too widely during the operating duty
cycle. Tokamaks are pulsed machines and their operating cycle is divided into a
startup, a fuel burning phase and a shutdown phase. In order to obtain an adequate
level of robust performance during the duty cycle, a controller scheduling scheme is
required.

We consider the case of two controllers, k1 and k2, which were designed to meet
the performance requirements at their respective operating points of 10 MA and
22 MA. Figure 12.12 shows the proposed bumpless transfer scheme. At the time
instant being illustrated, k1 is operating in closed loop, while k2 is in open loop.
From this diagram we see that

ui = ki

(
e − fi(ui − u)

)

= (1 + kifi)
−1ki(e + fiu)

and

êi = ki(e − fiêi) − u

= (1 + kifi)
−1(kie − u).

If we choose the constant fi’s so that |fi| À 1 and |fiki| À 1, we obtain êi ≈ 0.
This means that ui ≈ u and a bumpless transfer is possible. Once the switch is
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Figure 12.11: The transient performance with the robust coprime factor controller
for the rigid displacement model in wind-up protected mode (solid) and unprotected
mode: (dashed). (a) Plasma vertical position. (b) Active coil amplifier voltage.

toggled, k1 and k2 exchange roles. Under the new regime, controller k1 operates in
open loop while controller k2 operates in closed loop. After the controller transfer,
f1, because of its high gain, acts rapidly to take ê1 to zero so that u1 ≈ u, thereby
facilitating a second bumpless transfer if one is required. After reflection, we see
that an antiwindup feature is obtained for free and that the scheme can be extended
to any number of controllers. The bumpless transfer scheme suggested above was
implemented as part of the tokamak position control system.

12.3.6 Simulations

The performance of the control system was evaluated by conducting simulation
studies using a nonlinear MHD simulation code. This section presents some of the
results of two of these studies.

Disturbance attenuation and bumpless transfer

In the first simulation, we wanted to check the disturbance attenuation properties of
the control system and test the bumpless transfer scheme. The bumpless transfer
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Figure 12.12: Controller bumpless transfer scheme with anti windup protection.

scheme is required during the start-up phase of the tokamak, during which the
plasma current increases and the plasma is elongated. Although the start-up phase
of the tokamak has a duration of 90 s, we will only examine certain subintervals of
this period that are of particular interest to us.

For this study, the plasma current is 12 MA 20 s into the start-up phase and it
is ramped linearly to 12.54 MA at 20.5 s. During this period the plasma changes
from being only slightly elongated to being strongly elongated. During this time, a
10 Hz sinusoidally-varying, radial error magnetic field located near the vessel wall
was used to disturb the plasma’s position. The peak value of this disturbance field
at the plasma center was 1.5 × 10−3 T . The plasma set-point was fixed at zero,
which denotes the center of the containment vessel. The results of the simulation
are shown in Figure 12.13.

The 10 MA controller k1 remains in the feedback loop until 20.3 s at which
time the 22 MA controller k2 is brought into service—there is no visible evidence
of a “bumpy” transfer. The spikes in the plasma position (and the control action),
visible at 20.24 s, are the result of the poor computation of the plasma current
distribution during this phase of the plasma evolution.

Since the source of the error field is located near the vessel wall, and since the
plasma moves away from the wall as it elongates, the error field at the plasma center
decreases with the increase in plasma current. The decreasing influence of the error
field is clearly visible in Figure 12.13. As a final observation, we see that the outputs
of the two controllers track each other closely over the entire simulation interval.
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Figure 12.13: The rejection of a sinusoidal error field during the plasma ramp up
phase: (a) Plasma centroid position (dashed). (b) Requested active coil voltages
for the 22 MA controller (dashed) and for the 10 MA controller (solid).

Reference tracking and bumpless transfer

The aim of the second simulation is to check the reference tracking properties of
the control system. In this case, the current is ramped linearly from 12 MA at 20 s
to 12.54 MA at 20.1 s, it is then held constant at this value. There is no error field
present. The plasma position reference is a 10 Hz sinusoid with a peak value of
1 cm—the plasma is required to move ±1 cm around the machine’s central plane.
The results of this trial are shown in Figure 12.14. Since the plasma reaches its
maximum elongation at 20.1 s, at which time it moves away from the vessel wall,
we selected this moment for the controller interchange. The transfer “bump” is only
just visible. Although both controllers track the reference well, k2 has a slightly
superior performance. As we can see from Figure 12.14 (b), the second controller is
using a marginally lower amplitude control signal as compared to the first. This is
probably due to changes in the plant dynamics, rather than the superiority of the
second controller design.
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Figure 12.14: Tracking a sinusoidal set-point change during the plasma current
ramp-up phase: (a) Plasma centroid position (dashed), set point change (solid). (b)
Requested active coil voltages for the 22 MA controller (dashed), for the 10 MA
controller (solid).

12.4 High-purity distillation

This case study is concerned with the design of a two-degree-of-freedom (TDF)
product-composition controller for a high-purity distillation column. The H∞ op-
timization problem is set up to ensure a guaranteed level of robust stability, robust
disturbance attenuation and robust reference tracking performance.

Distillation is an important process in the separation and purification of chemi-
cals that exploits the difference in the boiling points of multicomponent liquids. A
typical distillation column is shown in Figure 12.15. Unfortunately, the control of
distillation columns is difficult, because the distillation process is highly nonlinear
and the associated linearized models are often ill-conditioned with respect to di-
rectional gain. The ill-conditioning is especially pronounced around the operating
point with which we will be concerned.

The prototypical distillation column contains a series of trays that are located
along its length. The liquid in the column flows over the trays from top to bottom,
while the vapor in the column rises from bottom to top. The constant contact
between the vapor and liquid facilitates a mass transfer between the phases. This
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interchange has the effect of increasing the concentration of the more volatile com-
ponent in the vapor, while simultaneously increasing the concentration of the less
volatile component in the liquid.

The raw material enters the column at a flow rate of F kmol/min and with
composition zf . The top product, the distillate, is condensed and removed at a flow
rate of D kmol/min and with composition yd. The bottom product, “the bottoms”,
is removed as a liquid at a flow rate of B kmol/min and with composition xb. The
operation of the column requires that some of the bottoms is reboiled at a rate of
V kmol/min to ensure the continuity of the vapor flow. In the same way, some
of the distillate is refluxed to the top tray at a rate of L kmol/min to ensure the
continuity of the liquid flow.
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12.4.1 Design specification

The column operating point used for this design study is case 1 of operating point
A in Morari and Zafiriou [151], page 440. The operating conditions are summarized
in Table 12.1, while the column data can be found on pages 462-463 of [151]. A
hydraulic time constant of τl = 0.063 min was used and it was assumed that the
feed was saturated liquid (qf = 1.0).

Flows (kmol/minute) Compositions
F = 1 yd = 0.99
L = 2.7063 xb = 0.01
V = 3.2063 zf = 0.5
D = 0.5
B = 0.5

Table 12.1: Column operating conditions.

The specifications for the control system design are as follows:

1. Disturbances of ±30% in the feed flow rate F , and changes of ±0.05 in the
feed composition zf , should be rejected to within 10% of steady-state within
30 minutes.

2. For all product compositions, where a change is demanded, the composition
should be within ±10% of the desired final value within 30 minutes.

3. The design should allow for a worst-case time delay of one minute on the
control action and for ±20% uncertainty in the actuator gains.

4. The final steady-state values of all variables should be within 1% of their
desired values.

5. For product compositions where no change is demanded, deviations of less
than 5 × 10−3 in yd and 10−3 in xb are required.

6. Variations in the manipulated variables should be less than ±50% of their
nominal values. In addition, the control action should not be oscillatory.

7. The above specifications should be satisfied for both the linear and nonlinear
models.

12.4.2 The system model

All the simulation results were obtained using an 82-state nonlinear model which
includes the liquid dynamics. There are two states per tray, one which represents
the liquid composition and one which represents the liquid holdup. The nonlinear
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model was linearized about the operating point given in Table 12.1 and reduced
from 82nd order to 8th order.

The manipulated variables are the reflux flow L and the vapor boilup V . Since
the holdup dynamics are fast, it is possible to implement two single-input-single-
output proportional controllers for level control. This facilitates the design of a
multivariable controller for the product compositions, which is independent of the
level controllers.

The plant model can be split into two 2-input 2-output sections. The first part
Gc represents the transfer function matrix mapping the manipulated inputs uc to
the output y, while the second part Gd represents the transfer function matrix
mapping the disturbances ud to the output y. This gives

ẋ = Ax +
[

Bc Bd

] [
uc

ud

]

and

y = Cx +
[

Dc Dd

] [
uc

ud

]
,

in which

uc =

[
L
V

]
; ud =

[
F
zf

]
; y =

[
yd

xb

]
.

Thus

Gc
s
=

[
A Bc

C Dc

]

and

Gd
s
=

[
A Bd

C Dd

]
.

The reduced order linear models of Gc and Gd are:

A =




4.0417 −7.9022 6.2980 −20.3317 −11.8555 −37.2006 −9.8382 −40.7807
3.8444 −5.5722 2.9794 −16.0011 −5.2481 −12.0674 4.8702 −21.8897
0.0000 0.0000 −0.3636 −4.6970 3.6110 −1.6446 −6.1630 5.1258
0.0000 0.0000 0.3156 −1.2008 −0.0371 −2.3575 −0.9795 −2.1296
0.0000 0.0000 0.0000 0.0000 −0.4216 −3.1276 −0.7429 −0.8648
0.0000 0.0000 0.0000 0.0000 0.0105 −0.1349 −0.0409 −0.2360
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0817 0.1399
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0052




[
Bc Bd

]
=




53.1999 9.1346 −70.9407 −37.7852
24.2212 1.6750 −75.0731 21.0103

−55.4147 −6.4358 −14.5560 −18.3519
−7.6347 −1.2712 −7.3427 −9.6092

6.3548 −0.7513 0.1240 −14.1825
0.0405 −0.1135 0.0416 −1.9818
0.0398 −0.2678 1.2365 0.2129

−0.0219 0.0218 −0.0110 −0.0232




C =
[

0.0000 0.0000 0.0000 0.0000 −0.0001 0.0026 −0.0021 −0.1967
−0.0001 0.0000 −0.0002 0.0013 −0.0004 0.0039 0.0045 −0.2564

]
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[
Dc Dd

]
=

[
0 0 0 0
0 0 0 0

]
.

According to the design specification, the design must cater for a worst case
time delay of 1 min on the plant input. This is incorporated into the nominal
linear model via a first-order Padé approximation—this is the model we will use
for design. The time delays are incorporated into the simulation model using a
sixth-order Padé approximation. The design model has the actuator gains set to
unity, while the simulation model will allow the actuator gains to vary. The design
model is therefore

Gnc = Gc





(
1−sT/2
1+sT/2

)
0

0
(

1−sT/2
1+sT/2

)



 ,

while Gd remains unchanged.

12.4.3 Two-degree-of-freedom controller design

Since this problem has demanding time-response specifications, we make use of a
two-degree-of-freedom (TDF) controller structure that can be designed within the
generalized regulator framework. An alternative TDF design procedure involves
the separate optimization of the prefilter and feedback controller, but requires the
parameterization theory for all TDF controllers. The interested reader will find sev-
eral references to this material in the notes at the end of the chapter. A distillation
column design, which makes full use of TDF control, is covered in one of the cited
papers.

The optimization problem

The configuration we will study is give in Figure 12.16, in which

M−1
[

N c Nd

]
=

[
GncW c GdW d

]
,

such that M−1N c is a normalized left coprime factorization. The model set we
consider is therefore

Gγ̂ =

{
(M − ∆M )−1(N c + ∆N ) :

[
∆N ∆M

]
∈ H∞,

‖
[

∆N ∆M

]
‖∞ < γ̂−1

}
.

It is not difficult to modify the design to allow for perturbations to Nd, but we
have not done this in the interests of simplifying the presentation. The weight W c

is used to shape the loop, while W d contains spectral information about expected
disturbances. The scaling factor ρ is used to weight the relative importance of robust
stability as compared to robust model matching and robust disturbance rejection.
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Figure 12.16: The design problem configuration.

It follows from Figure 12.16 that the closed-loop system of interest is described
by the linear fractional transformation




z
y
uc

α
y




=




−ρ2M0 ρGdW d ρM−1 ρGncW c

0 GdW d M−1 GncW c

0 0 0 I
ρI 0 0 0

0 GdW d M−1 GncW c







r
ud

φ
uc




uc =
[

K1 K2

] [
α
y

]
,

which we denote by R.6 We are required to find an internally-stabilizing controller
such that ‖R‖∞ ≤ γ̂. This is a generalized regulator problem, which may be solved
using the theory of Chapter 8. Commercial implementations of this theory are
available in the Robust Control Toolbox for MATLAB and other software packages.7

Solving the loop equations shows that the closed-loop transfer function matrix
R is given by




z
y
uc



 =




ρ2(SGpK1 − M0) ρSGdW d ρSM−1

ρSGpK1 SGdW d SM−1

ρS̃K1 K2SGdW d K2SM−1








r
ud

φ



 ,

6The disturbance “model” Wd and the loop-shaping weight Wc are not shown in Figure 12.16.
7MATLAB is a registered trademark of The MathWorks, Inc.
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in which S = (I − GpK2)
−1 is the sensitivity operator and S̃ = (I − K2Gp)

−1.
Therefore, once a controller such that ‖R‖∞ ≤ γ̂ has been found, we see that:

1. The loop will remain stable for all G ∈ Gγ̂ . This follows from the (2, 3)
and (3, 3)-blocks of R, ‖R‖∞ ≤ γ̂ and the small gain theorem (see equation
(12.2.5)).

2. By considering the linear fractional transformation F`(R,
[

∆M ∆N

]
), we

conclude from Theorem 4.3.2 that ‖SGpK1−M0‖∞ ≤ γ̂ρ−2 for all Gp ∈ Gγ̂ .
This is a guaranteed robust performance property.

3. In the same way, ‖SGdW d‖∞ ≤ γ̂ for all Gp ∈ Gγ̂ . This is the robust
disturbance attenuation property.

4. If ρ is set to zero, the TDF problem reduces to the normalized coprime factor
robust stability problem of Section 12.2.

A prescriptive design procedure

The purpose of this section is to describe an extension to the loop-shaping design
procedure given in Section 12.2.2. This extension gives one way of optimizing the
TDF controller, although many others are possible. Each of the seven steps refer
to the configuration given in Figure 12.16.

1. Select a loop-shaping weight W c for Gnc. As with the earlier procedure, W c

is used to meet some of the closed-loop performance specifications.

2. Find the minimal value γopt in the pure robust stabilization problem of Sec-
tion 12.2; this may be calculated using equation (12.2.8). A high value of γopt

indicates that the specified loop shapes are inconsistent with robust stability
requirements and that the feedback controller will significantly alter the loop
shapes. In this case they should be adjusted via a revised W c.

3. Select the weighting function W d. This is used to shape the closed-loop
disturbance rejection transfer functions.

4. Select a simple target model, M0, for the closed-loop system. This is usually
a diagonal matrix of first- or second-order lags that represent desired closed-
loop, time-domain command response properties. As with any other weight
selection, the target model must be realistic, or the resulting closed-loop sys-
tem will have poor robust stability properties and the controller will produce
excessive control action.

5. Select a ρ value for the TDF configuration in Figure 12.16. In our experience,
one obtains good results on process control problems when ρ is in the range
0.8 ≤ ρ ≤ 2.
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6. Find the optimal value of γ̂. In distillation applications we found that 1.2 ×
γopt ≤ γ̂ ≤ 3× γopt gave a good compromise between the robust stability and
robust performance objectives.

7. Calculate the optimal controller, post-multiply it by W c, and rescale the
prefilter to achieve perfect steady-state model matching. To do this, make
the substitution K1 → K1S where S is a scaling matrix defined by S =
R−1

yα (0)M0(0). We have observed that this re-scaling tends to produce bet-
ter model matching at all frequencies, because the H∞ optimization process
gives Ryα roughly the same frequency response as the model M0. The final
controller degree will be bounded above by deg(Gnc)+deg(W d)+deg(M0)+
2 × deg(W c).

12.4.4 Design weight selection

We are now ready to use the design procedure described in Section 12.4.3 to design
the product-composition controller. We remind the reader that in the design model
the uncertain input time delays were set to unity and modeled using first-order Padé
approximations. The uncertain actuator gains were also set to unity. In contrast,
the nonlinear simulation model allowed variable actuator gains and the delays were
represented by more accurate sixth-order Padé approximations.

Following the prescriptive design method, the loop-shaping weight was selected
to meet the robust stability and robust performance specification given in Sec-
tion 12.4.1. After several design iterations we decided on

W c =
40(s + 1)

s(s + 0.1)
I2. (12.4.1)

The integral action ensures zero steady-state error, and the pole at −0.1 ensures a
low controller bandwidth and restricts the control demand level. The zero at −1
is used to reduce the roll-off rate to approximately 20 dB/dec in the unity gain
range of frequencies. This has a beneficial effect on the closed-loop command and
disturbance rejection response. Note that W c is well-conditioned—ill-conditioned
compensators for ill-conditioned plants can give very poor robustness properties
at certain points in the loop. This is because some of the closed-loop transfer
functions can have a very high condition number in these cases (see Example 2.1.1).
The shaped and unshaped singular value plots are given in Figure 12.17. The loop-
shaping function in (12.4.1) gives γopt = 6.9610 for the pure robustness problem
associated with Gnc.

The disturbance weighting function W d was chosen to be the identity matrix
and the time-response model we selected was

M0 =
0.12

s + 0.12
I2,
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Figure 12.17: Top: the singular value plots of GncW (solid) and Gc (dashed).
Bottom: the singular value plots of Gd.

which is fast enough to meet the time-domain specification while still being realistic.
All that remains is for us to obtain an acceptable value of ρ. We discovered

that ρ = 1.0 gave a good compromise between acceptable stability, disturbance at-
tenuation and time-domain performance requirements. This leads to γ̂opt = 8.4657
for the lowest achievable infinity norm for the optimization problem described in
Section 12.4.3. Figures 12.18 show the Bode magnitude plots for the controller;
both the prefilter and the feedback part of the controller have an acceptably low
bandwidth.
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Figure 12.18: Top: the singular values of the prefilter. Bottom: the singular values
of the feedback part of the controller.

12.4.5 Simulation results

The remainder of this section is concerned with the presentation of various simula-
tion results. These were all calculated using the 82 state nonlinear simulation model
with the input delays, τ1 and τ2, represented by sixth order Padé approximations.
We set τ1 = τ2 = 1 min throughout, while checking the following five combinations
of actuator gains: k1 = k2 = 1.0; k1 = k2 = 1.2; k1 = k2 = 0.8; k1 = 0.8 and
k2 = 1.2; and k1 = 1.2 and k2 = 0.8.
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Figure 12.19 gives the response to a step change in the distillate composition
demand. The reference value of yd was changed from 0.990 to 0.995. Although such
a demand change is not common in practice, this simulation does provide a good
way of testing the closed-loop response.
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Figure 12.19: Response to a step change in the distillate composition demand:
reference model (+++); nominal linear model (dashed); nonlinear results for the
five combinations of actuator gains (solid).

Figure 12.20 gives the response to a step change in the bottoms composition
demand. The reference value of xb was changed from 0.0100 to 0.0095.

Figure 12.21 illustrates the response of the column to a step change in the feed
flow rate from 1.0 kmol/min to 1.3 kmol/min, which provides a convenient way of
checking the controller design under extreme operating conditions.

Our last simulation result, which is given in Figure 12.22, shows the response of
the closed loop to a step change in the feed-stream composition.

The responses given in Figures 12.19 and 12.20 show that the closed-loop system
has a response which is close to that of the reference model response. The closed-
loop disturbance attenuation properties are also very good—each disturbance is
attenuated to within ±10% within the required 30 minutes. Each response shows a
zero steady-state offset and indicates that the robust stability, robust disturbance
attenuation and robust performance specifications are met for the entire range of
uncertain actuator gains and the worst-case time delay. In addition, the controller
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Figure 12.20: Response to a step change in the bottom product composition de-
mand: reference model (+++); nominal linear model (dashed); nonlinear results for
the five combinations of actuator gains (solid).

designed for the reduced-order linear model performs to specification on the high-
order nonlinear simulation model.

12.5 Notes and References

In this chapter we have illustrated how analytical design theory may be applied to
practical design problems. The key difficulties in applications work are concerned
with modelling the plant and translating design specifications into a manageable
optimization problem and weight selection. Although the tasks of modelling the
plant and selecting an optimization problem can and should be guided by the ro-
bust stability and performance theory described in Chapter 2, this process still
relies on engineering judgement and leaps of faith of one form or another. For ex-
ample, in the tokamak study, we used a fourth-order linear model to describe the
magnetohydrodynamics of a burning plasma! When we began this work, it was far
from clear that such a simple model was going to provide an adequate description
of the relevant plasma dynamics. The task of selecting an optimization problem
that will to some degree reflect the performance specifications is also a challenge.
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Figure 12.21: Response to a step disturbance in the feed flow rate: nominal linear
model (dashed); nonlinear results for the five combinations of actuator gains (solid).

In order to assess the extent to which one has been successful, both in modelling
and design, it is necessary to embark on a detailed program of simulation studies
before any hardware trials can begin. The hope is that theoretical advances of the
type described in this book will help to systematize the design process and reduce
the time spent on the iterative design-and-simulate procedure.

The classic books of Bode [31], Horowitz [95] and Newton, Gould and Kaiser
[158] have had a marked impact on contemporary design philosophy. Although
computers and theoretical advances have rendered some of the perspectives of these
authors obsolete, much of the material in these books is as relevant today as it was
at the time they were written. As an illustration, we point out a passage on page
245 of [158], which was written prior to 1957:
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Figure 12.22: Response to a step change in the feed-stream composition: nominal
linear model (dashed); nonlinear results for the five combinations of actuator gains
(solid).

“...These [mean-square error] performance indices have been used in
this book because they are the only ones of engineering usefulness that
lead to a reasonably straightforward mathematical analysis. Many other
performance indices might have engineering usefulness, but they lead to
formulations of the design problem that are not tractable by analysis.
An example of such a class of performance indices involves the absolute
value of the error...”

Stable coprime factor representations of model error were introduced by Vidya-
sagar and Kimura [206]. They also showed that this problem could be set up as
a standard two-block H∞ optimization problem. Glover and McFarlane [79, 148]
demonstrated that in the case of normalized coprime factor perturbations, the op-
timal robustness problem has a particularly simple solution and derived the Hankel
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norm formula (12.2.9) for the optimal stability margin. We refer the reader to these
papers for an account of the theoretical development, which is only mentioned in
passing in this chapter. Georgiou and Smith [70] show that robustness optimization
for normalized coprime factor perturbations is equivalent to robustness optimization
in the gap metric, thereby extending the work of [79] in several respects.

The work on tokamak control is based on a series of papers written by workers
at Imperial College and the Max Planck Institute for Plasma Physics [3, 112, 113].
The two fourth-order design models were obtained by reducing high-order linearized
models generated by CARRIDI [8] and NAPS [37]. The simulation results were
obtained from the MHD simulation code PROTEUS [7].

An early design methodology for two-degree-of-freedom (TDF) controllers is
due to Horowitz [95]. The work of Bongiorno and Youla [220] put TDF design
on a firm theoretical footing and gave a complete parameterization theory for all
TDF controllers in terms of a pair of stable parameters. Another readable account
may be found in Vidyasagar [205]. The TDF distillation column design case study
is based on the work of Hoyle, Hyde, Kasenally, Limebeer and Perkins [96, 136],
although the particular problem presented here is new.

The case studies we have presented here rely, in an essential way, on the work
of several of our students and colleagues. In particular, Ebrahim Kasenally helped
with both design studies. Alfredo Portone made a major contribution to the toka-
mak design study and ran countless simulations on our behalf; we are grateful to
the Max Planck Institute for Plasma Physics for the use of their supercomputer
facilities. Nefyn Jones did the lion’s share of the work in the distillation column
design study under the knowledgeable eye of John Perkins. We would also like to
thank Elling Jacobsen for making his nonlinear simulation code for the distillation
problem available to us. All the workers are employees of the Centre for Process
Systems Engineering at Imperial College.





Appendix A

Internal Stability Theory

A.1 Introduction

A fundamental requirement of any feedback control system design is the stability
of the closed-loop system. The design problem may therefore be considered as a
search or optimization over the class of all stabilizing controllers. By finding a
characterization of all stabilizing controllers as the first step of the controller design
process, a constrained search or optimization may be replaced with an unconstrained
one.

In this appendix, we develop a parametrization of all stabilizing controllers. The
parametrization is linear fractional in character and can be written in the form

K = F`(Ks,Q), Q ∈ RH∞. (A.1.1)

A suitable Ks may be constructed from any stabilizing state-feedback gain matrix
and any stabilizing observer gain matrix. The parameter Q is stable, but otherwise
arbitrary.1

ss
P

K-

¾
¾¾

z w

uy

Figure A.1: A linear fractional transformation.

1That is, any stable Q leads to a stabilizing controller via (A.1.1), and conversely any stabilizing
controller may be written in the form (A.1.1) for some stable Q.

453
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If we are concerned with the characteristics of the closed-loop system arising from
the linear fractional transformation F`(P ,K) shown in Figure A.1, in which K is
required to be stabilizing, substitution from (A.1.1) allows us to write F`(P ,K) =
F`(T ,Q), in which T is obtained from P and Ks according to the composition of
LFT’s formula (see Chapter 4). This replaces a design problem in which we select a
stabilizing controller with a design problem in which we select a stable Q. It turns
out that T has the form

T =

[
T 11 T 12

T 21 0

]
,

so that
F`(P ,K) = F`(T ,Q) = T 11 + T 12QT 21. (A.1.2)

Thus the parametrization of all stabilizing controllers achieves two important sim-
plifications:

1. It replaces a search or optimization over the class of stabilizing controllers
with a search or optimization over Q ∈ RH∞;

2. It replaces the linear fractional parametrization F`(P ,K) of the objective
with the affine parametrization T 11 + T 12QT 21.

In view of (A.1.2), a generalized regulator problem in which ‖F`(P ,K)‖2 or
‖F`(P ,K)‖∞ is required to be small is a model matching problem in which we
seek a stable Q such that T 12QT 21 is approximately equal to −T 11.

f
Q T 12T 21

T 11
-

?

- - -

6
-zw

Figure A.2: The model matching problem.

The reader may recall that a parametrization of all stabilizing controllers for a
stable single-input-single-output plant was presented in Chapter 1. The generaliza-
tion to stable, multi-input-multi-output plants is trivial, and our main concern is
the generalization to the case of plants which may be unstable. Because we focus
on a state-space development of H∞ and LQG controller synthesis theory, we have
decided to emphasize the role of the state-space in our development of stability
theory. Readers should also note that our treatment is aimed at obtaining the re-
sults we need, rather than providing a comprehensive account of this area of linear
systems theory.
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A.1.1 Basics

Throughout this appendix, we consider only linear, time-invariant systems that are
finite dimensional. These systems can be represented by rational transfer function
matrices.

As in Chapter 1, the definition of internal stability is:

Definition A.1.1 The feedback loop in Figure A.3 is internally stable if the system
mapping

[
w′ v′ ]′

to
[

u′ y′ ]′
is stable.

f
f

s
s

G

K

--

?¾¾

6

w u

vy

Figure A.3: Diagram for internal stability definition.

Our first result is a consequence of the definition of internal stability.

Lemma A.1.1 The feedback loop of Figure A.3 is internally stable if and only if

[
I −K

−G I

]−1

∈ RH∞. (A.1.3)

Proof. From Figure A.3,

[
w
v

]
=

[
I −K

−G I

] [
u
y

]
.

Hence [
u
y

]
=

[
I −K

−G I

]−1 [
w
v

]

and the result is immediate from Definition A.1.1.

For certain controllers, the 2 × 2 block matrix in (A.1.3) may not be proper, even
though G and K are. This means that for some inputs w and v, the algebraic loop
cannot be solved and the feedback loop is said to be ill-posed. Controllers with this
property are not permitted in our applications. If either G or K is strictly proper,
well-posedness is assured.

In order to develop the parametrization theory for all stabilizing controllers in
the unstable plant case, we will need some of the properties of coprime factorizations.
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A.2 Coprime factorization

This section covers those results on coprime factorizations most relevant to internal
stability theory. We begin with a definition of coprimeness.

Definition A.2.1 Two transfer function matrices N ,D ∈ RH∞ with the same
number of columns are right coprime (r.c.) if there exist matrices X,Y ∈ RH∞
such that

XN + Y D = I. (A.2.1)

Equations of this form are known as Bezout equations.

Example A.2.1. Two integers n and d are coprime if ±1 is their only common
factor. It follows from Euclid’s algorithm that n and d are coprime if and only
if there exist integers x, y such that xn + yd = 1. For example, 3 and 4 are
coprime, since 1 = 4× 4− 3× 5. On the other hand, 2 and 4 are not coprime, since
2x + 4y = 2(x + 2y), which can never equal 1 if x and y are integers. 5

Example A.2.2. The transfer functions n = s−1
s+1 and d = s−1

s+2 are not coprime,
since for any stable functions x and y, xn + yd will have a zero at +1. Thus there
cannot exist stable x,y such that xn+yd = 1. In fact, n and d are coprime if and
only if they have no common zeros in the closed right-half plane (including infinity).5

Definition A.2.2 If N and D are right coprime and D is nonsingular (in the
sense of transfer function matrices), then ND−1 is called right coprime factoriza-
tion (r.c.f.).

Left coprimeness and left coprime plant descriptions may be defined in a similar
way.

Definition A.2.3 Two transfer function matrices Ñ , D̃ ∈ RH∞ with the same

number of rows are left coprime (l.c.) if there exist matrices X̃, Ỹ ∈ RH∞ such
that

ÑX̃ + D̃Ỹ = I.

If Ñ and D̃ are left coprime and D̃ is nonsingular, then D̃
−1

Ñ is called a left
coprime factorization (l.c.f.).

The next example shows that coprime factorizations of a given system are not
unique.

Example A.2.3. Consider the scalar transfer function

g =
(s − 1)(s + 2)

(s − 3)(s + 4)
.
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To obtain a r.c.f. of g, we make all the stable poles of g poles of n, all the left-half-
plane zeros of g poles of d, and then fill in the zeros of n and d so that the identity
g = nd−1 holds. Thus

n =
s − 1

s + 4
, d =

s − 3

s + 2

is a coprime factorization. Alternatively,

n =
(s − 1)(s + k1)

(s + 4)(s + k2)
, d =

(s − 3)(s + k1)

(s + 2)(s + k2)

is a r.c.f. of g for any k1, k2 > 0. 5

The following lemma establishes that all right coprime factorizations of the same
transfer function matrix are related by a W ∈ RH∞ such that W−1 ∈ RH∞.

Lemma A.2.1 Let N1D1
−1 = N2D2

−1 be right coprime factorizations. Then

[
N2

D2

]
=

[
N1

D1

]
W , (A.2.2)

in which W and W−1 are in RH∞.
In particular, if G = ND−1 ∈ RH∞ with N , D right coprime, then D−1 ∈

RH∞.

(If G ∈ RH∞, then G = GI−1 is a r.c.f. Therefore, if G = ND−1 is also a r.c.f.,
it follows that W = D−1.)

Proof. Define W = D−1
1 D2, so that (A.2.2) holds. Let X2N2 + Y 2D2 = I.

From (A.2.2), (X2N1+Y 2D1)W = I and hence W−1 = X2N1+Y 2D1 ∈ RH∞.
Similarly, X1N1 + Y 1D1 = I implies that W = X1N2 + Y 1D2 ∈ RH∞.

If G ∈ RH∞, then XN + Y D = I ⇒ XG + Y = D−1 ∈ RH∞.

A.2.1 Coprime factorization and internal stability

The relationship between coprime factorizations and stabilizing controllers is as
follows. Suppose G = ND−1 is a r.c.f. and let X, Y ∈ RH∞ satisfy the Bezout
equation XN + Y D = I. If Y is nonsingular, then K = −Y −1X is a stabilizing
controller for G. To see this, we simply note that

[
I −K

−G I

]
=

[
Y −1 Y −1X

0 I

] [
D−1 0

−ND−1 I

]
,

which gives

[
I −K

−G I

]−1

=

[
D 0
N I

] [
Y −X

0 I

]
∈ RH∞.
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For the converse, we use the generalized Nyquist criterion (Theorem 2.4.2). By
this theorem, K is stabilizing if and only if the number of anticlockwise encir-
clements of the origin by det(I − KG)(s) as s traverses the Nyquist contour is
equal to nK + nG, with nK and nG being respectively the number of poles of K

and G in the closed-right-half plane. If G = ND−1 is a r.c.f. and K = −Ỹ
−1

X̃

is a l.c.f., then −nG is the number of anticlockwise encirclements of the origin by
det D(s) and −nK is the number of anticlockwise encirclements of the origin by
det Ỹ (s) as s traverses the Nyquist contour. Since

det(Ỹ D + X̃N) = det Ỹ det D det(I − KG),

it follows that det(Ỹ D+X̃N)(s) makes no encirclements of the origin as s traverse
the Nyquist contour. Therefore, V = Ỹ D + X̃N ∈ RH∞ cannot have any zeros
in the closed-right-half plane, giving V −1 ∈ RH∞. Hence K = −Y −1X, in which
X = V −1X̃ and Y = V −1Ỹ , is a l.c.f. of K and XN + Y D = I.

Thus K is a stabilizing controller for G = ND−1 if and only if K has a l.c.f
K = −Y −1X such that the Bezout identity XN + Y D = I is satisfied.

A.2.2 Doubly coprime factorization

Suppose G = N rD
−1
r is a r.c.f. and Xr, Y r ∈ RH∞ satisfy XrN r + Y rDr =

I. Suppose also that G = D−1
l N l is a l.c.f. and that X l, Y l ∈ RH∞ satisfy

N lX l + DlY l = I. Then
[

Y r Xr

−N l Dl

] [
Dr DrR − X l

N r N rR + Y l

]
=

[
I 0
0 I

]
,

in which R = Y rX l − XrY l.
This shows that for any right and left coprime factorizations of the same transfer

function matrix (i.e., N rD
−1
r = D−1

l N l), there exist transfer function matrices U r,
V r, U l and V l, all in RH∞, such that the generalized Bezout equation

[
V r U r

−N l Dl

] [
Dr −U l

N r V l

]
=

[
I 0
0 I

]
(A.2.3)

is satisfied. This is known as a doubly coprime factorization, and we shall use it to
parametrize all stabilizing controllers. The following result establishes the existence
of, and state-space formulae for, a doubly coprime factorization of a given transfer
function matrix.

Theorem A.2.2 Suppose G = D + C(sI − A)
−1

B is a stabilizable and detectable
realization of a transfer function matrix G. Let F be a state-feedback gain matrix
such that A − BF is asymptotically stable, and let H be an observer gain matrix
such that A − HC is asymptotically stable. Define

[
Dr −U l

N r V l

]
s
=




A − BF B H

−F I 0
C − DF D I



 (A.2.4)



A.2 COPRIME FACTORIZATION 459

[
V r U r

−N l Dl

]
s
=




A − HC B − HD H

F I 0
−C −D I



 . (A.2.5)

Then the generalized Bezout equation (A.2.3) holds and G = N rDr
−1 = Dl

−1N l

are right and left coprime factorizations of G.

Proof. The verification of equation (A.2.3) is a calculation which is left as an
exercise (Problem A.3). Since A − HC and A − BF are asymptotically stable,
the transfer function matrices defined by (A.2.4) and (A.2.5) are both in RH∞.
From the (1, 1)- and (2, 2)-blocks of (A.2.3) we have the Bezout equations, V rDr +
U rN r = I and N lU l+DlV l = I, which establishes that N r, Dr are right coprime
and that Dl, N l are left coprime. The verification of the idenities G = N rDr

−1 =
Dl

−1N l is another calculation which is left as an exercise (Problem A.3).

By the result of Section A.2.1, K = −V −1
r U r is a stabilizing controller. This

controller is simply

˙̂x = Ax̂ + Bu + H
(
y − (Cx̂ + Du)

)
(A.2.6)

u = −Fx̂, (A.2.7)

which is a combination of a stable observer and a stabilizing state (estimate) feed-
back (Problem A.3).

Main points of the section

1. Coprime factorizations are unique up to a matrix W ∈ RH∞ such
that W−1 ∈ RH∞. In particular, if G = ND−1 is a r.c.f. and
G ∈ RH∞, then D−1 ∈ RH∞.

2. Coprime factorization and stabilization are intimately connected.
A controller K stabilizes a plant G if and only if there exist N , D,
X and Y such that G = ND−1, K = −Y −1X and XN +Y D =
I.

3. State-space formulae for left and right coprime factors have been
given. The computation of a coprime factorization involves select-
ing stabilizing state-feedback and observer gain matrices.

4. A doubly coprime factorization is defined by a generalized Bezout
equation and can be obtained from any right and left coprime fac-
torizations of the same transfer function matrix.

5. A doubly coprime factorization defines a stabilizing controller for
the plant. State-space formulae for a doubly coprime factorization
and the implied stabilizing controller have been given. The con-
troller has the form of a stable observer combined with a stabilizing
state (estimate) feedback.



460 INTERNAL STABILITY THEORY

A.3 All stabilizing controllers

We now show that a doubly coprime factorization can be used to parametrize all
the stabilizing controllers for the feedback loop given in Figure A.3.

Theorem A.3.1 Let G = N rDr
−1 = Dl

−1N l be right and left coprime factor-
izations respectively of G, and let

[
V r U r

−N l Dl

] [
Dr −U l

N r V l

]
=

[
I 0
0 I

]
,

with each of these transfer functions in RH∞ (i.e., we have a doubly coprime fac-
torization). The following are equivalent:

1. K is an internally-stabilizing controller for the feedback loop in Figure A.3.

2. K = K1K2
−1, in which

[
K1

K2

]
=

[
Dr −U l

N r V l

] [
Q

I

]
, Q ∈ RH∞. (A.3.1)

3. K = K4
−1K3, in which

[
K4 −K3

]
=

[
I −Q

] [
V r U r

−N l Dl

]
, Q ∈ RH∞. (A.3.2)

4.
K = F`(Ks,Q), (A.3.3)

in which

Ks =

[
−V r

−1U r V r
−1

V l
−1 −V l

−1N r

]
. (A.3.4)

If the doubly coprime factorization takes the form given in Theorem A.2.2,
then

Ks
s
=




A − BF − H(C − DF ) H B − HD

−F 0 I
−(C − DF ) I −D



 . (A.3.5)

Proof.

3 ⇒1: Since we may write
[

I −K

−G I

]
=

[
K4 0
0 Dl

]−1 [
I −Q

0 I

] [
V r U r

−N l Dl

]
,

we see that
[

I −K

−G I

]−1

=

[
Dr −U l

N r V l

] [
I Q

0 I

] [
K4 0
0 Dl

]
∈ RH∞.

This shows that any controller generated by (A.3.2) is internally stabilizing.
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1 ⇒ 3: Let K be a stabilizing controller and K = X−1Y be a l.c.f. of K. Then

[
I −K

−G I

]
=

[
X 0
0 Dl

]−1 [
X −Y

−N l Dl

]

gives [
I −K

−G I

]−1

=

[
X −Y

−N l Dl

]−1 [
X 0
0 Dl

]
. (A.3.6)

If A,B ∈ RH∞ satisfy
XA + Y B = I,

then
[

X 0
0 Dl

] [
A U l

B V l

]
+

[
X −Y

−N l Dl

] [
0 −U l

−B 0

]
=

[
I 0
0 I

]
,

which shows that (A.3.6) is a l.c.f. of

[
I −K

−G I

]−1

. Invoking Lemma A.2.1, we

see that [
I −K

−G I

]−1

∈ RH∞ ⇒
[

X −Y

−N l Dl

]−1

∈ RH∞.

Now
[

X −Y

−N l Dl

] [
Dr −U l

N r V l

]
=

[
XDr − Y N r −XU l − Y V l

0 I

]
.

Since both matrices on the left-hand side are invertible in RH∞, it follows that
(XDr − Y N r)

−1 ∈ RH∞. Equation (A.3.2) follows from

[
X −Y

]
=

[
X −Y

] [
Dr −U l

N r V l

] [
V r U r

−N l Dl

]

=
[

XDr − Y N r −XU l − Y V l

] [
V r U r

−N l Dl

]
,

which may be rewritten as

(XDr − Y N r)
−1 [

X −Y
]

=
[

I −Q
] [

V r U r

−N l Dl

]

=
[

K4 −K3

]
,

in which Q = (XDr − Y N r)
−1

(XU l + Y V l) ∈ RH∞.

2 ⇔ 3: Since
[

I −Q

0 I

] [
V r U r

−N l Dl

] [
Dr −U l

N r V l

] [
I Q

0 I

]
=

[
I 0
0 I

]
,
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it follows that [
K4 −K3

−N l Dl

] [
Dr K1

N r K2

]
=

[
I 0
0 I

]
.

The (1,2)-block gives K4K1 − K3K2 = 0, so K4
−1K3 = K1K2

−1.

2 ⇔ 4: This is an algebraic calculation. Since Dr = V r
−1 − V r

−1U rN r, and
U lV l

−1 = V r
−1U r it follows that

(DrQ − U l)(N rQ + V l)
−1

= (V r
−1Q − V r

−1U rN rQ − U l)(I + V l
−1N rQ)

−1
V l

−1

= −U lV l
−1 + V r

−1Q(I + V l
−1N rQ)

−1
V l

−1

= F`

([
−V −1

r U r V −1
r

V −1
l −V −1

l N r

]
,Q

)
.

This verifies that K is given by (A.3.1) if and only if it is given by (A.3.3), in which
Ks is as in (A.3.4). We leave the verification of (A.3.5) as an exercise.

When G is stable, it follows that
[

Dr −U l

N r V l

]
=

[
I 0
G I

]
.

Substituting this into (A.3.1) yields K = Q(I + GQ)
−1

, which is the parametriza-
tion for all stabilizing controllers for stable plants described in Chapter 1.

Examining (A.3.5), we see that all stabilizing controllers have the form

˙̂x =
(
A − BF − H(C − DF )

)
x̂ + Hy + (B − HD)r

u = −Fx̂ + r

η = y − (C − DF )x̂ − Dr

r = Qη

These equations may be manipulated to yield

˙̂x = Ax̂ + Bu + H
(
y − (Cx̂ + Du)

)

u = −Fx̂ + Q
(
y − (Cx̂ + Du)

)
,

which shows that every stabilizing controller is a combination of a stable observer
and a stabilizing state (estimate) feedback, plus Qη, with η = y− (Cx̂+Du) being
the “innovations” process.2 That is, one may “corrupt” the stabilizing control
signal −Fx̂ by any stable system acting on the “innovations” process, as shown in
Figure A.4.

2The term innovations process is used for the signal y− (Cx̂+Du) when x̂ is the optimal state
estimate arising from the Kalman filter. That is, when H is the Kalman gain. When H is not
the Kalman gain, y − (Cx̂ + Du) does not have a statistical interpretation and we use the term
“innovations process” purely as an analogy—it still represents the difference between the actual
output y and our estimate of it, which is Cx̂ + Du.
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Figure A.4: A representation of all stabilizing controllers.

Main points of the section

1. All stabilizing controllers can be represented as a coprime factoriza-
tion involving the elements of a doubly coprime factorization and
a stable but otherwise arbitrary free parameter. Since the doubly
coprime factorization is equivalent to the choice of a single stabi-
lizing controller, this shows how every stabilizing controller can be
constructed from a given stabilizing controller.

2. All stabilizing controllers are generated by a linear fractional trans-
formation K = F`(Ks,Q), in which Q is stable but otherwise
arbitrary. This is known as the Q-parametrization or Youla para-
metrization.

In particular, a suitable Ks may be constructed from any stabi-
lizing state feedback gain matrix and any stabilizing observer gain
matrix.

3. All stabilizing controllers have the form of a state estimator (ob-
server) combined with a stabilizing state estimate feedback “cor-
rupted” by a stable system driven by the “innovations” process.
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A.4 Internal stability of LFTs

Linear fractional transformations are important in controller synthesis theory be-
cause they provides a framework in which one may study a wide variety of different
optimization problems (see Chapter 4). With this as motivation, we will now ana-
lyze the internal stability of the linear fractional transformation given in Figure A.5.

s
f

f
s

P

K -

¾

¾

¾¾
¾

-

-

u

v2

wz

v1

y

Figure A.5: Linear fractional transformation: Set-up for internal stability definition.

Definition A.4.1 The linear fractional transformation F`(P ,K) internally stable
if the nine transfer function matrices mapping w, v1, and v2 to z, y and u in
Figure A.5 are all stable.

All the results in this section will be proved using state-space arguments. We shall
work with the following stabilizable and detectable realizations for P and K.3

P =

[
P 11 P 12

P 21 P 22

]
(A.4.1)

s
=




A B1 B2

C1 D11 D12

C2 D21 0



 (A.4.2)

K
s
=

[
Â B̂

Ĉ D̂

]
. (A.4.3)

The assumption that D22 = 0 in (A.4.1) is made in order to limit the prolifer-
ation of an unwieldy number of terms. If D22 6= 0, one may restore the D22 = 0
situation by a loop shifting argument that absorbs D22 into K (see Section 4.6 for
details). We do not make any assumptions concerning the dimensions of D21, D12

or their rank. We also make no assumptions about the zeros of P 12 or P 21. That is,
we are considering the internal stability of general linear fractional transformations,

3In what follows, it will be assumed without comment that any realization of P or K that

we write down is stablizable and detectable. That is, (A, B, C) and (Â, B̂, Ĉ) are stabilizable and
detectable.
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which do not have to satisfy the assumptions of the generalized regulator problem
given in Section 4.2.1, although the results here do apply to that case.

By way of preparation, we begin by finding a realization for the closed-loop trans-

fer function matrix that maps
[

w′ v′
1 v′

2

]′
to

[
z′ y′ u′ ]′

in Figure A.5.
Letting x denote the state of P and x̂ denote the state of K, it follows by direct
calculation that

[
ẋ
˙̂x

]
=

[
A + B2D̂C2 B2Ĉ

B̂C2 Â

] [
x
x̂

]

+

[
B1 + B2D̂D21 B2D̂ B2

B̂D21 B̂ 0

] 


w
v1

v2



 (A.4.4)




z
y
u



 =




C1 + D12D̂C2 D12Ĉ

C2 0

D̂C2 Ĉ




[

x
x̂

]

+




D11 + D12D̂D21 D12D̂ D12

D21 I 0

D̂D21 D̂ I








w
v1

v2



 . (A.4.5)

Our first result provides a state-space condition for internal stability.

Lemma A.4.1 The linear fractional transformation F`(P ,K) is internally stable
if and only if the matrix [

A + B2D̂C2 B2Ĉ

B̂C2 Â

]

is asymptotically stable (i.e., has no eigenvalue in the closed-right-half plane).

Proof. To establish this result, all we need show is that the realization in (A.4.4)
and (A.4.5) is stabilizable and detectable, since in this case the stability of the
transfer function matrix is equivalent to the negativity of the real parts of all the
eigenvalues of the realization’s A-matrix.

Suppose that




A + B2D̂C2 − λI B2Ĉ

B̂C2 Â − λI

C1 + D12D̂C2 D12Ĉ
C2 0

D̂C2 Ĉ




[
w1

w2

]
=




0
0
0
0
0




.

Then: row 4 ⇒ C2w1 = 0; row 5 ⇒ Ĉw2 = 0; row 3 ⇒ C1w1 = 0; row 1
⇒ (λI − A)w1 = 0; and row 2 ⇒ (λI − Â)w2 = 0. By the assumed detectability of
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(A,

[
C1

C2

]
) and (Â, Ĉ), we conclude that Re(λ) < 0, or that w1 = 0 and w2 = 0.

This proves the realization in (A.4.4) and (A.4.5) is detectable. The stabilizability
of the realization may be established by a dual sequence of arguments which are
omitted.

Some linear fractional transformations are not stabilizable by any controller.
To see this one need only consider the case of P 11 unstable and P 21 = 0. This
means that z = P 11w, and at least one of the nine transfer functions given in
Definition A.4.1 is unstable no matter what the controller is. We now give necessary
and sufficient conditions for the LFT to be stabilizable.

Lemma A.4.2 P is stabilizable if and only if (A,B2, C2) is stabilizable and de-
tectable.

Proof. Suppose a stabilizing controller K
s
=

[
Â B̂

Ĉ D̂

]
exists. By Lemma A.4.1

[
A + B2D̂C2 B2Ĉ

B̂C2 Â

]
=

[
A 0

B̂C2 Â

]
+

[
B2

0

] [
D̂C2 Ĉ

]

is stable, and the decomposition above proves that

([
A 0

B̂C2 Â

]
,

[
B2

0

])

is stabilizable. It follows that (A,B2) must be stabilizable. The detectability of
(A,C2) follows from a similar argument based on the decomposition

[
A + B2D̂C2 B2Ĉ

B̂C2 Â

]
=

[
A B2Ĉ

0 Â

]
+

[
B2D̂

B̂

]
[

C2 0
]
.

Conversely, suppose (A,B2, C2) is stabilizable and detectable. Let F be a state-
feedback gain such that A−B2F is asymptotically stable and let H be an observer
gain such that A − HC2 is asymptotically stable. The controller

˙̂x = (A − B2F )x̂ + H(y − C2x̂)

u = −Fx̂ + v1,

that is [
Â B̂

Ĉ D̂

]
=

[
A − B2F − HC2 H

−F 0

]
,
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leads to
[

A + B2D̂C2 B2Ĉ

B̂C2 Â

]
=

[
A −B2F

HC2 A − B2F − HC2

]

=

[
I 0
I I

] [
A − B2F −B2F

0 A − HC2

] [
I 0
−I I

]

and the controller is seen to be stabilizing by Lemma A.4.1.

We now show that stabilizing P is equivalent to stabilizing P 22.

Lemma A.4.3 Suppose P is stabilizable. Then K is an internally-stabilizing con-
troller for P if and only if it is an internally-stabilizing controller for P 22.

Proof. If K stabilizes P , then it also stabilizes P 22 (since the four transfer
function matrices mapping v1 and v2 to y and u are stable). Now suppose that
K stabilizes P 22. It follows from this assumption and the stabilizability and de-
tectability of (A,B2, C2) that

[
A + B2D̂C2 B2Ĉ

B̂C2 Â

]

must be stable; review the calculations in the proof of Lemma A.4.1. It now follows
that K stabilizes P .

Combining this with the parametrization of all stabilizing controllers for P 22,
we have:

Theorem A.4.4 Suppose P is stabilizable. Let P 22 = N rDr
−1 = Dl

−1N l be
right and left coprime factorizations of P 22, and let

[
V r U r

−N l Dl

] [
Dr −U l

N r V l

]
=

[
I 0
0 I

]
,

be the generalized Bezout equation of the corresponding doubly coprime factorization.
Then the following are equivalent:

1. K is an internally-stabilizing controller for the feedback loop in Figure A.5.

2. K = K1K2
−1, in which

[
K1

K2

]
=

[
Dr −U l

N r V l

] [
Q

I

]
, Q ∈ RH∞ (A.4.6)

3. K = K4
−1K3, in which

[
K4 −K3

]
=

[
I −Q

] [
V r U r

−N l Dl

]
, Q ∈ RH∞ (A.4.7)
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4.

K = Fl

([
−V r

−1U r V r
−1

V l
−1 −V l

−1N r

]
,Q

)
. (A.4.8)

With K as in (A.4.6), (A.4.7) or (A.4.8) above, the closed loop is given by

Fl

([
P 11 P 12

P 21 P 22

]
,K

)
= Fl

([
T 11 T 12

T 21 0

]
,Q

)

= T 11 + T 12QT 21,

in which [
T 11 T 12

T 21 0

]
=

[
P 11 − P 12U lDlP 21 P 12Dr

DlP 21 0

]
. (A.4.9)

This is an affine parametrization in Q.

Proof. The result is a direct consequence of Theorem A.3.1 and Lemma A.4.3.
The formula for the closed loop is obtained by substituting for K from (A.4.6):

P 11 + P 12K(I − P 22K)
−1

P 21

= P 11 + P 12(DrQ − U l)(N rQ + V l)
−1

×
(
I − Dl

−1N l(DrQ − U l)(N rQ + V l)
−1)−1

P 21

= P 11 + P 12(DrQ − U l)
(
Dl(N rQ + V l) − N l(DrQ − U l)

)−1
DlP 21

= P 11 + P 12(DrQ − U l)
(
(DlN r − N lDr)Q + (DlV l + N lU l)

)−1
DlP 21

= P 11 + P 12(DrQ − U l)DlP 21

= (P 11 − P 12U lDlP 21) + (P 12Dr)Q(DlP 21).

Therefore, F`(P ,K) = T 11 + T 12QT 21, with the T ij ’s as in (A.4.9).

We now give a state-space realization for each of the T ij ’s in equation (A.4.9) and
for the generator of all controllers.

Lemma A.4.5 Let the doubly coprime factorization in Theorem A.4.4 arise from
a realization of P 22 according to the state-space construction of Theorem A.2.2.
Then all stabilizing controllers for P 22 may be generated by

K = F`(Ks,Q),

in which

Ks
s
=




A − B2F − HC2 H B2

−F 0 I
−C2 I 0



 . (A.4.10)
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Furthermore, a state-space realization of the T ij’s given in (A.4.9) is

[
T 11 T 12

T 21 0

]
s
=




A − B2F HC2 HD21 B2

0 A − HC2 B1 − HD21 0
C1 − D12F C1 D11 D12

0 C2 D21 0


 .

Note that all the T ij ’s are stable.

Proof. The state-space realization of the representation formula for all stabilizing

controllers is immediate upon substituting P 22
s
=

[
A B2

C2 0

]
into (A.3.5).

Now T is obtained as the composition of the two LFTs P and K. That is,
T = C`(P ,Ks). The state-space formula for T is obtained by applying Lemma 4.1.1

and using the state transformation

[
I I
0 −I

]
.

A.4.1 The full-information configuration

The full-information configuration is a special case of a linear fractional transfor-
mation in which P has the state-space realization




ẋ
z[
w
x

]


 =




A B1 B2

C1 D11 D12[
0
I

] [
I
0

] [
0
0

]







x
w
u



 .

That is, the measurement is y =
[

w′ x′ ]′
. Choose any F such that A − B2F is

asymptotically stable, and any H =
[

H ′
1 H ′

2

]′
such that A − H2 is asymptoti-

cally stable (the choice of H1 is completely arbitrary). Then by Lemma A.4.5, all
stabilizing controllers are generated by

˙̂x = (A − B2F )x̂ + H1w + H2(x − x̂) + B2r

u = −Fx̂ + r

r =
[

Q1 Q2

] [
w

x − x̂

]
.

Note that setting the free parameter Q =
[

Q1 Q2

]
equal to zero results in the

state estimate feedback law u = −Fx̂, rather than the state feedback law u = −Fx,
which is also a stabilizing controller (it is generated by choosing Q2 = −F and
Q1 = 0). It is therefore convenient to re-parametrize the generator of all controllers
for the full-information problem.

Choose the matrix H2 = B2F and write r̃ = r + F (x − x̂). This results in the
new parametrization

˙̂x = (A − B2F )x̂ + H1w + B2r̃
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u = −Fx + r̃

r̃ =
[

Q1 Q̃2

] [
w

x − x̂

]
,

in which Q̃2 = Q2 + F . Now setting r̃ to zero (by setting
[

Q1 Q̃2

]
= 0) results

in u = −Fx.
The matrix H1 is irrelevant from a stability view point, but the choice H1 = B1

seems sensible—it leads to the intuitively appealing dynamics

˙̂x = Ax̂ + B1w + B2u + B2F (x − x̂)

for the state of the controller. If x̂(0) = x(0), then x̂(t) = x(t) for all t ≥ 0. That
is, the state of the controller is a copy of the state of the plant.

Main points of the section

1. If P in the LFT F`(P ,K) has a stabilizable and detectable real-
ization

P
s
=




A B1 B2

C1 D11 D12

C2 D21 D22



 ,

then P is stabilizable if and only if (A,B2, C2) is stabilizable and
detectable.

2. If P is stabilizable, K stabilizes P if and only if it stabilizes P 22.

3. The parametrization of all stabilizing controllers leads to an affine
parametrization T 11 + T 12QT 21 of all closed-loop transfer func-
tions.

4. All stabilizing controllers for the full-information configuration may
be obtained as a special case of the parametrization theory for
linear fractional transformations.

A.5 Notes and References

The parametrization of all stabilizing controllers is a surprisingly recent development
in linear system theory. It was first developed by Youla, Jabr and Bongiorno [41] and
Kucera [122] using coprime polynomial matrix fraction descriptions. The method-
ology presented here, in which coprime factorizations over RH∞ are used, was
introduced by Desoer, Liu, Murray and Saeks [46]. These matters and more are
developed in considerable detail in the book by Vidyasagar [205], and there is also
a treatment in Doyle, Francis and Tannenbaum [53].

The parametrization of all stabilizing controllers for a stable plant has a longer
history. Newton, Gould and Kaiser [158] use it to convert a closed-loop design
problem into an open-loop one, and it is used in much the same way in the seminal
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H∞ paper by Zames [227]. It is often referred to as “the Q-parametrization”, and is
closely related to what the process control community calls internal model control
(IMC)—see Morari and Zafiriou [151]. If G is stable, then all stabilizing controllers
for the unity feedback configuration in Figure A.6 are given by K = Q(I −GQ)−1.
Substituting this formula for K shows that a stabilizing controller has the IMC

f fK G- - - ? -
6

r y

d

−

Figure A.6: Unity feedback loop with stable plant.

structure shown in Figure A.7. Provided G is stable, the IMC structure is stable

f
f

f G

G

Q- - - - -?

?- -

6

r y

d

−

−

Figure A.7: IMC structure: stable plant.

for any stable Q. The closed-loop transfer function matrix mapping r to y is GQ,
while the transfer function mapping d to y is I − GQ. An obvious choice for Q is
Q = G−1, which will be stable provided the plant is minimum phase (and has no
zeros at infinity either). Failing that, we can choose a constant Q = G−1(0), or even
Q ≈ G−1 over the range of frequencies in which good command response properties
are desired. (We would naturally think to minimize ‖GQ − M‖∞, in which M is
the desired closed-loop transfer function.) The parallel-model-and-plant structure
of IMC is also a feature of Smith predictors, which date from the 1950s. Further
interpretations may be found in [151].

State-space formulae for coprime factorizations over RH∞ were first given by
Khargonekar and Sontag [117]; the converse result, that all coprime factorizations
arise in this way (see Problem A.4), is due to Nett, Jacobson and Balas [156], who
give the state-space formulae for doubly coprime factorizations.

The internal stability of the generalized regulator is considered in Doyle [52],
Francis [65] and Safonov, Jonckheere, Verma and Limebeer [181]. There is a purely
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transfer function matrix approach in Green [84].
The internal stability of the full-information configuration has received special

attention from Zhou [229] and Liu, Mita and Kawatani [138].

A.6 Problems

Problem A.1. Suppose N , D are RH∞ transfer function matrices such that
ND−1 = N cD

−1
c , in which N c and Dc are right coprime. Show that

[
N

D

]
=

[
Nc
Dc

]
W ,

in which W ∈ RH∞.

Problem A.2. Show that N , D ∈ RH∞ are r.c. if and only if
[

N ′ D′ ]′
(s)

has full column rank for all s in the closed-right-half plane (including infinity).
Conclude that the number of poles of G in the closed-right-half plane is equal to
the number of zeros of detD(s) in the closed-right-half plane.

Problem A.3.
1. Verify all the calculations requested to complete the proof of Theorem A.2.2.
2. Verify the state-space equations (A.2.6) and (A.2.7) for the controller K =

−V −1
r U r.

Problem A.4. Suppose G = ND−1 is a r.c.f. and G is proper. Show that there
exist matrices A, B, C, D, F and W such that (A,B,C,D) is a stabilizable and
detectable realization of G, W is nonsingular, A−BW−1F is asymptotically stable
and

[
D

N

]
s
=




A − BW−1F BW−1

− W−1F W−1

C − DW−1F DW−1



 .

(Hint: Write down a minimal realization of

[
D

N

]
and work out ND−1.)

Problem A.5. Verify the state-space formula (A.3.5) for all stabilizing controllers.

Problem A.6. Suppose G is stable and G(0) is nonsingular. For the loop in
Figure A.3, find all stabilizing controllers such that the steady-state value of y is
zero when v is a step input and w = 0.

Problem A.7. Show that any proper rational transfer function matrix G has a
r.c.f. G = ND−1 such that

[
D∼ N∼ ] [

D

N

]
= I.
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Such a r.c.f. is called a normalized right coprime factorization. Now suppose G has
stabilizable and detectable realization (A,B,C,D). Find state-space formulae for
a normalized coprime factorization of G.

(Hint: Use the general state-space formula for N and D given in Problem A.4
and apply the state-space characterization of allpass systems in Theorem 3.2.1.
(You may find it helpful to consider the case when D = 0 first.) You will obtain a
Riccati equation that is identical to one required in the LQ problem of minimizing
‖z‖2

2, in which

ẋ = Ax + Bu, z =

[
C
0

]
x +

[
D
I

]
u.

Can you explain why these problems are related? )

The aim of the following problems is to show how to reduce the generalized
regulator problem to a four-block problem.

Assume that P has the simplified form

P =




A B1 B2

C1 0 D12

C2 D21 0



 ,

in which (A,B2, C2) is stabilizable and detectable and D′
12D12 = I, D21D

′
21 = I.

Assume also that
[

A − jωI B2

C1 D12

]
,

[
A − jωI B1

C2 D21

]

have full column and row rank respectively, for all real ω.

Problem A.8. Choose F and H to be the state feedback and Kalman filter
gain matrices from the solution of the LQG problem associated with the generalized
plant P . Show that the transfer function matrices T 12 and T 21 in Lemma A.4.5
satisfy T∼

12T 12 = I and T 21T
∼
21 = I.

Problem A.9. Suppose that T results from choosing F and H as in Problem A.8.
Let X and Y denote the solutions of the control and filter Riccati equations for the
LQG problem, and let D̂12 and D̂21 be orthogonal completions of D12 and D21.
Show that

[
T̂ 12 T 12

]
s
=

[
A − B2F B̂ B2

C1 − D12F D̂12 D12

]

[
T̂ 21

T 21

]
s
=




A − HC2 B1 − HD21

Ĉ D̂21

C2 D21





are square and allpass if B̂ = −X#C ′
1D̂12 and Ĉ = −D̂21B

′
1Y

#, in which X#, Y #

are Moore-Penrose pseudo inverses of X and Y .
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Problem A.10.
1. Show that if K is a stabilizing controller for P , then

‖F`(P ,K)‖2,∞ =

∥∥∥∥
[

R11 R12

R21 R22 + Q

]∥∥∥∥
2,∞

for some Q ∈ RH∞. The notation ‖ · ‖2,∞ means that the norm is either the
2-norm or the infinity norm. Find a state-space realization of R and show
that R ∈ RH−

∞.

(Hint: For suitable T , R =

[
T̂

∼
12

T∼
12

]
T 11

[
T̂

∼
21 T∼

21

]
.)

2. Conclude that the controller that minimizes ‖F`(P ,K)‖2 is obtained by set-
ting Q = 0 and that the minimum norm is ‖R‖2.
(Hint: use the result of Problem 11.2.)



Appendix B

Discrete-Time H∞ Synthesis

Theory

B.1 Introduction

This Appendix offers a brief development of H∞ synthesis theory for discrete-time
systems. Our approach parallels that adopted for the continuous-time theory, in
which the solution to the infinite-horizon problem is obtained via limiting arguments
from the finite-horizon case. In order to contain the treatment to a reasonable
length, we will not offer detailed commentary or hesitate to leave parts of the
development to the exercises.

With the continuous-time synthesis theory complete, a natural approach to the
discrete-time synthesis problem is to transform it into continuous-time via the bilin-
ear transformation z 7→ s = z−1

z+1 . A continuous-time controller may then be found

and transformed back to discrete-time via the inverse map z = 1+s
1−s . Although this

procedure is valid, it has a number of disadvantages including:

1. The bilinear transformation cannot be used for time-varying or finite-horizon
problems.

2. Since properness is not preserved by the bilinear transformation, special care
needs to be taken to avoid nonproper controllers.1

3. The selection of weighting functions in design problems is made more difficult
by frequency warping phenomena.

4. Although the bilinear transformation will lead to controller formulas for the
discrete-time synthesis problem, there are theoretical advantages to be gained
from a solution in “natural coordinates”.

1A linear time-invariant system G is causal if and only if it’s transfer function matrix is proper—
that is ‖G(∞)‖ < ∞.

475
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B.1.1 Definitions

We shall be concerned with signals that are sequences. We write f = {fk}∞−∞, in
which each fk is in R

n. The spaces `2(−∞,∞) and `2[0, N ] are defined by

`2(−∞,∞) = {f : ‖f‖2 < ∞}
`2[0, N ] =

{
f : fk = 0 for k 6∈ [0, N ], ‖f‖2,[0,N ] < ∞

}
,

in which the norms are defined by

‖f‖2 =

{ ∞∑

k=−∞
f ′

kfk

} 1
2

‖f‖2,[0,N ] =

{
N∑

k=0

f ′
kfk

} 1
2

.

(We will often use the shorthand f ∈ `2[0, N ] for the statement that the projection
of f obtained by setting fk = 0 for k 6∈ [0, N ] is an element of `2[0, N ].) The space
`2[0,∞) is

`2[0,∞) = {f ∈ `2(−∞,∞) : fk = 0 for k ≤ −1}.

Theorem B.1.1 Consider a signal z generated by

[
xk+1

zk

]
=

[
A(k)
C(k)

]
xk,

in which every entry of A(k) and C(k) is bounded.

1. The finite-horizon case:

(a) z ∈ `2[0, N ] for all x0 and all finite N ≥ 0.

(b) ‖z‖2
2,[0,N ] = x′

0Q(0)x0, with Q(0) generated by

Q(k) = A′(k)Q(k + 1)A(k) + C ′(k)C(k), Q(N + 1) = 0.

2. The infinite-horizon case: Assume that A and C are constant.

(a) The following are equivalent:

(i) z ∈ `2[0,∞) for all x0.

(ii) CAk → 0 as k → ∞.

(iii) Every observable eigenspace of A is asymptotically stable.

(iv) The solution to the Lyapunov equation

Q(k) = A′Q(k + 1)A + C ′C, Q(N + 1) = 0,
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is uniformly bounded on k ≤ N .
In this case, Q = limk→−∞ Q(k) exists, is independent of N and
satisfies

Q = A′QA + C ′C. (B.1.1)

Furthermore, Q ≥ 0.

(v) There exists Q ≥ 0 satisfying (B.1.1). (Such a Q may not be equal
to limk→−∞ Q(k), which is the smallest nonnegative definite solution
to (B.1.1).)

(b) If the conditions in Item 2a hold, then ‖z‖2
2 = x′

0Qx0, in which Q =
limk→−∞ Q(k).

Proof. This is left as an exercise (Problem B.1).

For a system G, we define the finite-horizon norm to be

‖G‖[0,N ] = sup
w 6=0∈`2[0,N ]

‖Gw‖2,[0,N ]

‖w‖2,[0,N ]

and the infinite-horizon norm to be

‖G‖∞ = sup
w 6=0∈`2(−∞,∞)

‖Gw‖2

‖w‖2
.

The space L∞ consists of all linear time-invariant systems for which ‖G‖∞ is finite.
If G is the transfer function matrix of such a system (i.e., G is the Z-transform of
the system’s pulse response), then

‖G‖∞ = sup
θ∈(−π,π]

σ
(
G(ejθ)

)
.

A system G is stable if Gw ∈ `2[0,∞) for any w ∈ `2[0,∞). A linear time-
invariant system described by a transfer function matrix G is stable if and only
if G(z) is analytic in |z| > 1 and ‖G‖∞ < ∞. This space is known as H∞. If
G : w 7→ z according to

[
xk+1

zk

]
=

[
A B
C D

] [
xk

wk

]
,

then G ∈ H∞ if and only if Ax = λx, x 6= 0 implies that: (a) |λ| < 1 or (b) λ is an
unobservable or uncontrollable mode. The matrix A is called asymptotically stable
if |λi(A)| < 1 for all i.
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B.1.2 Problem statement

We consider the generalized regulator problem defined by the LFT

[
z
y

]
=

[
P 11 P 12

P 21 P 22

] [
w
u

]
,

u = Ky.

The generalized plant P =

[
P 11 P 12

P 21 P 22

]
is defined by the linear difference equa-

tion 


xk+1

zk

yk



 =




A(k) B1(k) B2(k)
C1(k) D11(k) D12(k)
C2(k) D21(k) D22(k)








xk

wk

uk



 . (B.1.2)

In (B.1.2), wk is an l-dimensional exogenous input (or model error output—see Sec-
tion 4.2.1), uk is an m-dimensional control, y is a q-dimensional vector of controller
inputs and zk is a p-dimensional objective signal. The state vector xk has dimension
n.

We assume that D12(k) has full column rank and D21(k) has full row rank for
all k of interest. Equivalently, we assume

D′
12(k)D12(k) > 0 and D21(k)D′

21(k) > 0 (B.1.3)

for all k of interest. We do not assume that D11(k) = 0, or that D′
12(k)D12(k) = I,

or that D21(k)D′
21(k) = I, since these assumptions only produce slight simplifica-

tions in the formulas. We shall, however, assume that the loop-shifting transforma-
tion that enables us to set D22(k) = 0 has been carried out (see Section 4.6).

The finite-horizon case

In the case of a finite horizon, we seek necessary and sufficient conditions for the
existence of a causal, linear controller K such that

‖z‖2
2,[0,N ] − γ2‖w‖2

2,[0,N ] + x′
N+1∆xN+1 ≤ −ε‖w‖2

2,[0,N ], (B.1.4)

when x0 = 0. We assume that (B.1.3) holds for all k = 0, . . . , N and that the
terminal penalty matrix ∆ is nonnegative definite. As in the continuous-time case,
we will use ∆ to ensure that a stabilizing controller is obtained when we consider
the limit N → ∞. If ∆ = 0, then (B.1.4) is equivalent to

‖F`(P ,K)‖[0,N ] < γ.

When such controllers exist, we would like a parametrization of all of them.
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The infinite-horizon case

In the case of an infinite horizon, we assume the system (B.1.2) is time-invariant
and satisfies:

1. (A,B2, C2) is stabilizable and detectable;

2. D′
12D12 > 0 and D21D

′
21 > 0;

3.

rank

[
A − ejθI B2

C1 D12

]
= n + m, for all θ ∈ (−π, π]; (B.1.5)

4.

rank

[
A − ejθI B1

C2 D21

]
= n + q, for all θ ∈ (−π, π]. (B.1.6)

We seek a causal, linear, time-invariant and finite-dimensional controller such that
the closed-loop system F`(P ,K) is internally stable and satisfies

‖F`(P ,K)‖∞ < γ. (B.1.7)

This is equivalent to
‖z‖2

2 − γ2‖w‖2
2 ≤ −ε‖w‖2

2 (B.1.8)

for all w ∈ `2[0,∞) and some ε > 0 when x0 = 0.

B.2 Full information

In the full-information problem, we drop the requirement that the control signal be
generated from y and seek a linear, full-information controller

u = K

[
x
w

]
(B.2.1)

such that (B.1.4) or (B.1.8) is satisfied.

B.2.1 Finite horizon

It is convenient to define

φk =

[
wk

uk

]
and ψk =

[
zk

wk

]
,

which enables us to write

‖z‖2
2,[0,N ] − γ2‖w‖2

2,[0,N ] =

N∑

k=0

ψ′
kJψk,
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in which

J =

[
Ip 0
0 −γ2Il

]
.

The relevant system equations now take the simple form

[
xk+1

ψk

]
=

[
A(k) B(k)
C(k) D(k)

] [
xk

φk

]
, (B.2.2)

in which
[

A(k) B(k)
C(k) D(k)

]
=




A(k) B1(k) B2(k)

C1(k) D11(k) D12(k)
0 Il 0



 .

In dynamic programming terms, the controller is a causal, linear decision maker
that chooses the N + 1 vectors uk, k = 0, 1, . . . , N . An iterative argument, which
proceeds backwards from the terminal time k = N , determines the control policy,
i.e., the strategy for choosing the vectors uk, k = 0, 1, . . . , N .

At time k, the decision uk is taken, wk occurs and

z′kzk − γ2w′
kwk + x′

k+1X∞(k + 1)xk+1

is the cost of stage k. The matrix X∞(k + 1) is a “cost-to-go” matrix that will be
determined by the dynamic programming argument—at this point of the develop-
ment, however, X∞(k + 1) is an arbitrary nonnegative definite matrix.

The stage k cost may be determined via the dynamics from xk, wk and uk, since

z′kzk − γ2w′
kwk + x′

k+1X∞(k + 1)xk+1

=
[

x′
k+1 ψ′

k

] [
X∞(k + 1) 0

0 J

] [
xk+1

ψk

]

=

[
xk

φk

]′ [
A B
C D

]′ [
X∞(k + 1) 0

0 J

] [
A B
C D

] [
xk

φk

]

=

[
xk

φk

]′ [
A′X∞(k + 1)A + C

′
JC L′

L R

] [
xk

φk

]
, (B.2.3)

in which

R(k) = D
′
(k)JD(k) + B′(k)X∞(k + 1)B(k) (B.2.4)

L(k) = D
′
(k)JC(k) + B′(k)X∞(k + 1)A(k). (B.2.5)

Partition the matrices R and L conformably with φ =
[

w′ u′ ]′
, viz

R =

[
R1 R′

2

R2 R3

]
, L =

[
L1

L2

]
, (B.2.6)

with R3 m × m and L2 m × n.
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The dynamic programming argument will show R3(k) > 0 and ∇(k) ≤ −εI for
k = N,N −1, . . . , 0 are necessary for the existence of a controller satisfying (B.1.4).
A sequence ∇(k) will be defined in terms of a sequence of matrices X∞(k + 1) that
satisfy a Riccati difference equation with the terminal condition X∞(N +1) = ∆ ≥
0. This iterative process will also generate a candidate controller. In the sufficiency
proof, following the theorem statement, we show that this controller does indeed
satisfy (B.1.4) for some ε > 0 when x0 = 0.

Schur decomposition of R

Suppose that at stage k, X∞(k+1) is some given nonnegative definite matrix. Since
D′

12(k)D12(k) > 0, we have

R3(k) = D′
12(k)D12(k) + B′

2(k)X∞(k + 1)B2(k) > 0,

and we may write the Schur decomposition
[

R1 R′
2

R2 R3

]
=

[
I R′

2R
−1
3

0 I

] [
∇ 0
0 R3

] [
I 0

R−1
3 R2 I

]
, (B.2.7)

in which
∇(k) = (R1 − R′

2R
−1
3 R2)(k). (B.2.8)

This means we may write

φ′
kRφk = w′

k∇wk + (uk + R−1
3 R2wk)′R3(uk + R−1

3 R2wk), (B.2.9)

in which the time dependence of the R2(k), R3(k) and ∇(k) matrices has been
suppressed.

A necessary condition

Suppose that X∞(k + 1) ≥ 0 and that there exists a causal, linear controller that
satisfies

‖z‖2
2,[0,k] − γ2‖w‖2

2,[0,k] + x′
k+1X∞(k + 1)xk+1 ≤ −ε‖w‖2

2,[0,k] (B.2.10)

for all w ∈ `2[0, k] when x0 = 0. If the exogenous input w is such that wi = 0 for
all i < k, then the initial condition x0 = 0 implies that ui = 0 for i < k and xi = 0
for i ≤ k, since the controller is causal and the state dynamics are strictly causal.
Hence

−εw′
kwk = −ε‖w‖2

[0,k]

≥ ‖z‖2
2,[0,k] − γ2‖w‖2,[0,k] + x′

k+1X∞(k + 1)xk+1

= z′kzk − γ2w′
kwk + x′

k+1X∞(k + 1)xk+1

= φ′
kR(k)φk

= w′
k∇(k)wk + (uk + R−1

3 R2wk)′R3(uk + R−1
3 R2wk)

≥ w′
k∇(k)wk,
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in which we have invoked (B.2.10), (B.2.3) and (B.2.9). Since wk is arbitrary, we
conclude that ∇(k) ≤ −εIl.

Thus X∞(k + 1) ≥ 0 (and D′
12(k)D12(k) > 0) implies R3(k) > 0 and the

existence of a controller that satisfies (B.2.10) when x0 = 0 implies that ∇(k) ≤
−εIl.

A consequence of R3 > 0 and ∇ ≤ −εI

Suppose that R3(k) > 0 and that ∇(k) ≤ −εI. From the Schur decomposition
(B.2.7), we see that R(k) is nonsingular, so we may take Schur complements with
respect to R(k) in (B.2.3) to obtain

z′kzk − γ2w′
kwk + x′

k+1X∞(k + 1)xk+1

=

[
xk

φk + R−1Lxk

]′ [
X∞(k) 0

0 R(k)

] [
xk

φk + R−1Lxk

]
, (B.2.11)

in which we have defined X∞(k) according to the Riccati difference equation

X∞(k) = A′(k)X∞(k + 1)A(k) + C
′
(k)JC(k)

− L′(k)R−1(k)L(k). (B.2.12)

Substituting the Schur decomposition of R(k) into (B.2.11), we see that the stage
cost is given by

z′kzk − γ2w′
kwk + x′

k+1X∞(k + 1)xk+1

= x′
kX∞(k)xk + (wk − w∗

k)′∇(k)(wk − w∗
k)

+ (uk − u∗
k)′R3(k)(uk − u∗

k), (B.2.13)

in which [
wk − w∗

k

uk − u∗
k

]
=

[
I 0

R−1
3 R2 I

] ([
wk

uk

]
+ R−1Lxk

)
.

Expanding R−1 using (B.2.7) reveals that

[
w∗

k

u∗
k

]
= −

[
∇−1L∇ 0
R−1

3 L2 R−1
3 R2

] [
xk

wk

]
, (B.2.14)

in which
L∇(k) = (L1 − R′

2R
−1
3 L2)(k). (B.2.15)

Equation (B.2.13) is an algebraic identity which holds for any xk, uk and wk. Setting
uk = u∗

k and wk = 0 in (B.2.13), we see that

x′
kX∞(k)xk = z′kzk + x′

k+1X∞(k + 1)xk+1 − (w∗
k)′∇(k)w∗

k ≥ 0 (B.2.16)

for any xk and we conclude that X∞(k) ≥ 0.
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Decomposition of the cost function

The necessary condition ∇(k) ≤ −εI was obtained by considering exogenous inputs
w that are zero up to time k. We now turn our attention to general inputs.

For any k ≥ 1, we may write

‖z‖2
2,[0,k] − γ2‖w‖2

2,[0,k] + x′
k+1X∞(k + 1)xk+1

= ‖z‖2
2,[0,k−1] − γ2‖w‖2

2,[0,k−1]

+ z′kzk − γ2w′
kwk + x′

k+1X∞(k + 1)xk+1

= ‖z‖2
2,[0,k−1] − γ2‖w‖2

2,[0,k−1] + (cost of stage k).

Now suppose that R3(k) > 0 and that ∇(k) ≤ −εI. Then w∗
k and u∗

k are well
defined and from (B.2.13) we have

‖z‖2
2,[0,k] − γ2‖w‖2

2,[0,k] + x′
k+1X∞(k + 1)xk+1

= ‖z‖2
2,[0,k−1] − γ2‖w‖2

2,[0,k−1] + x′
kX∞(k)xk

+ (uk − u∗
k)′R3(uk − u∗

k) + (wk − w∗
k)′∇(wk − w∗

k). (B.2.17)

If uk is generated by a causal controller, then xk and w∗
k do not depend on uk, since

the state dynamics are strictly causal. We conclude that whatever (causal) control
law is applied on the time interval [0, k], and what ever exogenous input occurs,
the cost ‖z‖2

2,[0,k] − γ2‖w‖2
2,[0,k] + x′

k+1X∞(k + 1)xk+1 is no less than the cost that
would be incurred by the implementing uk = u∗

k.

Iterative generation of a candidate controller

Suppose X∞(k + 1) ≥ 0 and that K is any causal linear controller that satisfies
(B.2.10) when x0 = 0. Then

1. R3(k) > 0, ∇(k) ≤ −εI, X∞(k) ≥ 0.

2. The causal, linear controller

ui =





K

[
x
w

]
for i ≤ k − 1

uk = u∗
k for i = k

(B.2.18)

also satisfies (B.2.10) when x0 = 0, since uk = u∗
k does not increase the

left-hand side of (B.2.10).

3. If the exogenous signal is wk = w∗
k, (B.2.17) implies that any controller that

satisfies (B.2.10) also satisfies

‖z‖2
2,[0,k−1] − γ2‖w‖2

2,[0,k−1] + x′
kX∞(k)xk ≤ −ε‖w‖2

2,[0,k]

≤ −ε‖w‖[0,k−1].
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Thus, if K satisfies (B.2.10), the controller (B.2.18) also satisfies this inequality and
if k ≥ 1 it also satisfies (B.2.10) with k replaced by k − 1. Iterating this procedure
from k = N to k = 0 we obtain the necessity proof of the following theorem.

Theorem B.2.1 Suppose D′
12(k)D12(k) > 0 for all k = 0, . . . , N , ∆ ≥ 0 and

x0 = 0 in (B.2.2). There exists a causal, linear, full-information controller such
that the closed-loop system satisfies (B.1.4) for all w ∈ `2[0, N ] and some ε > 0 if
and only if

R3(k) > 0, k = 0, . . . , N (B.2.19)

(R1 − R′
2R

−1
3 R2)(k) ≤ −αIl, k = 0, . . . , N (B.2.20)

for some α ≥ ε. The matrices R1, R2 and R3 are defined by (B.2.6) and (B.2.4), in
which X∞(k) satisfies the Riccati difference equation (B.2.12) with terminal condi-
tion X∞(N + 1) = ∆.

In this case, X∞(k) ≥ 0 for k = 0, . . . , N + 1, and a full-information controller
that achieves the objective (B.1.4) is

u∗
k = −R−1

3 (k)
[

L2(k) R2(k)
] [

xk

wk

]
. (B.2.21)

In connection with this result we note the following:

• The control law (B.2.21) is not generally a state feedback law, since

R2(k) = D′
12(k)D11(k) + B′

2(k)X∞(k + 1)B1(k)

is nonzero in general. At first sight, it may appear that this is a fundamental
difference between the discrete-time and the continuous-time theories. It is
not. The same phenomenon occurs in the general continuous-time case when
D′

12D11 6= 0, since the full-information control law u∗(t) is a memoryless
function of both x(t) and w(t).

• Since R2(k) 6= 0 in general, the control law u∗
k is not strictly causal and must

be generated instantaneously from wk (and xk). If a full-information controller
that is a strictly causal function of w is required2, condition (B.2.20) must be
replaced with

R1(k) ≤ −αI, k = 0, . . . , N (B.2.22)

for some α ≥ ε. If condition (B.2.22) is satisfied, then a control law that
achieves the objective (B.1.4) is the memoryless state feedback controller

u∗
k = −(R3 − R2R

−1
1 R′

2)
−1(k)(L2 − R2R

−1
1 L1)(k)xk.

2That is, uk can be a function of wi, i ≤ k − 1 and xi, i ≤ k.



B.2 FULL INFORMATION 485

Sufficiency: Completing the square

Suppose that the conditions (B.2.19) and (B.2.20) hold. Then u∗ and w∗ are well
defined for k = 0, . . . , N and (B.2.17) yields

z′kzk − γ2w′
kwk + xk+1X∞(k + 1)xk+1 − xkX∞(k)xk

= (uk − u∗
k)′R3(k)(uk − u∗

k) + (wk − w∗
k)′∇(k)(wk − w∗

k).

Since

N∑

k=0

x′
k+1X∞(k + 1)xk+1 − x′

kX∞(k)xk = x′
N+1X∞(N + 1)xN+1 − x′

0X∞(0)x0

we obtain the identity

N∑

k=0

z′kzk − γ2w′
kwk + x′

N+1∆xN+1 − x′
0X∞(0)x0

=

N∑

k=0

(uk − u∗
k)′R3(k)(uk − u∗

k) + (wk − w∗
k)′∇(k)(wk − w∗

k). (B.2.23)

Setting x0 = 0 and u = u∗ gives

‖z‖2
2,[0,N ] − γ2‖w‖2

[0,N ] + x′
N+1∆xN+1 =

N∑

k=0

(wk − w∗
k)′∇(wk − w∗

k)

≤ −α‖w − w∗‖2
2,[0,N ]

≤ −ε‖w‖2
2,[0,N ],

for some 0 < ε ≤ α. The final inequality follows from the fact that the system
L : w 7→ (w − w∗) when u = u∗ is causally invertible and ε = α/‖L−1‖2

[0,N ], with

‖L−1‖|[0,N ] ≥ 1. We leave the verification of this fact as an exercise. This shows
that u∗ satisfies (B.1.4).

All solutions

Suppose that the conditions (B.2.19) and (B.2.20) hold. Let V12(k) be an m × m
matrix such that

V ′
12(k)V12(k) = R3(k)

and let V21(k) be an l × l matrix such that

V ′
21(k)V21(k) = −γ−2(R1 − R′

2R
−1
3 R2)(k) = −γ−2∇(k).

Defining [
sk

rk

]
=

[
V21(k) 0

0 V12(k)

] [
wk − w∗

k

uk − u∗
k

]
, (B.2.24)
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in which w∗ and u∗ are given in (B.2.14), we obtain

‖z‖2
2,[0,N ] − γ2‖w‖2

2,[0,N ] + x′
N+1∆xN+1

= x′
0X(0)x0 + ‖r‖2

2,[0,N ] − γ2‖s‖2
2,[0,N ] (B.2.25)

from (B.2.23). This formula is vital to most of our subsequent work.
Arguments that are virtually identical to those used in the continuous-time case

show that any control signal leading to a closed-loop system satisfying (B.1.4) can
be generated in terms of a causal linear system U such that

r = Us, ‖U‖[0,N ] < γ.

This gives
uk = u∗

k + V −1
12 U

(
V21(wk − w∗

k)
)
,

or, in LFT form,

[
uk

sk

]
=

[
−R−1

3 L2 −R−1
3 R2 V −1

12

−(γ2V ′
21)

−1L∇ V21 0

] 


xk

wk

rk





r = Us.

To obtain all controllers, we use the duplicate state

x̂k+1 = Ax̂k + B1wk + B2uk

= Ax̂k + B1wk + B2(−R−1
3 L2x̂k − R−1

3 R2wk + V −1
12 rk)

= (A − B2R
−1
3 L2)x̂k + (B1 − B2R

−1
3 R2)wk + B2V

−1
12 rk

and augment the controller to

uk = u∗
k + V −1

12 (k)U
(
V −1

21 (wk − w∗
k)

)
+ V −1

12 (k)V (xk − x̂k),

in which V is an arbitrary causal, linear system.

Game theoretic interpretation

Consider the difference game with dynamics (B.2.2) and pay-off functional

J(K, w, x0, N,∆) =

N∑

k=0

z′kzk − γ2w′
kwk + x′

N+1∆xN+1

= ‖z‖2
2,[0,N ] − γ2‖w‖2

2,[0,N ] + x′
N+1∆xN+1.

The designer’s aim is to minimize J by choosing K, which generates a control
that is a causal, linear function of x and w. The aim of the w-player is to choose
w ∈ `2[0, N ] to maximize J .
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It follows from the fundamental identity (B.2.3) that a unique minimizing K

exists for any w if and only if R3(k) > 0 for k ∈ [0, N ]. In this case, the minimizing
controller K∗ is given by (B.2.21). With the controller K∗ implemented, a unique
w that maximizes J(K∗, w,N,∆) exists if and only if ∇(k) < 0 for k ∈ [0, N ]. In
this case, the controller K∗ and the disturbance w∗

k generated by

[
x∗

k+1

w∗
k

]
=

[
A − BR−1L
−∇−1L∇

]
x∗

k, x∗
0 = x0

satisfy the saddle point condition

J(K∗, w, x0, N,∆) ≤ J(K∗, w∗, x0, N,∆) ≤ J(K, w∗, x0, N,∆),

with J(K∗, w∗, x0, N,∆) = x′
0X∞(0)x0.

Notice that the maximization over w occurs with the controller K∗ in place.
We do not require that J(K, w, x0, N,∆) has a maximum in w for any K. If it is
demanded that J(K, w, x0, N,∆) has a maximum in w for any K, one needs the
stronger condition R1(k) < 0 for k ∈ [0, N ].

B.2.2 Infinite horizon

We will now generalize Theorem B.2.1 to the infinite-horizon case.

Theorem B.2.2 Suppose that (A,B2) is stabilizable, that D′
12D12 > 0 and that

condition (B.1.5) holds. Then there exists a causal, linear, time-invariant and sta-
bilizing full-information controller such that (B.1.7) is satisfied if and only if the
Riccati equation

X∞ = C
′
JC + A′X∞A − L′R−1L, (B.2.26)

with

R = D
′
JD + B′X∞B (B.2.27)

L = D
′
JC + B′X∞A (B.2.28)

has a solution such that A − BR−1L asymptotically stable and

X∞ ≥ 0 (B.2.29)

R1 − R′
2R

−1
3 R2 = ∇ < 0. (B.2.30)

In this case a stabilizing, full-information controller that achieves the objective
(B.1.7) is

u∗
k = −R−1

3

[
L2 R2

] [
xk

wk

]
. (B.2.31)
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Remark B.2.1. As noted in the finite-horizon case, the controller (B.2.31) is not
a state-feedback law. If a state-feedback law is desired, condition (B.2.30) must be
replaced with the more stringent condition R1 < 0, and then one controller which
satisfies (B.1.7) is given by

uk = −(R3 − R2R
−1
1 R′

2)
−1(L2 − R2R

−1
1 L1)xk.

Proof of sufficiency

The control law (B.2.31) yields the closed-loop system

[
xk+1

zk

]
=

[
A − B2R

−1
3 L2 B1 − B2R

−1
3 R2

C1 − D12R
−1
3 L2 D11 − D12R

−1
3 R2

] [
xk

wk

]
,

which we will now show is stable. Using the Schur decomposition of R in (B.2.7),
the Riccati equation for X∞ may be written in the form

X∞ = C ′
1C1 + A′X∞A − L′

2R
−1
3 L2 − L′

∇∇−1L∇.

Combining this with the definitions of R3 and L2, we may write

[
A B2

C1 D12

]′ [
X∞ 0
0 I

] [
A B2

C1 D12

]

=

[
X∞ + L′

∇∇−1L∇ 0
0 0

]
+

[
L′

2

R3

]
R−1

3

[
L2 R3

]
.

Multiplying this equation by

[
I 0

−R−1
3 L2 I

]
on the right, by its transpose on the

left, and writing out only the (1, 1)-block, yields the equation

X∞ = (A − B2R
−1
3 L2)

′X∞(A − B2R
−1
3 L2) − L′

∇∇−1L∇

+ (C1 − D12R
−1
3 L2)

′(C1 − D12R
−1
3 L2). (B.2.32)

Since ∇ < 0 and X∞ ≥ 0, (B.2.32) implies that |λi(A − B2R
−1
3 L2)| ≤ 1 for all

i. To conclude that strict inequality holds, we show that (A − B2R
−1
3 L2, L∇) is

detectable. Using the Schur decomposition of R again, we see that

A − BR−1L = (A − B2R
−1
3 L2) − (B1 − B2R

−1
3 R2)∇−1L∇. (B.2.33)

This implies that (A − B2R
−1
3 L2, L∇) is detectable, since A − BR−1L is asymp-

totically stable. Therefore, we may conclude from the Lyapunov equation (B.2.32)
that A − B2R

−1
3 L2 is asymptotically stable.
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Since A − B2R
−1
3 L2 is asymptotically stable, x ∈ `2[0,∞) for any w ∈ `2[0,∞)

and we may invoke (B.2.25) to obtain

‖z‖2
2 − γ2‖w‖2

2 = −γ2‖s‖2
2, (B.2.34)

since u = u∗ and x0 = 0. The vector sequence s is given by

[
xk+1

sk

]
=

[
A − B2R

−1
3 L2 B1 − B2R

−1
3 R2

V21∇−1L∇ V21

] [
xk

wk

]
.

This system is stable with a stable inverse, since by (B.2.33) the A-matrix of the
inverse is A− BR−1L. Therefore, there exists an ε > 0 such that ‖s‖2

2 ≥ ε‖w‖2
2/γ2

and substitution into (B.2.34) yields

‖z‖2
2 − γ2‖w‖2

2 ≤ −ε‖w‖2
2.

Necessity

Let X2 be the unique matrix such that

x′
0X2x0 = min

K
‖z‖2

2

for arbitrary x0. That is, X2 is the unique nonnegative definite solution to the
discrete-time algebraic Riccati equation

X2 = C ′
1C1 + A′X2A

−(D′
12C1 + B′

2X2A)′(D′
12D12 + B′

2X2B2)
−1(D′

12C1 + B′
2X2A)

such that A−B2(D
′
12D12 +B′

2X2B2)
−1(D′

12C1 +B′
2X2A) is asymptotically stable.

(The theory of the discrete-time LQ regulator may be found in books such as [29],
and is also developed in Problems B.5 and B.7.)

As in the continuous-time synthesis theory, we shall prove necessity by showing
that when a stabilizing controller satisfying (B.1.7) exists, the Riccati difference
equation converges to a stabilizing solution to the algebraic Riccati equation.

B.2.3 Convergence of the Riccati equation

It is assumed that there exists a causal, linear, time-invariant, stabilizing, full-
information controller such that (B.1.8) holds when x0 = 0. The arguments that
show that the required solution to the Riccati difference equation (B.2.12) converges
to the stabilizing solution of the algebraic Riccati equation (B.2.26) mimic those
used in the continuous-time case.

Let X∞(k,N + 1,∆) denote the solution of the Riccati equation (B.2.12) for
a general terminal condition. Our aim is to show that X(k,N + 1,X2) (i.e., the
solution with terminal condition X2) converges to a stabilizing, nonnegative definite
solution to the algebraic Riccati equation (B.2.26) such that R1 − R′

2R
−1
3 R2 < 0.
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X∞(k,N + 1,X2) exists

For any w such that wk = 0 for k ≥ N + 1, we have

‖z‖2
2 − γ2‖w‖2

2

= ‖z‖2
2,[0,N ] − γ2‖w‖2

2,[0,N ] +
∞∑

k=N+1

z′kzk

≥ ‖z‖2
2,[0,N ] − γ2‖w‖2

2,[0,N ] + min
K

∞∑

k=N+1

z′kzk

= ‖z‖2
2,[0,N ] − γ2‖w‖2

2,[0,N ] + x′
N+1X2xN+1. (B.2.35)

Hence, any controller with the property

‖z‖2
2 − γ2‖w‖2

2 ≤ −ε‖w‖2
2

for all w ∈ `2[0,∞) when x0 = 0 also satisfies

‖z‖2
2,[0,N ] − γ2‖w‖2

2,[0,N ] + x′
N+1X2xN+1 ≤ −ε‖w‖2

2,[0,N ]

for all w ∈ `2[0, N ] when x0 = 0. By our finite-horizon results, we conclude that
X∞(k,N + 1,X2) exists for any finite k ≤ N + 1 and also that

X∞(k,N + 1,X2) ≥ 0

∇(k) = (R1 − R′
2R

−1
3 R2)(k) ≤ −αI (B.2.36)

for some α ≥ ε. Take α = ε, since this is independent of the horizon length N .

X∞(k,N + 1,X2) is uniformly bounded

When x0 6= 0, the response z of the closed-loop system depends both on x0 and
w. By linearity, z may be decomposed as z = zx0

+ zw, with zx0
and zw denoting

the contributions to the response due to x0 and w respectively. By hypothesis,
‖zw‖2

2 − γ2‖w‖2
2 ≤ −ε‖w‖2

2 and, since the controller is also stabilizing, ‖zx0
‖2 ≤

δ‖x0‖ for some number δ. The triangle inequality gives

‖z‖2
2 ≤ ‖zx0

‖2
2 + ‖zw‖2

2 + 2‖zx0
‖2‖zw‖2.

Therefore

‖z‖2
2 − γ2‖w‖2

2

≤ ‖zw‖2
2 − γ2‖w‖2

2 + ‖zx0
‖2
2 + 2‖zx0

‖2‖zw‖2

≤ −ε‖w‖2
2 + δ2‖x0‖2 + 2γδ‖x0‖ ‖w‖2

= δ2‖x0‖2 − ε(‖w‖2
2 −

2γδ

ε
‖x0‖ ‖w‖2)

= (δ2 +
γ2δ2

ε
)‖x0‖2 − ε(‖w‖2 −

γδ

ε
‖x0‖)2

≤ (δ2 +
γ2δ2

ε
)‖x0‖2 = β‖x0‖2 (B.2.37)
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for all x0 and all w ∈ `2[0,∞).
Now choose N finite and let w be the particular `2[0,∞) signal

wk =

{
−∇(k)−1L∇(k)xk if k ≤ N

0 if k ≥ N + 1.

(i.e., w = w∗ for the finite-horizon problem.) Since wk = 0 for x ≥ N + 1, (B.2.35)
holds and by (B.2.25)

‖z‖2
2 − γ2‖w‖2

2 ≥ x′
0X∞(0, N + 1,X2)x0 + ‖r‖2

2,[0,N ]

≥ x′
0X∞(0, N + 1,X2)x0.

(r is defined by (B.2.24)). Combining this with (B.2.37), we have that for any finite
N and any x0 that

x′
0X∞(0, N + 1,X2)x0 ≤ β‖x0‖2,

which shows that X∞(0, N + 1,X2) is uniformly bounded. By time invariance, it
follows that X∞(k,N + 1,X2) is uniformly bounded on k ≤ N + 1.

X∞(k,N + 1,X2) is monotonic

Using (B.2.25) on [k,N ] gives

‖z‖2
2,[k,N ] − γ2‖w‖2

2,[k,N ] + x′
N+1X2xN+1

= ‖r‖2
2,[k,N ] − γ2‖s‖2

2,[k,N ] + x′
kX∞(k,N + 1,X2)xk.

In the same way we obtain

‖z‖2
2,[k,N+1] − γ2‖w‖2

2,[k,N+1] + x′
N+2X2xN+2

= ‖r‖2
2,[k,N+1] − γ2‖s‖2

2,[k,N+1] + x′
kX∞(k,N + 2,X2)xk,

in which s and r are the corresponding signals for the finite-horizon problem on the
interval [k,N + 1]. Set ui = u∗

i for i = k, . . . , N + 1 and wi = w∗
i for i = k, . . . , N

and wN+1 = 0. This gives ri = 0 for i = k, . . . , N + 1 and si = 0 for i = k, . . . , N .
Subtracting the above identities yields

xk[X∞(k,N + 2,X2) − X∞(k,N + 1,X2)]xk

= ‖r‖2
2,[k,N ] + γ2‖s‖2

2,[k,N+1]

− x′
N+1X2xN+1 + z′N+1zN+1 + xN+2X2xN+2

≥ −x′
N+1X2xN+1 + z′N+1zN+1 + x′

N+2X2xN+2

≥ −x′
N+1X2xN+1 + min

uN+1

{
z′N+1zN+1 + x′

N+2X2xN+2

}

= −x′
N+1X2xN+1 + x′

N+1X2xN+1

≥ 0.

Because xk may be regarded as an arbitrary initial condition, X∞(k,N + 2,X2) ≥
X∞(k,N + 1,X2) as required.
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A solution to the algebraic Riccati equation exists

Since X(k,N + 1,X2) is nonnegative definite, uniformly bounded and monotonic,
we conclude that

X∞ = lim
N→∞

X(k,N + 1,X2)

exists, is independent of k and is nonnegative definite also. From (B.2.36), since
α ≥ ε, which is independent independent of the horizon length, we conclude that
∇ < 0. Hence R is nonsingular and X∞ is a solution to (B.2.26). We also note that
X∞ ≥ X2 by monotonicity.

The best control and the worst disturbance

Define [
w∗

k

u∗
k

]
= −

[
∇−1Z2 0
R−1

3 L2 R−1
3 R2

] [
xk

wk

]

and [
sk

rk

]
=

[
V21 0
0 V12

] [
wk − w∗

k

uk − u∗
k

]
,

in which Z, V12 and V21 are as per the finite-horizon case, mutatis mutandi.
Invoking an infinite-horizon version of (B.2.25) gives

‖z‖2
2 − γ2‖w‖2

2 = x′
0X∞x0 + ‖r‖2

2 − γ2‖s‖2
2 (B.2.38)

for any controller that stabilizes the system and any w ∈ `2[0,∞).

u∗ is stabilizing

The control uk = u∗
k leads to the dynamics

xk+1 = (A − B2R
−1
3 L2)xk + (B1 − B2R

−1
3 R2)wk.

To show that this is asymptotically stable, we note that Γ = X∞ − X2 satisfies

Γ = (A − B2R
−1
3 L2)

′ (Γ + ΓB2(R3 − B′
2ΓB2)

−1B′
2Γ

)
(A − B2R

−1
3 L2)

−L′
∇∇−1L∇. (B.2.39)

Since R3 − B′
2ΓB2 = D′

12D12 + B′
2X2B2, the inverse exists and is indeed positive

definite. Furthermore,

(
A − B2R

−1
3 L2, B

′
2Γ(A − B2R

−1
3 L2)

)

is detectable, since

A − B2R
−1
3 L2 + B2(R3 − B′

2ΓB2)
−1B′

2Γ(A − B2R
−1
3 L2)

= A − B2(D
′
12D12 + B′

2X2B2)
−1(D′

12C1 + B′
2X2A),
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which is asymptotically stable, since it is the closed-loop dynamics associated with
the LQ problem. The calculations required to verify the above are requested in
Problem B.9. Since Γ ≥ 0 and ∇ < 0, we conclude from the Lyapunov equation
(B.2.39) that A − B2R

−1
3 L2 is asymptotically stable.

Parametrization of the closed-loop

The closed loop is also generated by a controller of the form

uk = u∗
k + V −1

12 UV21(wk − w∗
k).

For such a controller, the closed loop is given by



xk+1

zk

sk



 =




A − B2R

−1
3 L2 B1 − B2R

−1
3 R2 B2V

−1
12

C1 − D12R
−1
3 L2 D11 − D12R

−1
3 R2 D12V

−1
12

−(γ2V ′
21)

−1L∇ V21 0








xk

wk

rk





r = Us.

That is, the closed loop is generated by a LFT F`(Ra,U), in which Ra maps

[
w
r

]

to

[
z
s

]
. Setting x0 = 0 in (B.2.38), we have

‖z‖2
2 + γ2‖s‖2

2 = γ2‖w‖2
2 + ‖r‖2

2. (B.2.40)

When γ = 1 (which may be assumed without loss of generality), this identity shows
that Ra is allpass.

A − BR−1L has no eigenvalue on the unit circle

In order to avoid having to re-scale, assume (without loss of generality) that γ = 1.
Then Ra is allpass by (B.2.40). By assumption, there exists a controller such that
the closed loop R is internally stable and ‖R‖∞ < γ = 1. Therefore, there exists
a U such that ‖F`(Ra,U)‖∞ < 1. Consequently, by a discrete-time version of
Theorem 4.3.2, the (2, 1) block of Ra has no zeros on the unit circle. Because
A − B2R

−1
3 L2 is asymptotically stable, this implies that

A − B2R
−1
3 L2 − (B1 − B2R

−1
3 R2)∇−1L∇

has no eigenvalue on the unit circle. By (B.2.33), we conclude that A−BR−1L has
no eigenvalue on the unit circle.

A − BR−1L is asymptotically stable

The sequence Γ(k) = X∞−X∞(k,N +1,X2) is the solution to the Riccati difference
equation

Γ(k) = (A − BR−1L)′
(
Γ(k + 1)

+ Γ(k + 1)B(R − B′Γ(k + 1)B)−1B′Γ(k + 1)
)
(A − BR−1L),
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with terminal condition Γ(N + 1) = X∞ − X2 (Problem B.10).
Assume that Γ(k) is nonsingular for k ≤ N + 1 (the extension to the case in

which Γ(k) may be singular is also requested in Problem B.10). Clearly, this implies

that Â = A − BR−1L is nonsingular. Taking inverses using the matrix inversion
lemma (see [105], page 656) we obtain

Γ−1(k) = Â−1[Γ−1(k + 1) − BR−1B′](Â′)−1.

Now define Ω(k) = Γ−1(N + 1− k). Since Γ(k) → 0 as k → −∞, x∗Ω(k)x → ∞ as

k → ∞ for any x. Let (Â′)−1x = 1
λx. Then

x∗Ω(k + 1)x =
x∗Ω(k)x

|λ|2 − x∗BR−1B′x

|λ|2 .

Since x∗Ω(k)x → ∞, we must have |λ| ≤ 1 and since Â has no eigenvalue on the

unit circle, we must have |λ| < 1. Therefore, Â = A − BR−1L is asymptotically
stable.

All solutions

By a discrete-time version of Theorem 4.3.3, we see that all control signals and
all closed-loop systems that satisfy (B.1.8) are generated by controllers of the form
u = u∗ + V −1

12 UV21(w − w∗), in which U ∈ H∞ and ‖U‖∞ < γ. That is,

[
uk

sk

]
=

[
−R−1

3 L2 −R−1
3 R2 V −1

12

−(γ2V ′
21)

−1L∇ V21 0

]
(k)




xk

wk

rk





r = Us.

To obtain all controllers, we use the duplicate state

x̂k+1 = Ax̂k + B1wk + B2uk

= Ax̂k + B1wk + B2(−R−1
3 L2x̂k − R−1

3 R2wk + V −1
12 rk)

= (A − B2R
−1
3 L2)x̂k + (B1 − B2R

−1
3 R2)wk + B2V

−1
12 rk

and augment the controller to

uk = u∗
k + V −1

12 U
(
V −1

21 (wk − w∗
k)

)
+ V −1

12 V (xk − x̂k),

in which V ∈ H∞ is arbitrary.

B.3 Filtering

We now consider the discrete-time H∞ filter. As the development parallels that
presented in Chapter 7, we will do little more than write down the appropriate
formulae.
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B.3.1 Finite horizon

Consider the signal generator




xk+1

zk

yk



 =




A(k) B1(k)

−C1(k) −D11(k)
C2(k) D21(k)




[

xk

wk

]
, x0 = 0. (B.3.1)

We assume that D21(k)D′
21(k) > 0 for all k of interest. Our aim is to find an

estimate of z of the form
ẑ = F y

such that
‖ẑ − z‖2

2,[0,N ] − γ2‖w‖2
2,[0,N ] ≤ −ε‖w‖2

2,[0,N ] (B.3.2)

for some positive ε and all w ∈ `2[0, N ].
This problem may be cast as the LFT problem




xk+1

ẑk − zk

yk



 =




A B1 0
C1 D11 I
C2 D21 0



 (k)




xk

wk

ẑk



 , x0 = 0,

ẑ = F y.

The adjoint of this LFT is given by




pk−1

z̃k

w̃k



 =




A′ C ′

1 C ′
2

B′
1 D′

11 D′
21

0 I 0



 (k)




pk

w̃k

ũk



 , pN = 0,

ũ = F∼w̃.

This is a control problem in which the controller has access to w̃, but not to p.
Fortunately, this does not affect the conditions for the existence of a controller
since we may use a copy of the state generated by

p̂k−1 = A′(k)p̂k + C ′
1(k)w̃k + C ′

2(k)ũk.

rather than the state pk itself. It is now immediate from the full-information control
results that a suitable F exists if and only if the solution to the Riccati difference
equation

Y∞(k + 1) = B̃(k)J̃B̃′(k) + A(k)Y∞(k)A′(k)

− M(k)S−1(k)M ′(k), Y∞(0) = 0, (B.3.3)

satisfies

S3(k) > 0, k = 0, . . . , N (B.3.4)

(S1 − S2S
−1
3 S′

2)(k) ≤ −αIp, k = 0, . . . , N, (B.3.5)
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for some positive α ≥ ε. In the above, the matrices S and M are defined by

S(k) = D̃(k)J̃D̃′(k) + C(k)Y∞(k)C ′(k) =

[
S1 S2

S′
2 S3

]
(k)

M(k) = B̃(k)J̃D̃′(k) + A(k)Y∞(k)C ′(k),

in which
[

A(k) B̃(k)

C(k) D̃(k)

]
=




A(k) B1(k) 0

C1(k) D11(k) Ip

C2(k) D21(k) 0





and

J̃ =

[
Il 0
0 −γ2Ip

]
.

If (B.3.4) and (B.3.5) hold, let

W21(k)W ′
21(k) = S3(k)

W12(k)W ′
12(k) = −γ−2(S1 − S2S

−1
3 S′

2)(k).

Then F is a filter that satisfies (B.3.2) if and only if

F = F`(Fa,U), ‖U‖[0,N ]‖ < γ (B.3.6)

for some causal U . The generator of all filters, F a, is the system with state-space
realization




A − M2S
−1
3 C2 M2S

−1
3 (M1 − M2S

−1
3 S2)(γ

2W ′
12)

−1

−(C1 − S2S
−1
3 C2) −S2S

−1
3 W12

−W−1
21 C2 W−1

21 0


 .

Choosing U = 0 results in the filter

x̂k+1 = A(k)x̂k + M2(k)S−1
3 (k)(yk − C2(k)x̂k)

ẑk = −C1(k)x̂k − S2(k)S−1
3 (k)(yk − C2(k)x̂k),

which has a discrete-time observer structure driven by the “innovations process”
y − C2x̂. The signal s is just a normalized version of the innovations, since s =
W−1

21 [y − C2x̂]. The normalization is introduced so that the norm constraint on
the U parameter mimics the closed-loop norm bound. Note also that it is not
necessary to calculate the matrices W21 and W12 if only this “central filter” is of
interest. Finally, we see that this filter has the property

E{(x̂k − xk)(x̂k − xk)′} ≤ Y∞(k) (B.3.7)

when w is a unit intensity white noise process (Problem B.12).
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Finally, it will be convenient in the application of these results to the measure-
ment feedback H∞ synthesis problem to write the state-space realization of F a in
the form




I 0 −M2(W

′
21)

−1

0 I S2(W
′
21)

−1

0 0 W21








x̂k+1

ẑk

sk





=




A 0 (M1 − M2S

−1
3 S2)(γ

2W ′
12)

−1

−C1 0 W12

−C2 I 0








x̂k

yk

rk



 . (B.3.8)

Remark B.3.1. The filters above generally require immediate use of the current
measurement yk to generate ẑk. If this is not acceptable, the existence condition
(B.3.5) must be modified to S1(k) ≤ −αI, k = 0, . . . , N . In this case the filter also
has to be modified. One such filter is

x̂k+1 = Ax̂k + (M2 − M1S1

1S2)(S3 − S′
2S

1

1S2)
−1(yk − C2x̂k)

ẑk = −C1x̂k.

B.3.2 Infinite horizon

In the case of an infinite-horizon filtering problem, we assume: (a) that the matrices
A, B̃, C and D̃ are constant; (b) that D21D

′
21 > 0; and (c) that the rank condition

(B.1.6) holds. We seek a causal, linear and stable filter such that the map R : w 7→
ẑ − z is stable and satisfies ‖R‖∞ < γ.

Such a filter exists if and only if the Riccati equation

Y∞ = B̃J̃B̃′ + AY∞A′ − MS−1M ′ (B.3.9)

has a solution such that

Y∞ ≥ 0 (B.3.10)

S1 − S2S
−1
3 S′

2 < 0, (B.3.11)

with A − MS−1C asymptotically stable. In this case, all such filters are generated
by the LFT (B.3.6), in which U ∈ H∞ with ‖U‖∞ < γ.

B.4 Measurement feedback

We now consider the full generalized regulator problem in which P is described by
(B.1.2), with D22 = 0.
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B.4.1 Finite horizon

We assume that (B.1.3) holds for all k of interest and that x0 = 0.
If there is a causal, linear controller u = Ky such that (B.1.4) holds, then

u = K
[

C2 D21

] [
x
w

]

is a causal, linear full-information controller that satisfies (B.1.4). Therefore, the
Riccati equation (B.2.12) as a solution satisfying (B.2.19) and (B.2.20). Further-
more, from the identity (B.2.25), the controller K satisfies (B.1.4) if and only if it
also satisfies

‖r‖2
2,[0,N ] − γ2‖s‖2

2,[0,N ] ≤ −ε‖s‖2
2,[0,N ]. (B.4.1)

for some ε > 0. (Recall that the map from w to s is causally invertible.)
Now

sk = V21(k)(wk + ∇−1L∇(k)xk),

so
wk = V −1

21 (k)sk −∇−1L∇(k)xk.

Substituting into the formulae for xk+1, yk and rk, we obtain the LFT



xk+1

rk

yk



 =




A − B1∇−1L∇ B1V

−1
21 B2

V12R
−1
3 (L2 − R2∇−1L∇) V12R

−1
3 R2V

−1
21 V12

C2 − D21∇−1L∇ D21V
−1
21 0








xk

sk

uk





u = Ky.

(The k dependence of the matrices has been suppressed.) Since r = V12(u − u∗),
this signal is a scaled version of u− u∗. The objective (B.4.1) requires us to choose
K so that the closed-loop system mapping s to r has induced norm less than γ.
Therefore, as in the continuous-time case, we need to choose K so that u is not too
far from the u∗ we would use if we had full information. This is an H∞ estimation
problem in which we seek a filter K such that r = V12(u− u∗) is sufficiently small.

We will solve this modified objective problem using our filtering results. The
LFT describing this estimation problem has two differences from the situation we
considered in our discussion of the filter. Firstly, the output of the filter K affects
the dynamics. This makes no difference to the conditions for a solution, but merely
modifies the prediction equation for x̂k+1 by the inclusion of a B2uk term. The
other difference is the term V12 in the map between the output of the filter (i.e. u)
and the “estimation error” (i.e. r). This makes no difference to the conditions for
a solution because V12 is nonsingular. All we need do is scale the filter output by
V −1

12 , since K = V −1
12 [V12K].

Therefore, define

[
At(k) B̃t(k)

Ct(k) D̃t(k)

]
=




A − B1∇−1L∇ B1V
−1
21 0

V12R
−1
3 (L2 − R2∇−1L∇) V12R

−1
3 R2V

−1
21 I

C2 − D21∇−1L∇ D21V
−1
21 0


 (k)
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and

Z∞(k + 1) = Bt(k)ĴB′
t(k) + At(k)Z∞(k)A′

t(k)

− Mt(k)S−1
t (k)M ′

t(k), Z∞(0) = 0,

in which

St(k) = D̃t(k)ĴD̃′
t(k) + Ct(k)Z∞(k)C ′

t(k) =

[
St1 St2

S′
t2 St3

]
(k)

Mt(k) = B̃t(k)ĴD̃t
′
(k) + At(k)Z∞(k)C ′

t(k)

Ĵ =

[
Il 0
0 −γ2Im

]
.

A necessary and sufficient condition for the existence of a causal linear controller
satisfying (B.4.1), and hence (B.1.4), is that

St3(k) > 0, k = 0, . . . , N (B.4.2)

(St1 − St2S
−1
t3 S′

t2)(k) ≤ −αIp, k = 0, . . . , N (B.4.3)

for some positive α. In this case, a controller that achieves the objective is

x̂k+1 = At(k)x̂k + B2(k)uk + Mt2(k)S−1
t3 (k)(yk − Ct2(k)x̂k)

V12(k)uk = −Ct1(k)x̂k − St2(k)S−1
t3 (k)(yk − Ct2(k)x̂k).

As in the continuous-time case, this controller has an observer structure. Since
C2t = C2 −D21∇−1L∇, the observer assumes that the input is w∗, the worst input
for the full-information problem and hence also the worst input for the measurement
feedback problem.

The generator of all controllers is obtained from the solution to the filtering
problem in (B.3.8). If we recall the need to add B2uk to the prediction equation
for x̂k+1 and scale the output by V12 as discussed above, the generator Ka of all
filters, and hence all controllers, is given by the state-space system




I −B2 −Mt2(X

′
21)

−1

0 V12 St2(X
′
21)

−1

0 0 X21








x̂k+1

uk

ηk





=




At 0 (Mt1 − Mt2S

−1
t3 St2)(γ

2X ′
12)

−1

−Ct1 0 X12

−Ct2 I 0








x̂k

yk

ϕk



 . (B.4.4)

(The time dependence is not explicitly shown.) That is, all controllers are generated
by the LFT K = F`(Ka,U), in which U is a causal linear system such that
‖U‖[0,N ] < γ. The matrices X12 and X21 are given by

X21(k)X ′
21(k) = St3(k)

X12(k)X ′
12(k) = −γ−2(St1 − St2S

−1
t3 S′

t2)(k).
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B.4.2 Infinite horizon

The extension of the theory to infinite-horizon, measurement feedback problems
follows arguments that are identical to those presented in the continuous-time case
in Chapter 8.

Suppose that the matrices (A,B,C,D) are constant; that (A,B2, C2) is stabi-
lizable and detectable; that D′

12D12 > 0 and D21D
′
21 > 0; and that (B.1.5) and

(B.1.6) hold. Then a causal, linear, finite-dimensional stabilizing controller that
satisfies (B.1.7) exists if and only if

1. There exists a solution to the Riccati equation (B.2.26) satisfying (B.2.29)
and (B.2.30) such that A − BR−1L is asymptotically stable.

2. There exists a solution to the Riccati equation

Z∞ = BtĴB′
t + AtZ∞A′

t − MtS
−1
t M ′

t , (B.4.5)

in which

St = D̃tĴD̃′
t + CtZ∞C ′

t =

[
St1 St2

S′
t2 St3

]

Mt = B̃tĴD̃t
′
+ A′

tZ∞C ′
t

such that

Z∞ ≥ 0

St1 − St2S
−1
t3 S′

t2 < 0,

with At − MtS
−1
t Ct asymptotically stable.

In this case, a controller that achieves the objective is

x̂k+1 = Atx̂k + B2uk + Mt2S
−1
t3 (yk − Ct2x̂k)

V12uk = −Ct1x̂k − St2S
−1
t3 (yk − Ct2x̂k).

All controllers that achieve the objective are generated by the LFT K = F`(Ka,U)
with U ∈ RH∞ satisfying the norm bound ‖U‖∞ < γ and Ka given in (B.4.4).

Remark B.4.1. It is possible to rephrase condition 2 in terms of the existence
of a solution Y∞ to (B.3.9) satisfying (B.3.10) and (B.3.11) such that A−MS−1C
asymptotically stable. As in the continuous time case, substituting Z∞ with Y∞
means that the condition ρ(X∞X∞) < γ2 must be satisfied. Furthermore, Z∞ =
Y∞(I−γ−2X∞Y∞)−1 and the generator of all controllers can be re-written in terms
of X∞ and Y∞. The calculations required to show this are lengthy and should not
be attempted by anyone without time on their hands.
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B.5 Notes and References

Discrete-time H∞ synthesis theory has been developed by a number of authors.
The principal references are Limebeer, Green and Walker [131], Green [84], Stoor-
vogel [200], Yaesh and Shaked [217, 218, 216], Başar [18] and Iglesias and Glover [99].
Some early work was contributed by Gu, Tsai and Postlethwaite [89]. Liu, Mita and
Kimura [139] have an approach based on J-lossless conjugation. Iglesias, Mustafa
and Glover [100] show that the central (U = 0) controller minimizes an entropy
integral.

Başar [18] considers the problem in which the controller is required to be strictly
causal. He exploits the connection with game theory and the results of Başar and
Olsder [22]. Similar results can be found in the book by Başar and Bernhard [20].

The approach to the finite-horizon problem presented here follows that given
in Limebeer, Green and Walker [131]. The limiting arguments that show that the
solution to the Riccati difference equation converges to a stabilizing solution to
the algebraic Riccati equation are new. These results generalize the correspond-
ing results that are well known for Riccati equations associated with LQ-optimal
control and Kalman filtering problems—see, for example, de Souza, Gevers and
Goodwin [42]; Anderson and Moore [12]; Poubelle, Bitmead and Gevers [167] and
Bitmead, Gevers and Wertz [29].

Pappas, Laub and Sandell [159] is the seminal reference on the solution of the
discrete-time algebraic Riccati equation via eigenvalue methods.

The optimal full-information H∞ synthesis problem is treated in Green and
Limebeer [86]. No complete treatment of the optimal measurement feedback case
has been given, although the bilinear transformation based approach may be used
for the infinite-horizon case.

B.6 Problems

Problem B.1. Prove Theorem B.1.1.

Problem B.2. Verify that the system L : w 7→ (w − w∗) when u = u∗ is causally
invertible. Show that ‖L−1‖[0,N ] ≥ 1 by considering the impulse response.

Problem B.3. Prove the statements following Theorem B.2.1 regarding the case
when the control uk is not allowed to be a function of wk.

(Hint: Use the fact that

[
R1 R′

2

R2 R3

]
=

[
I 0

R2R
−1
1 I

] [
R1 0
0 R3 − R2R

−1
1 R′

2

] [
I R−1

1 R′
2

0 I

]

to derive an alternative to (B.2.13).)



502 DISCRETE-TIME H∞ SYNTHESIS THEORY

Problem B.4. Suppose X∞(k) and X∞(k) satisfy the Riccati equation (B.2.12)
with the terminal conditions

X∞(N + 1) = ∆

X∞(N + 1) = ∆

and suppose that the corresponding matrices R and R defined by (B.2.4) satisfy

R3(i) > 0 and (R1 − R′
2R

−1
3 R2)(i) ≤ −αI, for i = k, . . . , N

R3(i) > 0 and (R1 − R
′
2(R3)

−1R2)(i) ≤ −αI, for i = k, . . . , N

for some α > 0. Show that ∆ − ∆ ≥ 0 implies X∞(k) − X∞(k) ≥ 0.
(Hint: Complete the square using X∞ and X∞, subtract the results and choose

the inputs u and w so that the inequality

x′
0

(
X∞(k) − X∞(k)

)
x0 ≥ xN+1(∆ − ∆)xN+1

is obtained.)

Problem B.5. (Finite-horizon LQ-optimal control). Consider the system

[
xk+1

zk

]
=

[
A(k) B2(k)
C1(k) D12(k)

] [
xk

uk

]

and the performance index J(u, x0, N,∆) = ‖z‖2
2,[0,N ] +x′

N+1∆xN+1. It is assumed

that D′
12(k)D12(k) > 0 for all times of interest and that ∆ ≥ 0.

1. Show that

z′kzk + x′
k+1X2(k + 1)xk+1

=

[
xk

uk

]′ [
A′(k)X2(k + 1)A(k) + C ′

1(k)C1(k) L′(k)
L(k) R(k)

] [
xk

uk

]
,

in which

R(k) = D′
12(k)D12(k) + B′

2(k)X2(k + 1)B2(k)

L(k) = D′
12(k)C1(k) + B′

2(k)X2(k + 1)A(k).

2. If X2(k + 1) ≥ 0, show that R(k) > 0 and that

z′kzk + x′
k+1X2(k + 1)xk+1 = x′

kX2(k)xk + (uk − u∗
k)′R(k)(uk − u∗

k),

in which u∗
k = −R−1(k)L(k)xk and

X2(k) = A′(k)X2(k + 1)A(k) + C ′
1(k)C1(k) − L′(k)R−1(k)L(k).

Conclude that X2(k) ≥ 0.
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3. Conclude that the Riccati equation for X2(k), with X2(N + 1) = ∆ ≥ 0, has
a solution on [0, N ] for any finite N ≥ 0, and that

‖z‖2
2,[0,N ] + x′

N+1∆xN+1

= x′
0X2(0)x0 +

N∑

k=0

(uk − u∗
k)′R(k)(uk − u∗

k). (B.6.1)

4. Show that
min

u

{
‖z‖2

2,[0,N ] + x′
N+1∆xN+1

}
= x′

0X2(0)x0

and that the optimal control is u∗.

Problem B.6. (Removing cross terms). Consider the problem set up described
in Problem B.5. Define

Ã(k) = A(k) − B2(k)
(
D12(k)′D12(k)

)−1
D′

12(k)C1(k)

C̃ ′(k)C̃(k) = C ′
1(k)

(
I − D12(k)(D′

12(k)D12(k))−1D12(k)′
)
C1(k).

Show that X2(k) satisfies the Riccati equation

X2(k) = Ã(k)′
(
X2(k + 1) − X2(k + 1)B2R(k)−1B′

2X2(k + 1)
)
Ã(k) + C̃ ′(k)C̃(k)

and that

A(k) − B2(k)R−1(k)L(k) = Ã(k) − B2(k)R−1(k)B′
2(k)X2(k + 1)Ã(k).

Problem B.7. (Infinite-horizon LQ-optimal control). Consider the time-
invariant system [

xk+1

zk

]
=

[
A B2

C1 D12

] [
xk

uk

]
, (B.6.2)

in which D′
12D12 > 0 and (A,B) is stabilizable. Let ∆ ≥ 0 be any matrix such that

∆ ≥ A′∆A + C ′
1C1

−(D′
12C1 + B′

2∆A)′(D′
12D12 + B′

2∆B2)
−1(D′

12C1 + B′
2∆A) (B.6.3)

and 


A − λI B2

C1 D12

∆ 0



 (B.6.4)

has full column rank for all |λ| ≥ 1.
1. Let K be any stabilizing state feedback control law (i.e., |λi(A−B2K)| < 1).

Show that u = −Kx results in ‖z‖2
2 = x′

0Px0, in which

P = (A − B2K)′P (A − B2K) + (C1 − D12K)′(C1 − D12K). (B.6.5)

Show that the choice ∆ = P satisfies (B.6.3) and (B.6.4).
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2. Let X2(k) be the solution to

X2(k) = A′X2(k + 1)A − L′(k)R−1(k)L(k) + C ′
1C1, X2(N + 1) = ∆,

R(k) = D′
12D12 + B′

2X2(k + 1)B2

L(k) = D′
12C1 + B′

2X2(k + 1)A.

Show that X2(k) ≤ X2(k + 1).
(Hint: Use the completion of squares identity on [0, N ] and [0, N + 1].)

3. Show that as k → −∞, X2(k) converges to a matrix X2 that satisfies the
algebraic Riccati equation

X2 = A′X2A − L′R−1L + C ′
1C1 (B.6.6)

R = D′
12D12 + B′

2X2B2

L = D′
12C1 + B′

2X2A.

Define u∗
k = −R−1Lxk and by completing the square show that

‖z‖2
2 = x′

0X2x0 + ‖R 1
2 (u − u∗)‖2

2

for any stabilizing controller.
4. Show that the control law uk = −FMxk with FM defined by

FM = R−1(N − M)L(N − M)

is stabilizing (i.e., |λi(A − BFM )|), for any finite M = 0, 1, . . ..
(Hint: First consider the case in which ∆ = 0 is allowed—use the fake alge-
braic Riccati technique. In the general case, it is useful to use the completion
of squares identity to show that (A − BFM )x = λx and XMx = 0 implies
that ∆λMx = 0.
Show also that the control law uk = −FMxk results in ‖z‖2

2 ≤ x0X2(N + 1−
M)x0.

5. Show that the control law uk = −R−1Lxk is stabilizing if and only if
[

A − ejθI B2

C1 D12

]
(B.6.7)

has full column rank for all real θ.
6. Conclude that a stabilizing controller that minimizes ‖z‖2

2 exists if and only
if (B.6.7) has full column rank for all real θ. Show that in this case the
minimizing control law is uk = −R−1Lxk and the optimal cost is x′

0X2x0.

Problem B.8. Consider the system (B.6.2). Let u◦ be the optimal control
associated with the cost function ‖z‖2

2,[0,N ] +x′
N+1∆xN+1 and let u∗ be the optimal

control associated with the cost function ‖z‖2
2,[0,N ] +x′

N+1X2xN+1. Here, X2 is any

solution to the Riccati equation (B.6.6).
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1. Using two applications of the completion of squares identity (see (B.6.1)),
show that

N∑

k=0

(uk − u∗
k)′R(uk − u∗

k) + x′
N+1(∆ − X2)xN+1

=
N∑

k=0

(uk − u◦
k)′R(k)(uk − u◦

k) + x′
0(X2(0, N + 1,∆) − X2)x0.(B.6.8)

By considering the problem of minimizing the left-hand side of the above
identify conclude that the solution of the Riccati equation

Γ(k) = (A − B2F )′
(
Γ(k + 1)

−Γ(k + 1)B2(R + B′
2Γ(k + 1)B2)

−1B′
2Γ(k + 1)

)
(A − B2F ),

(B.6.9)

with terminal condition Γ(N + 1) = ∆−X2 is Γ(k) = X2(k,N + 1,∆)−X2.
2. Verify that Γ(k) = X2(k,N + 1,∆)−X2 is indeed the solution to (B.6.9) by

subtracting the Riccati equations defining X2 and X2(k). It is not necessary
to assume the existence of any inverses other than R−1 and R−1(k).
(Hint: Write

L(k) = L + B′
2(X2(k + 1) − X2)A

R(k) = R + B′
2(X2(k + 1) − X2)B2.)

Problem B.9. Suppose X∞ ≥ 0 satisfying

X∞ = A′X∞A − L′R−1L + C
′
JC

R = D
′
JD + B′X∞B

L = D
′
JC + B′X∞A

exists. Partition R and L as in the text, and suppose ∇ = R1 − R′
2R

−1
3 R2 < 0.

Suppose also that X2 is the stabilizing solution to the LQ Riccati equation

X2 = C ′
1C1 + A′X2A

− (D′
12C1 + B′

2X2A)′(D′
12D12 + B′

2X2B2)
−1(D′

12C1 + B′
2X2A).

1. Show that Γ = X∞ − X2 satisfies

Γ = (A − B2R
−1
3 L2)

′(Γ + ΓB2(R3 − B′
2ΓB2)

−1)B′
2Γ

)
(A − B2R

−1
3 L2)

− L′
∇∇−1L∇.

2. Show that X∞ −X2 ≥ 0 implies that A−B2R
−1
3 L2 is asymptotically stable.
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3. Show that (X∞ − X2)x = 0 implies (A − BR−1L)x = (A − B2R
−1
3 L2)x.

Problem B.10.
1. Show that Γ(k) = X∞ − X∞(k) is the solution to the Riccati difference

equation

Γ(k) = (A − BR−1L)′
(
Γ(k + 1)

+ Γ(k + 1)B(R − B′Γ(k + 1)B)−1B′Γ(k + 1)
)
(A − BR−1L),

with terminal condition Γ(N + 1) = X∞ − X2.
(Hint: Write

L(k) = L − B′(X∞ − X∞(k + 1))A

R(k) = R − B′(X∞ − X∞(k + 1))B.)

2. Show that X∞ = limN→∞ X∞(k,N + 1,X2) is such that A − BR−1L is
asymptotically stable without assuming that X∞ − X∞(k,N + 1,∆) is non-
singular for all k ≤ N + 1.
(Hint: Complete the square on [k,N] using X∞(k,N + 1,X2) and also using
X∞. Use these two identities to show that if xk ∈ ker

(
X∞ −X∞(k,N,X2)

)
,

then xN+1 ∈ ker
(
X∞ − X2

)
.)

Problem B.11. Show that the `2[0, N ]-adjoint of the discrete-time system

[
xk+1

zk

]
=

[
A(k) B(k)
C(k) D(k)

] [
xk

wk

]
, x0 = 0,

is [
pk−1

yk

]
=

[
A′(k) C ′(k)
B′(k) D′(k)

] [
pk

uk

]
, pN = 0.

Problem B.12. Verify equation (B.3.7).
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