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Preface

Plant variability and uncertainty are formidable adversaries. An anecdote which
serves as a reminder of this fact can be found in Harold Black’s retrospective on
his invention of the feedback amplifier [30]. At one point, he describes the operat-
ing procedure for his newly invented feedforward amplifier: “...every hour on the
hour—twenty four hours a day—somebody had to adjust the filament current to its
correct value. In doing this, they were permitted plus or minus 0.5 to 1 dB variation
in the amplifier gain, whereas, for my purpose the gain had to be absolutely per-
fect. In addition, every six hours it became necessary to adjust the battery voltage,
because the amplifier gain would be out of hand. There were other complications
too...”. Despite his subsequent discovery of the feedback principle and the tireless
efforts of many researchers, the problem of plant variability and uncertainty is still
with us.

Systems that can tolerate plant variability and uncertainty are called robust—
Black’s original feedforward amplifier was not robust. The aim of this book is to
present a theory of feedback system analysis, design and synthesis that is able to
optimize the performance and robustness of control systems. We contrast this with
traditional optimal control methods, such as the Linear Quadratic Gaussian (LQG)
theory, which optimizes performance but not robustness.

In determining the scope of this endeavour, we see two considerations as being
paramount:

1. The theory should offer a quantitative measure of performance and robustness
that leads directly to an optimization problem for which a synthesis procedure
is available. Once the design objectives are specified, the synthesis theory
should determine whether or not they can be achieved. If they can, the theory
should synthesize a controller that meets them.

2. The theory must be accessible to engineers. We believe there is little point
in offering a theory that, because of its complexity, is unlikely to find its way
into engineering practice.

Over the last fifteen years singular values have been developed as a tool for
analyzing the robustness and performance of feedback systems. We shall argue

xi
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that they form the core of an accessible yet advanced optimal control theory, be-
cause they facilitate a natural generalization of many classical single-loop feedback
analysis ideas. In general terms, the controller should be chosen so that the closed-
loop transfer function matrix has certain characteristics that are derived from the
specifications. An optimal design minimizes the maximum singular value of the
discrepancy between the closed-loop transfer function matrix and the desired loop
shape, subject to a closed-loop stability constraint. This is an H., optimization
problem, for which considerable mathematical theory is available.

The mathematical prerequisites for studying the book are modest, because for
the most part we deal with finite dimensional linear systems. The background as-
sumed of any reader is: (a) linear algebra and matrix theory; (b) linear differential
equations; (c) a course in classical control theory that covers transfer functions,
frequency responses, Bode plots and the Nyquist stability theorem; (d) linear sys-
tems theory, including a treatment of state-space system descriptions. The notions
of controllability and observability are used without explanation. We recommend
that students have some exposure to linear systems and optimal control at a gradu-
ate level before tackling the synthesis theory chapters of this book. Chapters 1 and
2 only require a modest background and could be included in senior undergraduate
or Masters level courses.

A good idea of the scope of the book may be obtained from a perusal of the list
of contents. Chapter 1 introduces the idea of H., optimization by considering a
number of simple scalar examples which are solved using Nevanlinna-Pick-Schur in-
terpolation theory. In this way the reader knows what H ., optimal control is about
after reading only a few pages. Chapter 2 deals with the use of singular values in
multivariable control system design. A multivariable generalization of the Nyquist
stability theorem and the interpretation of the minimum singular value of a matrix
as a measure of the distance to a singular matrix are used to establish robustness
results for linear time-invariant systems. The interpretation of the maximum sin-
gular value as the maximum gain is then used to show how performance issues may
be addressed. Chapter 3 reviews background material on signals and systems and
introduces the small gain theorem and the bounded real lemma. The small gain
theorem states that stable systems can be connected to form a stable closed-loop if
the loop gain product is less than unity; it is the basis for the general robust sta-
bility results. The bounded real lemma gives a condition for a linear time-invariant
system to have less than unity gain. Chapter 4 discusses linear fractional transfor-
mations and their role in control systems. It is argued that various closed-loop and
open-loop design problems can be posed in terms of a linear fractional transforma-
tion involving a fixed system known as the generalized plant and a to-be-designed
system known as the controller. Linear fractional transformations therefore provide
a general framework for controller synthesis theory and for computational software.
The synthesis problem we consider is to find a controller that achieves a specified
norm bound on a linear fractional transformation involving the controller and the
generalized plant. Because the established theory and sign conventions of linear
fractional transformations induce a positive sign convention on feedback problems,



PREFACE xiii

we use a positive feedback sign convention throughout the book.

Chapters 5 to 8 develop the control system synthesis theory. We begin with a
brief treatment of the Linear Quadratic Guassian problem in Chapter 5. Chapters 6,
7 and 8 are the core of the book and concentrate on the synthesis of controllers that
meet Hoo-norm objectives. The main result is that a controller that satisfies the
objectives exists if and only if two Riccati equations have appropriate solutions.
In this case, all controllers that satisfy the objectives can be given in terms of
a linear fractional transformation involving a stable, norm bounded, but otherwise
unconstrained, parameter. The development of the LQG and H, synthesis theories
is split into two parts. In the first, we analyze a finite-horizon version of the problem.
For this part the plant may be assumed to be time-varying. The second part tackles
the infinite-horizon extension by invoking limiting arguments. The infinite-horizon
results are only developed in a time-invariant setting—we restrict ourselves to time-
invariant plant before taking limits. Our approach to the synthesis theory is based,
therefore, on time-domain techniques which are deeply rooted in the existing and
widely known theory of linear quadratic optimal control. The application to H
optimization requires that we consider a quadratic objective function which is not
positive definite, but which connects precisely with the theory of linear, zero-sum
differential games with quadratic pay-off functions. This time-domain, optimal-
control based approach has several advantages. Firstly, the techniques are widely
known and are covered in excellent texts such as [11], [33] and [125]. Secondly,
they require almost no advanced mathematical theory. For the most part, a solid
background in linear algebra and differential equations is sufficient. Thirdly, the
main ideas and equations can be developed in a finite time horizon setting in which
stability issues do not arise. The sufficiency theory in this case is almost trivial,
amounting to little more than “completing the square”. Finally, they are applicable
to time-varying problems and are amenable to generalization to nonlinear systems.

In order to provide the reader with some insight into the alternative approaches
that have been developed, we have: (a) included two complete proofs of the bounded
real lemma, one algebraic and one based on optimal control; (b) covered the four-
block general distance problem in some detail; (c¢) explored the connection with
factorization methods in several of the problems. The approach based on the four-
block problem is given fairly detailed coverage because it is the only approach that
has yielded a complete treatment of the optimal cases and because it is able to
deal (easily) with problems involving optimization subject to the constraint that
the solution contains no more than a prespecified number of unstable poles. This
problem is of interest in frequency weighted model reduction applications which are
also covered.

Chapters 9 to 11 deal with the approximation of high-order systems by others of
lower order. This approximation process is known as model reduction. The inclusion
of model reduction is motivated by our belief that control system design cannot
be separated from the process of plant modelling. Any serious application of the
optimal synthesis methods in this book is bound to involve some model reduction. In
addition, the similarity of the mathematical techniques involved in model reduction
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and H,, optimal control makes it appropriate to include this material.

Chapter 12 contains two design case studies. The first considers the design of a
controller to stabilize the vertical dynamics of the elongated plasma in a tokamak
fusion reactor and the second considers the design of a composition controller for a
high-purity distillation column.

For completeness, internal stability theory is covered in Appendix A, although
an advantage of our approach to the synthesis problem is that a detailed knowledge
of internal stability theory is not required. Appendix B offers a brief treatment of
the discrete-time synthesis theory.

Section summaries are included to help readers review their progress and high-
light the main issues. Each chapter ends with student exercises; some are straight-
forward, while others are much more challenging. The easy exercises offer practise
in formula manipulation and are designed to help students increase their confidence
in the subject. On the whole, they add only minor embellishments to the text.
On the other hand, the more difficult exercises expand the text and even develop
aspects of the subject we could not touch on in the main body. Answering the more
difficult problems requires real work—mastering control theory is not a spectator
sport! The exercises are an integral part of the text and there is no doubt that
a serious attempt to answer them will greatly improve one’s understanding of the
subject. A solution to each of the problems is available in a separate solutions
manual.

There is enough material in Chapters 1 to 8 for a 45 hour course in H, controller
synthesis. If time is short, or if students have had recent exposure to linear quadratic
optimal control theory, Chapter 5 can be omitted. The material in Chapters 9 to
11 is self contained (excepting for some elementary material in Chapters 3 and 4)
and could be used for a 20 hour course on model reduction. Chapter 2 is self-
contained and could be used as the basis of 2 to 5 hours of lectures on singular
values in a course on multivariable control systems. Indeed, this chapter has evolved
from lecture notes that have been used in the Masters course at Imperial College.
Chapter 12 can also be incorporated in a course on multivariable control system
design and will, we hope, be of interest to engineers who want to find out how these
new methods can be used on real-life problems.

Our aim in writing this book is to generate an accessible text that develops along
a single line of argument. In any exercise of this sort, the selection of material is
bound to involve compromise. We have made no attempt to review all the material
that could be construed as being relevant. Rather, we have restricted our attention
to work that we believe will be of most help to readers in developing their knowledge
of the subject, and to material that has played a direct role in educating us or in
helping us prepare the manuscript. In the case of well established theory, we have
referred to well known texts rather than duplicate their extensive bibliographies.
Despite our best efforts, there is bound to be important work that has escaped our
attention. To those authors, we offer our sincerest apologies.

This work is the result of seven years of collaboration and every part of this
book is the result of our joint efforts.
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1

Introduction

1.1 Goals and origins of H,, optimal control

Most engineering undergraduates are taught to design proportional-integral-deriva-
tive (PID) compensators using a variety of different frequency response techniques.
With the help of a little laboratory experience, students soon realize that a typical
design study involves juggling with conflicting design objectives such as the gain
margin and the closed-loop bandwidth until an acceptable controller is found. In
many cases these “classical” controller design techniques lead to a perfectly satis-
factory solution and more powerful tools hardly seem necessary. Difficulties arise
when the plant dynamics are complex and poorly modelled, or when the perfor-
mance specifications are particularly stringent. Even if a solution is eventually
found, the process is likely to be expensive in terms of design engineer’s time.

When a design team is faced with one of these more difficult problems, and
no solution seems forthcoming, there are two possible courses of action. These
are either to compromise the specifications to make the design task easier, or to
search for more powerful design tools. In the case of the first option, reduced
performance is accepted without ever knowing if the original specifications could
have been satisfied, as classical control design methods do not address existence
questions. In the case of the second option, more powerful design tools can only
help if a solution exists.

Any progress with questions concerning achievable performance limits and the
existence of satisfactory controllers is bound to involve some kind of optimization
theory. If, for example, it were possible to optimize the settings of a PID regulator,
the design problem would either be solved or it would become apparent that the
specifications are impossible to satisfy (with a PID regulator). We believe that
answering existence questions is an important component of a good design method-
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ology. One does not want to waste time trying to solve a problem that has no
solution, nor does one want to accept specification compromises without knowing
that these are necessary. A further benefit of optimization is that it provides an
absolute scale of merit against which any design can be measured—if a design is
already all but perfect, there is little point in trying to improve it further.

The aim of this book is to develop a theoretical framework within which one
may address complex design problems with demanding specifications in a systematic
way.

Wiener-Hopf-Kalman optimal control

The first successes with control system optimization came in the 1950s with the
introduction of the Wiener-Hopf-Kalman (WHK) theory of optimal control.! At
roughly the same time the United States and the Soviet Union were funding a
massive research program into the guidance and maneuvering of space vehicles. As
it turned out, the then new optimal control theory was well suited to many of the
control problems that arose from the space program. There were two main reasons
for this:

1. The underlying assumptions of the WHK theory are that the plant has a
known linear (and possibly time-varying) description, and that the exoge-
nous noises and disturbances impinging on the feedback system are stochastic
in nature, but have known statistical properties. Since space vehicles have
dynamics that are essentially ballistic in character, it is possible to develop
accurate mathematical models of their behavior. In addition, descriptions for
external disturbances based on white noise are often appropriate in aerospace
applications. Therefore, at least from a modelling point of view, the WHK
theory and these applications are well suited to each other.

2. Many of the control problems from the space program are concerned with
resource management. In the 1960s, aerospace engineers were interested in
minimum fuel consumption problems such as minimizing the use of retro-
rockets. One famous problem of this type was concerned with landing the
lunar excursion module with a minimum expenditure of fuel. Performance
criteria of this type are easily embedded in the WHK framework that was
specially developed to minimize quadratic performance indices.

Another revolutionary feature of the WHK theory is that it offers a true synthesis
procedure. Once the designer has settled on a quadratic performance index to be
minimized, the WHK procedure supplies the (unique) optimal controller without
any further intervention from the designer. In the euphoria that followed the intro-
duction of optimal control theory, it was widely believed that the control system

ILinear Quadratic Gaussian (LQG) optimal control is the term now most widely used for this
type of optimal control.
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designer had finally been relieved of the burdensome task of designing by trial and
error. As is well known, the reality turned out to be quite different.

The wide-spread success of the WHK theory in aerospace applications soon led
to attempts to apply optimal control theory to more mundane industrial problems.
In contrast to experience with aerospace applications, it soon became apparent
that there was a serious mismatch between the underlying assumptions of the WHK
theory and industrial control problems. Accurate models are not routinely available
and most industrial plant engineers have no idea as to the statistical nature of the
external disturbances impinging on their plant. After a ten year re-appraisal of the
status of multivariable control theory, it became clear that an optimal control theory
that deals with the question of plant modelling errors and external disturbance
uncertainty was required.

Worst-case control and H,, optimization

Hso optimal control is a frequency-domain optimization and synthesis theory that
was developed in response to the need for a synthesis procedure that explicitly
addresses questions of modelling errors. The basic philosophy is to treat the worst
case scenario: if you don’t know what you are up against, plan for the worst and
optimize. For such a framework to be useful, it must have the following properties:

1. It must be capable of dealing with plant modelling errors and unknown dis-
turbances.

2. It should represent a natural extension to existing feedback theory, as this will
facilitate an easy transfer of intuition from the classical setting.

3. It must be amenable to meaningful optimization.
4. Tt must be able to deal with multivariable problems.

In this chapter, we will introduce the infinity norm and H., optimal control with the
aid of a sequence of simple single-loop examples. We have carefully selected these
in order to minimize the amount of background mathematics required of the reader
in these early stages of study; all that is required is a familiarity with the mazimum
modulus principle. Roughly speaking, this principle says that if a function f (of a
complex variable) is analytic inside and on the boundary of some domain D, then
the maximum modulus (magnitude) of the function f occurs on the boundary of the
domain D. For example, if a feedback system is closed-loop stable, the maximum
of the modulus of the closed-loop transfer function over the closed right-half of the
complex plane will always occur on the imaginary axis.

To motivate the introduction of the infinity norm, we consider the question
of robust stability optimization for the feedback system shown in Figure 1.1. The
transfer function g represents a nominal linear, time-invariant model of an open-loop
system and the transfer function k represents a linear, time-invariant controller to be
designed. If the “true” system is represented by (1+4d)g, we say that the modelling



4 INTRODUCTION

Figure 1.1: The problem of robust stability optimization.

error is represented by a multiplicative perturbation § at the plant output. For
this introductory analysis, we assume that & is an unknown linear, time-invariant
system.

Since

z=(1- gk:)_lgk:w,

the stability properties of the system given in Figure 1.1 are the same as those given
in Figure 1.2, in which
h=(1-gk) 'gk.

If the perturbation § and the nominal closed-loop system given by h are both

Figure 1.2: The small gain problem.

stable, the Nyquist criterion says that the closed-loop system is stable if and only
if the Nyquist diagram of hd does not encircle the +1 point. We use the +1 point
rather than the —1 point because of our positive feedback sign convention. Since
the condition
sup |h(jw)d(jw)| < 1. (1.1.1)
w

ensures that the Nyquist diagram of hé does not encircle the 41 point, we conclude
that the closed-loop system is stable provided (1.1.1) holds.
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Since 4 is unknown, it makes sense to replace (1.1.1) with an alternative sufficient
condition for stability in which h and § are separated. We could for example test
the condition

sup (ju)| sup|8(ji)| < 1.

If 6 is stable and bounded in magnitude, so that
sup [8(jw)| = M,

the feedback loop given in Figure 1.1 will be stable provided a stabilizing controller
can be found such that

1
h(j iy
Slipl (Jw)l < Y

The quantity sup,, |h(jw)| satisfies the axioms of a norm, and is known as the
infinity norm. Specifically,
[Rllec = sup [R(jw)[.
w

Electrical engineers will immediately recognize ||h|| as the highest gain value on a
Bode magnitude plot. The quantity || - || is & norm, since it satisfies the following
axioms:

1. |h|lcc > 0 with ||h||s = 0 if and only if h = 0.
2. |lah||x = |||l for all scalars a.

3. [[h+glleo < [Pl + llglloo-

In addition, [| - [|o satisfies

4. [[hglleo < llhllollg]ls-

The fourth property is the crucial submultiplicative property which is central to all
the robust stability and robust performance work to be encountered in this book.
Note that not all norms have this fourth property.

With this background, the optimal robust stability problem is posed as one
of finding a stabilizing controller k that minimizes ||(1 — gk)™ 'gk|/s. Note that
k = 0 gives ||(1 — gk) ' gk||se = 0 and is therefore optimal in this sense provided the
plant itself is stable. Thus, when the plant is stable and there are no performance
requirements other than stability, the optimal course of action is to use no feedback
at alll When k = 0 is not allowed because the plant is unstable, the problem is more
interesting and the optimal stability margin and the optimal controller are much
harder to find. We will return to the analysis of this type of problem in Section 1.4.

In order to lay the groundwork for our analysis of optimal disturbance attenu-
ation and optimal stability robustness, we consider the optimal command response
problem. This problem is particularly simple because it contains no feedback. De-
spite this, it contains many of the essential mathematical features of more difficult
(feedback) problems.
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1.2 Optimizing the command response

As an introduction to the use of the infinity norm in control system optimization, we
analyze the design of reference signal prefilters in command tracking applications.
This is our first example of an H, optimal controller synthesis problem.

Figure 1.3: Command response optimization.

In the configuration illustrated in Figure 1.3, we suppose that the plant model
g is a given stable rational transfer function and that h is a given stable rational
transfer function with desired command response properties. The design task is
to find a stable rational prefilter with transfer function f such that |h — gf|~ is
minimized. An unstable prefilter is unacceptable in practical applications because
it results in unbounded control signals and actuator saturation.

In the case that g has no zeros in the closed-right-half plane, the solution is easy
since we may simply set f = g~'h. If g has right-half-plane zeros, however, the
plant inverse leads to an unstable prefilter unless the right-half-plane poles of g—!
happen to be cancelled by zeros of h. Thus, when g has right-half-plane zeros, the
requirement that the prefilter be stable forces us to accept some error between g f
and h which we denote

e=h—gf. (1.2.1)

This gives
f=g'(h—-e). (1.2.2)
If the right-half-plane zeros of g are z1, 22, ..., 2z, and are of multiplicity one, the

prefilter will be stable if and only if

e(z;) = h(z), i=1,2,...,m. (1.2.3)

This is because the unstable poles of g~' will be cancelled by the zeros of h — e.

The conditions given in (1.2.3) are called interpolation constraints. Any error
system e resulting from a stable prefilter must satisfy the conditions (1.2.3) and,
conversely, the satisfaction of these constraints ensures that all the right-half-plane
poles of g=! will be cancelled by zeros of h — e when forming the prefilter. The
optimization problem is to find a stable transfer function e of minimum infinity
norm such that the interpolation constraints given in (1.2.3) are satisfied. This
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is an example of a Nevanlinna-Pick interpolation problem. A general solution to
problems of this type is complicated and was found early this century. Once the
optimal error function is found, f follows by back substitution using (1.2.2). We
shall now consolidate these ideas with a numerical example.

Example 1.2.1. Suppose g and h are given by

s—1 s+1
g= o h= :
s+ 2 s+3
The transfer function g has a single zero at s = 1, so there is a single interpolation

constraint given by
1 1
s+3/ |1 2

Since e is required to be stable, the maximum modulus principle ensures that

lelloc = sup e(s)]
s=jw

= sup |e(s)|
R.(s)>0

> le()] = 3.

The minimum infinity norm interpolating function is therefore the constant function
e = $ and the associated norm is ||e||oc = 3. Back substitution using (1.2.2) yields

Fo s+2 s+17l 71 s+2
S \s—1 s+3 2) 2\s+3)° \V4

Interpolating a single data point is particularly simple because the optimal inter-
polating function is a constant. Our next example, which contains two interpolation
constraints, shows that the general interpolation problem is far more complex.

Example 1.2.2. Consider the command response optimization problem in which

(s— 1)(s — 2) 2

(s+3)2 ~ 3(s+3)°

The transfer function g has right-half-plane zeros at z; = 1 and 2z, = 2, so we must
find a stable transfer function e of minimum norm such that:

e(l)=h(1) = % =h (1.2.4)
and 9
e(2)=h(2) = = ho. (1.2.5)
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It follows from the maximum modulus principle that any such e must satisfy

1 2 1
lleflcc > max < =, — » = —.
6" 15 6

Since we have two values to interpolate, simply setting e = % will not do!
The Nevanlinna-Pick interpolation theory says that there is a stable interpolat-

ing function e with ||e||w <+ if and only if the Pick matriz given by

2—h? ¥2—hihs
II _ 2 3
(’Y) 72 —hyihy 7*—h3

3 4

is nonnegative definite. Since II(vy;) > I(72) if 41 > 72, our desired optimal norm
is the largest value of 7 for which the Pick matrix II(v) is singular. Alternatively,
the optimal value of v (call it 7op¢) is the square root of the largest eigenvalue of

the symmetric matrix pencil
hi haiho
_ 2 3
2
hihs hs
3

ng
4

Carrying out this calculation gives v, ~ 0.207233. The Nevanlinna-Pick theory
also gives the optimal interpolating function as

a— S
e:’)/opt a+s 9

o hi
Zi’y pt + (

= ol

Wl D=

with a given by

in which ¢ is either 1 or 2)
Yopt — Vi
9.21699.

Q

(It is easy to check that this e satisfies the interpolation constraints.) Notice that
the optimal interpolating function is a constant multiplied by a stable transfer
function with unit magnitude on the imaginary axis, which is a general property of
optimal interpolating functions. Since [|¢5[lcc = 1, it is clear that [ellc = Yop-
Since f = g~ !(h — e), it follows that the optimal prefilter is

Fo s+ 3
= Yopt st a . v

We conclude from this example that an increase in the number of interpolation
constraints makes the evaluation of the interpolating function much harder. Despite
this, the error function retains the “constant magnitude on the imaginary axis”
property associated with constants. We will not address (or require) a general
solution to the Nevanlinna-Pick interpolation problem, although the solution to
the Hs, optimal control problem we shall develop also provides a solution to the
Nevanlinna-Pick interpolation problem. We shall say more about this in Chapter 6.
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1.3 Optimal disturbance attenuation

The aim of this section is to solve a simple H, control problem involving feedback by
recasting the optimal disturbance attenuation problem as an optimization problem
constrained by interpolation conditions.

In the system illustrated in Figure 1.4, it is assumed that the plant model g
is a given stable rational transfer function and that the frequency domain signal d
represents some unknown disturbance. The aim is to find a compensator k with the
following two properties:

1. It must stabilize the loop in a sense to be specified below.

2. It must minimize the infinity norm of the transfer function that maps d to y.

Figure 1.4:  The disturbance attenuation problem.

If w =0, it is immediate from Figure 1.4 that
y = (1-gk)'d
= (L+gk(1—gk) )d,

and we note that the closed-loop transfer function is a nonlinear function of k. To
restore an affine parametrization of the type given in (1.2.1), we set

q=k(1—gk)™*, (1.3.1)

which is the transfer function between the disturbance d and the plant input u. The
closed-loop mapping d to y may now be written as

y = (1+gq)d, (1.3.2)

which is affine in the unknown parameter q. Before continuing, we need to introduce
the notion of internal stability and discover the properties required of q in order
that the resulting controller be internally stabilizing.
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1.3.1 Internal stability theory for stable plants

Definition 1.3.1 The feedback system given in Figure 1.4 is called internally stable
if each of the four transfer functions mapping w and d to u and y are stable.

If the feedback system in Figure 1.4 is internally stable, we say that k is an
internally-stabilizing controller for g.2

Internal stability is a more stringent stability requirement than the simple input-
output stability of closed-loop transfer functions, because it also bans all right-half-
plane pole-zero cancellations between cascaded subsystems within the feedback loop.

Example 1.3.1. The transfer functions g = (;ﬁ) and k = (%) produce the

stable transfer function (1 — gk)™! = (25;:12)) mapping d to y. However, the

= (L2, which
is unstable due to the closed-loop pole at the origin. We therefore conclude that the
system in Figure 1.4 is not internally stable for this particular plant and controller
combination, although it is input-output stable. \V4

closed-loop transfer function between d and u is k(1 —gk) ™!

We will now prove our first result on internal stability.

Lemma 1.3.1 The feedback loop in Figure 1.4 is internally stable if and only if

[ _19 _1k ]1 (1.3.3)

is stable.
Proof. It is immediate from Figure 1.4 that

u = ky+w
= gu+d,

or equivalently

wo| 1 -k u
d| | -g 1 Y
This gives
u]l [ 1 k] ' w
yl| | —g 1 d
and the result follows from Definition 1.3.1. [ |

2The terms internally-stabilizing controller and stabilizing controller are synonymous in this
book—internally-stabilizing controller is used to draw special attention to the requirement of
internal stability.
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We will now discover the properties required of the g-parameter defined in (1.3.1)
for internal stability in the stable plant case. Since

A R B P

- [
- [é 1fgq][; (1)]

on substituting from (1.3.1). Since g is assumed stable, it is apparent that

[ —19 _1k }1

is stable if and only if q is stable. This gives the following result:

we get

Lemma 1.3.2 Suppose g is stable. Then k is an internally-stabilizing controller for
the feedback loop in Figure 1.4 if and only if ¢ = k(1—gk)~! is stable. Equivalently,
k is an internally-stabilizing controller if and only if k = q(1+qg)~" for some stable

q.

1.3.2 Solution of the disturbance attenuation problem

We may now return to the disturbance attenuation problem given in (1.3.2). Since
the transfer functions that maps d to y is given by

h=1+ggq, (1.3.4)
one obtains
a=g '(h—1).
For the loop to be internally stable, we need to ensure that q is stable.
When g~! is stable we could, in principle, set ¢ = —g~', since this results

in h = 0 and perfect disturbance attenuation. Unfortunately, such a q is not
achievable by a realizable controller since k has infinite gain. We may, however, use
q = —(1—¢€)g~! for an arbitrarily small e. This gives h = € and

1—e 4

k=—-(—)g

€

The controller is simply the negative of the inverse of the plant together with an
arbitrarily high gain factor. This is not a surprising conclusion, because high gain
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improves disturbance attenuation and we know from classical root locus theory that
a plant will be closed-loop stable for arbitrarily high gain if all the plant zeros are
in the open-left-half plane.

In the case that g—! is not stable, g will be stable if and only if

h(z)=1, i=12,...,m, (1.3.5)

for each zero, z;, of g such that R.(z;) > 0 (provided each of the zeros z; is of
multiplicity one). The optimal disturbance attenuation problem therefore requires
us to find a stable closed-loop transfer function h, of minimum infinity norm, which
satisfies the interpolation constraints given in (1.3.5). It follows from (1.3.4) that
the corresponding optimal g may be interpreted as the best stable approximate
inverse of —g, in the infinity norm sense.

It follows from the maximum modulus principle that the constraints h(z;) = 1
make it impossible to achieve ||h||o < 1 when the plant has a right-half-plane zero.
Since the plant is stable, we can set k = 0 to achieve y = d, which is optimal
in this case. The presence of a right-half-plane zero makes broadband disturbance
attenuation impossible.

If some spectral information is available about the disturbance d, one may be
able to improve the situation by introducing frequency response weighting. If d
is bandlimited, we could seek to minimize |[wh||s in which w is some low-pass
stable and minimum phase weighting function. If ||wh|« < 1, it follows that
|h(jw)| < |lw™t(jw)| for all real w. Since |w~!(jw)| is small at low frequency due
to the low pass nature of w, it follows that |h(jw)| will also be small there. The
idea is that |h(jw)| should be small over the range of frequencies for which |d(jw)|

o~

is large. If we set h = wh, one obtains
i\L = w + wgq

and consequently that R
g=g 'wl(h—w).

Under these conditions the g-parameter will be stable if and only if the interpolation
constraints R

h(z;) = w(z), 1=1,2,...,m,
are satisfied. If the right-half-plane plant zeros occur beyond the bandwidth of the
weighting function, the w(z;)’s will be small and it is at least possible that an h can
be found such that ||h|js < 1. Since [|h]o <1 = |h(jw)| < [w=!(jw)| for all w,
we conclude that |h(jw)| < € whenever |w(jw)| > 1/e. Consequently, by designing
w, one can guarantee an appropriate level of disturbance attenuation provided a
controller exists such that ||h|w < 1. Conversely, if w(z;) > 1 for at least one z;,
we must have ||i\LHoo > 1 and |w(jw)| > 1/€ no longer ensures |h(jw)| < €.
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Main points of the section

1. The optimal disturbance attenuation problem is a feedback prob-
lem and it is possible to replace the nonlinear parametrization of
h in terms of stabilizing controllers k, by an affine parametrization
of h in terms of stable functions q. So far we have only established
this fact for the stable plant case, but it is true in general.

2. The optimization problem requires us to find a stable transfer func-
tion h of minimum norm that satisfies the interpolation constraints
given in (1.3.5). This is a classical Nevanlinna-Pick interpolation
problem and satisfaction of the interpolation constraints guarantees
the internal stability of the feedback system. We note that mini-
mizing ||h||« is equivalent to finding a stable approximate inverse
of the plant.

3. If the plant has a right-half-plane zero, the constraint h(z;) = 1
makes it impossible to achieve ||h||oc < 1 thereby attenuating un-
known disturbances. In this case the best one can do is set k = 0,
since this will give y = d. If some spectral information about the
disturbance is available, the situation may be improved if the right-
half-plane zero is outside the bandwidth in which there is significant
disturbance energy.

1.4 A robust stability problem

When a design team is faced with the problem of designing a controller to meet
certain closed-loop performance specifications, they will hardly ever have a perfect
model of the plant. As a consequence, the design process is complicated by the fact
that the controller has to be designed to operate satisfactorily for all plants in some
model set. The most fundamental of all design requirements is that of finding a
controller to stabilize all plants in some class; we call this the robust stabilization
problem. To set this problem up in a mathematical optimization framework, we
need to decide on some representation of the model error. If the nominal plant
model is g, we can use an additive representation of the model error by describing
the plant as g +  in which the stable transfer function é represents the unknown
dynamics; this is an alternative to the multiplicative description of model error
given in Section 1.1.

Let us consider the robust stabilization problem in which some nominal plant
model g is given, and we seek a stabilizing controller for all plants of the form g+ &
in which the allowable ||d]| is maximized. A controller that maximizes [|d||o is
optimally robust in the sense that it stabilizes the largest ball of plants with center
g. A block diagram of the set-up under consideration is given in Figure 1.5 and

z=(1-kg) 'kuw.
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Figure 1.5: A robust stability problem.

If 6 and the nominal closed-loop system are stable, it follows from an earlier “small
gain” argument based on the Nyquist criterion that the perturbed closed loop will
also be stable provided

[18]lcll(1 = kg) ™" Eloo < 1.

The optimal robustness problem therefore requires a stabilizing controller that min-
imizes ||(1 — kg)~'k||co-

As before, in the case that the plant is stable, the solution is trivially obtained
by setting k = 0; note, however, that k = 0 offers no protection against unstable
perturbations however small! Before substituting

q= (1 - k:g)ilka

we need the conditions on g that lead to a stable nominal closed-loop system. The
mere stability of q is not enough in the unstable plant case. Since

4[5

-9 1 (1+4q9)9g 1+gq |’

it is clear that the nominal closed loop will be stable if and only if
1. q is stable,
2. gq is stable, and
3. (14 qg)g is stable.

If g is stable and Condition 1 is satisfied, Conditions 2 and 3 follow automatically.
If (p1,p2,...,pm) are the right-half-plane poles of g, it follows from Condition 2
that internal stability requires satisfaction of the interpolation constraints

2. q(pi))=0,fori=1,2,...,m,
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while Condition 3 demands
3. (1+gq)(p;))=0,fori=1,2,...,m.

To keep things simple, we will assume for the present that each unstable pole has
multiplicity one and that R.(p;) > 0.

Since the closed-loop transfer function of interest is q, the solution of the robust
stabilization problem requires a stable g of minimum infinity norm that satisfies
the interpolation constraints of Conditions 2’ and 3.

As we will now show, it is possible to reformulate the problem so that there is
one, rather than two, interpolation constraints per right-half-plane pole. To effect
the reformulation, we introduce the completely unstable function®

a= ﬁ (p—*s> (1.4.1)

i — S
=1 \Pi

which has the property that |a(jw)| = 1 for all real w. If we define ¢ := aq it
follows that:

L lgllsc = 14l
2. If q is stable, so is q.

3. If q is stable, g(p;) = 0, because ¢ = q[[\~, (g;i)

4. q(p;) = —(ag™")(pi) = (1 +qg)(p;) = 0.

In its new form, the robust stabilization problem is one of finding a stable g of
minimum infinity norm such that

Zl(pz) = _(agil)(pi) 1= 1327"'7m? (142)

which is yet another Nevanlinna-Pick interpolation problem . The corresponding
(optimal) controller may be found by back substitution as

k=(a+q9) 'q (1.4.3)
Example 1.4.1. Suppose the plant is given by

_ s+ 2
I= G DG -1)

Since there is a single right-half-plane pole at +1, it follows that the allpass function
given in equation (1.4.1) is
( 1+ s)
a —=
1-s

3Such functions are sometimes known as Blaschke products.
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in this particular case. As a consequence

-1 _ (S+1)2
—ag =y

and the interpolation condition follows from (1.4.2) as

4
~ _ —1 _
a(1) = —ag™'|_, = 3.
It is now immediate from the maximum modulus principle that ||qllcc > 4/3, so

that g = 4/3 is optimal. Substitution into (1.4.3) yields
4(s+1)

(3s +5)

as the optimal controller that will stabilize the closed-loop system for all stable §
such that ||6]|e < 3/4. \V/

Our second robust stabilization example shows that it is impossible to robustly
stabilize a plant with a right-half-plane pole-zero pair that almost cancel. We expect
such a robust stability problem to be hard, because problems of this type have an
unstable mode that is almost uncontrollable.

Example 1.4.2. Consider the unstable plant

g=<s_a)7 a1,
s—1

which has a zero at a. As with the previous example, we require

(1+s>
a =
1-s

_1 s+1
T \s—a)-

The only interpolation constraint is therefore

which gives

2
1—a

q(l)=—-ag™ | _, =

Invoking the maximum modulus principle yields § = 2/(1 — «) as the optimal
interpolating function. Substitution into (1.4.3) gives
2

k:
l1+ao

as the optimal controller. The closed loop will therefore be stable for all stable §
such that ||6]|cc < |(1 — @)/2|. From this we conclude that the stability margin
measured by the maximum allowable ||d]|~ vanishes as a — 1. \V/
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Our final example considers the robust stabilization of an integrator.

Example 1.4.3. Consider the case of

9=
S

At first sight this appears to be an awkward problem because the interpolation
constraint occurs at s = 0, and the allpass function in (1.4.1) degenerates to 1.
Suppose we ignore this difficulty for the moment and restrict our attention to con-
stant controllers given by k& < 0. This gives

with

q=(1-kg) 'k=

s—k

k
1-kg) ke = |—
(1~ kg) k]| 2

= [kl

§=00

To solve the problem we observe that if we want to stabilize the closed loop for any
stable d such that |||l < 1/€, we simply set k = —¢; € may be arbitrarily smalll In
problems such as this one, which has an interpolation constraint on the imaginary
axis, it is not possible to achieve the infimal value of the norm. For any positive
number, we can achieve a closed-loop with that number as its infinity norm, but we
cannot achieve a closed-loop infinity norm of zero. \V/

1.5 Concluding comments and references

We will now conclude this introductory chapter with a few remarks about the things
we have already learned and the things we still hope to achieve.

1.

Hoo control problems can be cast as constrained minimization problems. The
constraints come from an internal stability requirement and the object we
seek to minimize is the infinity norm of some closed-loop transfer function.
The constraints appear as interpolation constraints and stable closed-loop
transfer functions that satisfy the interpolation data may be found using the
classical Nevanlinna-Schur algorithm. This approach to control problems is
due to Zames [227] and is developed in Zames and Francis [228] and Kimura
[118]. In our examples we have exploited the fact that there is no need for the
Nevanlinna algorithm when there is only one interpolation constraint.

We will not be discussing the classical Nevanlinna-Pick-Schur theory on ana-
lytic interpolation in this book. The interested reader may find this material
in several places such as Garnett [69] and Walsh [207] for a purely function
theoretic point of view, and [53, 43, 44, 129, 221, 227, 228], for various appli-
cations of analytic interpolation to system theory.



18

INTRODUCTION

3. The reader may be puzzled as to why the interpolation theory approach to

Heo

control problems is being abandoned at this early stage of our book.

There are several reasons for this:

(a)

Interpolation theoretic methods become awkward and unwieldy in the
multivariable case and in situations where interpolation with multiplic-
ities is required; if there are several interpolation constraints associated
with a single right-half-plane frequency point, we say that the problem
involves interpolation with multiplicities.

It is our opinion that interpolation theoretic methods are computation-
ally inferior to the state-space methods we will develop in later chapters
of the book. Computational issues become important in realistic design
problems in which one is forced to deal with systems of high order.

Frequency domain methods (such as interpolation theory) are restricted
to time-invariant problems. The state-space methods we will develop are
capable of treating linear time varying problems.

It is not easy to treat multitarget problems in an interpolation based
framework. To see this we cite one of many possible problems involving
robust stabilization with performance. Take the case of disturbance at-
tenuation with robust stability, in which we require a characterization of

the set

(1—-gk)™!

k(1 —gk)~" ||
with S denoting the set of all stabilizing controllers. If the plant is stable,
we may introduce the g-parameter to obtain

o]+ [2]d.

Problems of this type are not directly addressable via interpolation due

arg min
kes

arg min
geHo

to the nonsquare nature of ‘? ; we will not pursue this point at this

stage.

4. Solving each H., control problem from scratch, as we have done so far, is
a practice we will now dispense with. This approach is both effort intensive
and an intellectually clumsy way to proceed. Rather, we will develop a single
solution framework that captures many H., optimization problems of general
interest as special cases. A large part of the remainder of the book will
be devoted to the development of a comprehensive theory for multivariable,
multitarget problems.

5. The solutions to the problems we have considered so far have a common
theme. With the exception of the robust stabilization of an integrator, the
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magnitudes of the optimal closed-loop transfer functions are a constant func-
tion of frequency. It turns out that this is a general property of the solutions of
all single-input, single-output problems that are free of imaginary axis inter-
polation constraints. In each case, the optimal closed-loop transfer function
is a scalar multiple of a rational inner function. Inner functions are stable
allpass functions, and rational allpass functions have the form

m —
i+ s
a= H (pz + )
imp \Pi— S
which we have already encountered. Since the poles and zeros of allpass
functions are symmetrically located about the imaginary axis, it is not hard to
see that they have the property |a(jw)| =1 for all real w. The “flat frequency

response” property of optimal closed-loop transfer functions is fundamental
in the design of frequency weighting functions.

1.6 Problems

Problem 1.1. Prove that || - ||« is a norm and that ||gh|ec < ||9]co||P]]co-

Problem 1.2. Consider the frequency weighted disturbance attenuation problem
of finding a stabilizing controller that minimizes ||w(1 — gk)™!| . If

_(s—a w — s+4
9=\s2) “srn )
in which « is real, show that when 0 < o < 2 there is no stabilizing controller such
that

(1= gk)~'(jw)| < [w™'(jw)|,  for all w.

Problem 1.3. Consider the command tracking problem in which

—1)? 1
g = 7(5 ) 5 h = —
(s+2)(s+3) s+4
Show that the error e = h — gf must satisfy the interpolation constraints

1 de —1
1) == Yy = 2,
eM=5  FW=5

The construction of such an e requires the solution of an interpolation problem with
derivative constraints.

Problem 1.4. Suppose an uncertain plant is described by g(1 + &) in which g is
a given unstable transfer function and & is a stable but otherwise unknown linear
perturbation bounded in magnitude by 6]/ < .
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2.
3.
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Give an interpolation theoretic procedure for finding the optimal controller
that stabilizes every g(1 + §) of the type described and with « maximized.
(Hint: you need to introduce the stable minimum phase spectral factor m
that satisfies gg™~ = mm™.)

Give two reasons why o must always be strictly less than one.

Suppose g = (i j) Show that the largest achievable value of av is e = %,
and that the corresponding controller is k = %.

Problem 1.5. Suppose an uncertain plant is described by g + § in which g is
a given unstable transfer function and & is a stable but otherwise unknown linear
perturbation such that |d(jw)| < |w(jw)| for all w. The function w is a stable and
minimum phase frequency weight.

1.

Show that k will stabilize all g + & with d in the above class provided it
stabilizes g and ||wk(1 — gk) ™o < 1.

2. Explain how to find a stabilizing controller that minimizes ||wk(1—gk) | -

3. If g = il) and w = (1)) find a controller (if one exists) that will

5—2 s+4
stabilize every g + & in which § is stable with [§(jw)| < |w(jw)| for all w.

Problem 1.6. Consider the multivariable command response optimization problem
in which the stable transfer function matrices G and H are given and a stable
prefilter F' is required such that £ = H — G'F' is small in some sense.

1.

If G is nonsingular for almost all s and F' is to be stable, show that H — FE
must have a zero at each right-half-plane zero of G, taking multiplicities into
account.

2. If all the right-half-plane zeros z;, ¢ = 1,2,...,m, of G are of multiplicity

one, show that F' is stable if and only if there exist vectors w; # 0 such that

Conclude from this that multivariable problems have vector valued interpo-
lation constraints. What are they?

The relationship between vector interpolation and H., control is studied in detail
in Limebeer and Anderson [129] and Kimura [119].
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Multivariable Frequency
Response Design

2.1 Introduction

By the 1950s, classical frequency response methods had developed into powerful
design tools widely used by practicing engineers. There are several reasons for the
continued success of these methods for dealing with single-loop problems and multi-
loop problems arising from some multi-input-multi-output (MIMO) plant. Firstly,
there is a clear connection between frequency response plots and data that can be
experimentally acquired. Secondly, trained engineers find these methods relatively
easy to learn. Thirdly, their graphical nature provides an important visual aid that
is greatly enhanced by modern computer graphics. Fourthly, these methods supply
the designer with a rich variety of manipulative and diagnostic aids that enable a
design to be refined in a systematic way. Finally, simple rules of thumb for standard
controller configurations and processes can be developed. The most widespread of
these is the Ziegler-Nichols method for tuning PID controller parameters based on
the simple “process reaction curve” model. Unfortunately, these classical techniques
can falter on MIMO problems that contain a high degree of cross-coupling between
the controlled and measured variables.

In order to design controllers for MIMO systems using classical single-loop tech-
niques, one requires decomposition procedures that split the design task into a set
of single-loop problems that may be regarded as independent. Such decomposition
methods have many attractive features and are certainly applicable in some cases,
but there are also some fundamental difficulties. How does one find design speci-
fications for the derived single-loop problems that are in some sense equivalent to
the specifications for the multivariable problem? Do good gain and phase margins

21
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for the single loop problems imply good stability properties for the multivariable
problem?

A completely different approach to frequency response design emerged from
Wiener’s work on prediction theory for stochastic processes. By invoking a varia-
tional argument, he showed that certain design problems involving quadratic inte-
gral performance indices may be solved analytically. It turned out that the solu-
tion involved an integral equation which he had studied ten years earlier with E.
Hopf—thus the term Wiener-Hopf optimization. These optimization based design
procedures have the advantage that they automatically uncover inconsistent design
specifications. In addition, because of their optimization properties, the designer is
never left with the haunting thought that a better solution might be possible.

In its early form, the Wiener-Hopf theory could not tackle MIMO or time-
varying problems. These limitations were overcome with Kalman’s introduction of
state-space methods. The key observation was that the solution of the Wiener-Hopf
equation, and hence the optimal control law, may be obtained from the solution of
a quadratic matrix equation known as a Riccati equation.

These ideas formed the core of what was for a long time known as “Modern
Control”, although this term has now fallen into disuse. The theory of minimizing
quadratic integral performance indices subject to linear state-space dynamics driven
by Gaussian white noise is commonly known as Linear Quadratic Gaussian (LQG)
optimal control; the term Hy optimal control is sometimes used for deterministic
versions of this problem. The mathematics and the insight that the “Modern” era
brought into the field has an important bearing on the mathematical techniques
and computational procedures used in the theory and computation of H, optimal
controllers.

Despite the success of LQG optimal control and optimal estimation in the
aerospace sector, applications in the process industries have been few and far be-
tween. As a result, a number of authors raised objections to the theory, complaining
that it fails to address the real issues of feedback control. In an attempt to rec-
tify this situation, there was a resurgence of interest in classical frequency response
ideas and several attempts were made to generalize the Nyquist criterion to the
multivariable case. An early version of the generalized Nyquist criterion came from
the relationship

det(I-G) = det((D—-N)D™)
det(D — N)
det(D)

closed loop characteristic polynomial

open loop characteristic polynomial ’

in which G = ND™! is a coprime polynomial matrix fraction description. This
relationship allows closed-loop stability to be tested by counting the number of
encirclements of the origin by the Nyquist diagram of det(I — G), but is of limited
value in design because of the complexity of the relationship between the entries of
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a matrix and its determinant. Later refinements were based on Nyquist diagrams
of the diagonal entries of G' and on plots of the eigenvalues of G. Since

det(I- @) = [[nU-G)

[JamE

I

©
Il
ol

(1-X(G@)),

we see that the number of encirclements of the origin by det(I — G) is the sum of
the number of encirclements of +1 by the eigenvalues of G. The controller design
problem may then be considered as a problem requiring the shaping of the open-loop
eigenvalue loci.!

The relationship between a matrix and its eigenvalues is complex, but the eigen-
values are known to lie in circles centered on the diagonal entries of the matrix.
The radii of these circles depend on magnitude of the off-diagonal entries—in the
case of triangular matrices, the diagonal entries are the eigenvalues.? These ideas
form the basis of Nyquist array design methodologies. Crucial to these eigenvalue-
based techniques is the belief that control objectives for the overall multivariable
plant can be posed as objectives on the eigenvalue loci. The generalized Nyquist
criterion certainly means that stability can be assessed via a consideration of the
eigenvalues. What is less clear is whether eigenvalue “gain margins” and eigenvalue
“phase margins” imply anything about stability robustness for the overall system.
In general, they do not.

It also became apparent that LQG optimal controllers could exhibit poor sta-
bility robustness properties. This came as something of a surprise, because full
state-feedback LQ optimal controllers and Kalman filters, considered separately,
have impressive robust stability properties including at least 60° of phase margin,
an infinite gain margin and a 50% gain-reduction tolerance. In contrast, the robust-
ness of an LQG optimal design must be analyzed a posteriori—LQG optimality does
not automatically ensure stability robustness.

During the 1970s, robust stability for MIMO systems and methods of achieving it
emerged as a key problem in feedback design. It cannot be addressed by considering
the eigenvalues of the plant, nor is it guaranteed by LQG optimality. We will now
illustrate these points by examining two examples.

Example 2.1.1. Early frequency response methods for designing controllers
for multivariable systems use diagonalization techniques to decompose the design
into a number of single-loop problems. In Figure 2.1, the plant G is given and
a controller K is required. The designer may introduce loop transformations M

1The eigenvalue loci are called the “characteristic loci” by many authors. Since we shall argue
that the eigenvalues of the plant are anything but characteristic of control system performance
and robust stability, we prefer to use the descriptive term “eigenvalue loci”.

2See Gershgorin’s theorem in [172, 144].
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and N as shown in Figure 2.2. If M and N can be chosen so that G = NGM is
diagonal, then a diagonal K can be found using single-loop methods. The controller
is then obtained from a reversal of the scaling to give K = MKN.

K

Figure 2.1: A typical feedback loop.

G
— ]\4—1 M > i N
K
M—l le—| K le—1 N—l N |fe—

Figure 2.2: Analysis and design configuration.

From the point of view of nominal stability, there is nothing wrong with this
approach. The difficulties arise when robust stability is considered.
To see this, suppose the transfer function matrix G in Figure 2.1 is given by

B 1 2 —47s 565
o (s+1)(s+2) | —42s 50s+2 |’
which may be decomposed as
7 8 =0 7 -8
s-lo 7]l L5 7]
6 7 0 Si2 -6 7
giving
78 =~ [ == 0 A
welo 7] e[ L) w5 7]

Since M = N~1, the eigenvalues of G are given by the diagonal entries of G. The
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closed loop will be stable for

—

k0
0 ks

provided —oo < E < 1 for i = 1,2. The Nyquist diagrams of éu and égg also
reveal that both these systems have phase margins of 180° if k; and ko are set to

—1. Therefore, if we treat 61‘11 and 622 as single loop systems, it would appear
that the feedback loop in Figure 2.2 with K = —1I has desirable closed-loop stability

properties. This yields K = M KN = —T as the controller for the actual closed
loop of Figure 2.1.

To see that this controller does not result in a robustly stable closed loop, con-
sider the (nondynamic) controller

[k o0
=[h 0]

If we set ky = k+ § and ko = k — §, it may be shown that the closed-loop charac-
teristic polynomial is given by

s%+ (3 — 3k +970)s +2((1 — k)* — &%).
Closed-loop stability therefore requires

3—-3k+97 > 0
& 3 —50ky +47k; > 0,

sincek:% andéz@,and
(1-k)?-6* > 0

ki + ko \° ki — ko \
1— _
e e G B

<1 —Fk —ko+kike > 0.

With k; set at its nominal value of —1, the loop is unstable if ko > —44/50 = —0.88,
since this would make the linear term of the closed-loop characteristic polynomial
nonpositive. If ks = —1, the loop is unstable if k; < —53/47 = —1.128. Indeed,
the gains (k1,k2) = (—1.09,—0.9), a distance of 0.1345 from the nominal (-1, —1)
point, creates an unstable lgop.3 This lack of stability robustness is not evident
from the eigenvalue loci of G.

We conclude that the eigenvalue loci of a multivariable plant are not good robust
stability indicators. Eigenvalues may also be misleading indicators of performance,

3Tt may be shown that (k1,k2) = (—1.0599, —0.9363) minimizes the distance from the line
3 — 50k2 4+ 47k1 = 0 to the point (—1, —1). The minimum distance is 0.0874.
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since they cannot always account for loop interactions. For example, suppose a
transfer function has the form

G:[(l) ¢§S)]

The eigenvalues of G are independent of the off-diagonal term ¢(s), so they provide
no indication of the fact that ¢(s) may cause significant inter-loop coupling between
the second input and the first output. \V4

The next example demonstrates that an LQG optimal controller may lead to a
closed loop that is arbitrarily close to instability.

Example 2.1.2. Consider the LQG problem with dynamics

a] = Lol ] ]

[1 0][2}—#1}.

Y

The vector x = [ r1 To ]/ is the state vector, u is the control input, y is the
measured output and w and v are independent Gaussian white noises with intensities
o > 0 and 1 respectively. The performance index is

1T
Jg{TlgnooT/O P(l’1+l’2)2+u2dt},

in which £(+) is the expectation operator and p is a real nonnegative parameter.
The optimal controller is given by

u = ky,
in which
B aB(1 —2s)
24 (a+B—-2)s+1+ap
with

a=24++/4+ p, B=24+v4d+o.

Now consider the closed-loop system shown in Figure 2.3, in which « is a gain with
nominal value +1.

A calculation shows that only the linear and constant terms in the closed-loop
characteristic polynomial are functions of x and that these terms are given by

b+a—-442(k—1Daf and 14+ (1—k)af
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w v
plant *(L%

y

Figure 2.3: LQG closed loop with variable gain.

respectively. A necessary condition for stability is that both these terms are positive.
This is easily seen to be true for the nominal loop x = 1. However, for a, § = 4
(i.e., p=0 and o = 0), the necessary condition for stability is

1-— L <K <1+ i
8 16
The situation deteriorates if a and (8 are large. For the case § = «, the necessary
condition for stability becomes

2 1 1
I+ 5 -——<k<1l+—.
@ Q@ @
The gain margin can therefore be made arbitrarily small by selecting o and [

(equivalently, p and o) sufficiently large.
We conclude that LQG optimality does not guarantee stability robustness. </

Main points of the section

1. Single-loop design techniques may be used for MIMO systems when
the cross-coupling is relatively weak.

2. The eigenvalues of the open-loop plant G may be used to assess
the stability of the nominal closed-loop system. Despite this, the
eigenvalues of G do not give reliable information about the robust
stability or performance of the closed loop.

3. LQG optimality does not automatically ensure good robustness
properties. The robust stability of a LQG optimal closed loop must
be checked a posteriori. This fundamental drawback associated
with quadratic norm minimization methods was one of the triggers
that initiated research into infinity norm minimization approaches.

4. Robustness is a key feedback objective which must be addressed.
A set of robust stability (and robust performance) indicators for
multivariable systems is required. In this chapter, we will motivate
the use of singular values in this role.
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2.2 Singular values

The singular value decomposition (SVD) is one of the most important tools in mod-
ern numerical linear algebra and numerical analysis. Owing to the linear algebraic
nature of many control problems and the importance of the robust stability issue,
the singular value decomposition has found its way into control and system theory.
The aim of this section is to introduce the singular value decomposition and to ex-
amine some of the properties of singular values. Subsequent sections will show how
singular values may be used to analyze the robustness and performance of control
systems.

In order to avoid excessive notational clutter when dealing with vectors and
matrices, dimensions are only rarely mentioned explicitly. Whenever a sum of
matrices such as @ + R appears, it is assumed that the dimensions are compatible
for addition. A similar assumption is made in the case of matrix products. When
an inverse such as Q! is written, it is assumed that the matrix Q is square and
that the inverse exists.

2.2.1 The singular value decomposition

In this section we will establish some of the fundamental properties of the singular
value decomposition (SVD). Our first result ensures the existence of the SVD.

Lemma 2.2.1 For any m X p complex matrix @, there exist m X m and p X p
unitary matrices Y and U, and a real matriz 3, such that

X 0 N
Q_Y[O O}U, (2.2.1)
in which ¥ = diag(o1,...,0,) with o1 > 09 > ... > o, > 0 and min(m,p) > r.

When Q is real, Y and U may be chosen orthogonal. Expression (2.2.1) is called a
singular value decomposition (SVD) of Q.

Proof. A proof appears in many places—see Stewart [198] for example. ]

Since o1, 09,...,0, are the positive square roots of the positive eigenvalues of
Q*Q or QQ*, they are uniquely determined by Q. All the nonnegative square roots
of the eigenvalues of Q*@Q will be called the singular values of Q:

01,02,...,0, >0, while 0,41 =... =0, =0. (2.2.2)

The set of singular values, the mazimum singular value and the minimum singular
value of () will be denoted by

o(@Q) = {o;:i=1,...,p} (2.2.3)
7(Q) = o1 (2.2.4)
2@ = o (225)
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Since Y and U are nonsingular, the rank of @ is the same as that of ¥, which is
equal to the number of nonzero singular values:

rank(Q) = 7.

A matrix @ has no zero singular values (i.e., o(Q) > 0) if and only if @ has full
column rank. When @Q is square, (@) > 0 if and only if @ is nonsingular. In this

case Q7! = UX~'Y* and the singular values of Q! are 0;1,0;11, .. .,0;1. In
particular
FQ ) = —
a(Q)

To give the SVD an operator theoretic interpretation, we regard the matrix @ as a
linear map from the vector space C? into the vector space C™, defined by

Q : CP—C™
u — Qu.

The operator theoretic interpretation of a matrix is important in the analysis of the
input-output properties of system transfer functions. Suppose u; and y; denote the
columns of the unitary matrices U and Y in the SVD (2.2.1). Then the SVD of @
may be written in the form of the dyadic expansion

T

*

Q= E OiYil; -
i=1

Since U is unitary, uju; = 0;; (the Kronecker delta) and it follows that u; is mapped

into o;y; by Q:
T
Qu; = <Z owm?) uj = 0;y;.
i=1

We may therefore regard the singular value o; as a dilation or gain factor for the
matrix @ restricted to the one-dimensional subspace spanned by u;.

The maximum singular value 7(Q) and the minimum singular value o(Q) play
a particularly important role in our analysis and are given by the identities

7(Q) = HrglglllQUH (2.2.6)
a(@) = Hrlﬂ‘iglllQUH, (2.2.7)

in which the vector norm is the Euclidean norm. Thus 7(Q) and ¢(Q) are respec-
tively the maximum gain and the minimum gain of the matrix Q.
To verify (2.2.6) and (2.2.7), note that

1Qu|? = wUSY*'YXU*u

¥ 3%z
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where x = U*u. Since ||z|| = ||u||, it follows that

max [|Qu| = max || Xz].
flull=1 flzll=1

Now
p
1Bz =" o?|il?,
i=1

subject to ||z||? = 1, is maximized by setting 1 = 1 and z; = 0 for all i # 1 and is
minimized by setting , =1 and x; = 0 for all i # p. This verifies that (2.2.6) and
(2.2.7) hold.

Identities (2.2.6) and (2.2.7) are in fact special cases of a general minimax char-
acterization of singular values:

0i(Q) = Mméﬂiﬁ+ﬂﬁ%§”Q“” (2.2.8)
= i 2.2.9
i H{{%lgl [Qul], (2.2.9)

ul|l=

in which @ is m X p (see [198]). Identities (2.2.6) and (2.2.7) follow from (2.2.8)
and (2.2.9) by setting i = 1 and i = p.

The identity (2.2.6) implies that 7(Q) is the norm of the operator @ induced by
the Euclidean norm:

(@) = el (2.2.10)

max ||Qu
llull=1

e
== X .
o ul

It is easy to show that ||@Q]| is indeed a norm using the properties of the Euclidean
norm on C™ and CP:

1. |Q|| > 0 is obvious, and ||Q] =0 < [|Qu|| = 0Vu < Q = 0.
2. Let a € C. Then [|aQ] = max)y=1 [[aQu| = max),=1 |af[Qul] = [ Q]].

3. |Q + R|| = max =1 [|Qu + Ru|| < maxj, =1 ([|Qu|| + [[Rull) < [|Q] + [ R]|.
Thus
1Q + BRIl < IQIl + IR (2.2.11)

In addition to these three properties, which all norms must share, induced norms
satisfy
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4. The submultiplicative property:
IQR| < QIR (2.212)

To prove this, note that if R = 0 the inequality is trivial. Otherwise, for
R # 0, we have

IQR| = max [|QRul

flull=1

|QRul| )
= max Ru
|u||—1( TR 1201

axc L9 Rul
v20 |[v|| ful=t

QIR

IN

2.2.2 Singular value inequalities

Using fact that the maximum singular value defines an induced norm, we have the
following inequalities:

7(Q+ R)
7(QR)

7(Q) +7(R) (2.2.13)
7(Q)7(R). (2.2.14)

IAIA

These inequalities and some elementary consequences of them are fundamental to
the singular value analysis of feedback systems.

Lemma 2.2.2
7(Q) —a(R)| < F(Q+R) <7(Q)+a(R) (2:2.15)
o(@7(R) < 7(QR) <7(Q)(R) (2.2.16)
max{c(R) —7(Q),c(Q) —7(R)} < o(Q+R) <a(Q)+a(R) (2.2.17)
o(@Q)o(R) < o(QR) <7(Q)a(R). (2.2.18)

Proof. The right-hand inequality in (2.2.15) is just (2.2.13). The left-hand
inequality follows by replacing @ and R with @+ R and — R respectively in (2.2.13).
In the same way, we can replace @ and R with Q+ R and —Q respectively in (2.2.13).

The right-hand inequality in (2.2.16) follows from (2.2.14). For the left-hand
inequality we argue as follows:

5(QR) = max |QRu|

[lull=1

| QRul| )
max Ru
l[ul|=1,Ruz0 ( (| Rull Il
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(as the maximum must occur for Ru # 0)

>  min |QFu] max || Rul|
Ruz0 ||Rul| (ull=1
> a(Q)7(R).
The right-hand inequality in (2.2.17) follows from (2.2.7) as follows:
c(Q@+R) = |mi£1 |Qu + Rul|
< ||Hhm (IQull + [[ Rul)

S in in || Qull + max [ Bl

= (@) +a7(R).

The left-hand inequality follows by replacing @ and R with Q+ R and —R, or Q+ R
and —@Q, respectively in the right-hand inequality.

For (2.2.18), first consider the case g(QR) = 0. The right-hand inequality is
trivial and ¢(QR) = minj, =1 (QRu) implies there is a u # 0 such that Ru = 0, or
a v # 0 such that Qv =0, so o(Q ) (R) = 0 and the left-hand inequality is verified.
Assume therefore that U(QR) > 0 (which implies that g(R) > 0). Then

a(QR)

min || QRul

ul|=
i 1B | Rl
Jul=1 | Rull

Qu 1n Ru
[in in | |||| i || Rull

= a(Q)a(R),

which proves the left-hand inequality. For the right-hand inequality, we argue
o(QR) = min [|[QRull

l[uli=1
| QRull

Hl

lul=1 || Rull | Ru

Ru
max [ Qu] min, |Ru

= 7(Q)a(R). [ |
There are similar inequalities for the other singular values which can be derived

from the identities (2.2.8) and (2.2.9). It may be shown that the following identities
hold whenever the indices are defined:

oitj+1(Q + R)
oirjr1(QR)

v

IN

0i+1(Q) + 0j41(R)
0i+1(Q)oj41(R).

IAIA
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Our next corollary shows that the minimum singular value of a square matrix
gives a measure of “closeness to singularity”.

Corollary 2.2.3 Let Q and R be p X p complex matrices and suppose also that Q
is nonsingular. Then

< 0(Q) = (Q+ R) is nonsingular (2.2.19)
Q). (2.2.20)

o(R)
min o(R) =
R:det(Q+R)=0

=)

Proof. Suppose 7(R) < o(Q). Then (2.2.17) implies c(Q+R) > o(Q)—7(R) > 0.
Therefore Q + R is nonsingular.
If R is such that det(Q + R) = 0, then (R) > ¢(Q) by (2.2.19). Consequently

(Q)-

min  g(R) >
det(Q+R)=0

19

It remains to show that the bound is attained by some R with 7(R) = ¢(Q). Let @
have SVD @ = YXU™" and set R = —opy,u,, where y, and u,, are the last columns
of Y and U respectively. Clearly 7(R) = ¢(Q) and @ + R is singular. [ |

Main points of the section

1. The set of columns of the singular-vector matrices U and Y define
orthogonal bases for the domain CP and range C™ of ). For this
choice of bases, the map @ takes the j*" basis vector u; of CP to
a vector lying along the direction of the j* basis vector y; of C™.
The corresponding singular value o; can be regarded as a dilation
(or gain) factor for the restricted map Q| .

2. 7(Q) and ¢(Q) are the minimum and maximum gains of the matrix

3. |Q|| = 7(Q) is the norm of the operator () induced by the Euclidean
norm. Induced norms have the submultiplicative property ||QR| <

QIR

4. The maximum and minimum singular values of a sum or product of
matrices are bounded above and below by simple formulas involv-
ing the maximum and minimum singular values of the individual
matrices.

5. The minimum singular value of a square matrix is a measure of the
distance from that matrix to one which is singular.
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2.3 Singular values and the sensitivity operator

In his classic treatise on feedback amplifier design, Bode analyzed the sensitivity of
closed-loop systems to variations in the constituent elements of the loop. He showed
that the sensitivity of the closed-loop system to variations in the plant is governed
by the sensitivity function. If the sensitivity function is less than one, he concluded
that the feedback system is less sensitive to plant variations than the open-loop
system. In general, the “robustness” of the closed-loop system to plant variations is
improved by making the sensitivity function small. We now show that the singular
values of the sensitivity operator have a role to play in generalizing these ideas to
the multivariable setting.
The sensitivity of a quantity « to changes in a quantity g is defined to be

ga _ 0o p

BT o8’

which is a measure of the relative (or percentage) change in « due to a relative (or
percentage) change in j.

r

4’()—’K—’Gt y‘c

Figure 2.4: Unity feedback loop.

If the controller and plant in the unity feedback loop shown in Figure 2.4 are
described by scalar transfer functions k and g,, we may evaluate the sensitivity
of the closed-loop transfer function h that maps r to y. to changes in the plant
transfer function g,. Since

k
h — g ’
1-g,k
the sensitivity of the closed-loop transfer function to changes in the plant is

h Oh g,
g dg, h
k 1—g,k
T—gk? k&
1
1-g,k

Plant variations will have a small or large effect on the closed-loop transfer function
according to the size of the sensitivity function SZ.

To generalize this analysis to multivariable loops, consider the two control
schemes shown in Figures 2.4 and 2.5. Since
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equivalent
controller

— K Gt—>

Figure 2.5: The equivalent open loop.

ye = GK(I-G.K)'r
Yo = GLK(I-GK) 'r
it follows that y. = y, for all r if the system G; and the model G are identical.

Suppose the plant G; depends on a parameter §, so that G; becomes G¢(9).
The effect of changes in § on y. and y, can now be evaluated:

5yc 1 0G:

_ _ _ —1
25 = -GK) 95 K(I-G.K) ",
while 9 e
Yo t _ —1
%~ 05 K(I-GK) .

Assume now that the model G is obtained by using a nominal value for §, so that
G = G¢(0nom). Then

(“)yc — ayo
=(I-GK)"' =
85 5:5n,om, ( ) 85 6:571,0777,
This means that the sensitivity operator
S=(I-GK)! (2.3.1)

determines how changes in the plant affect the output of the closed-loop scheme
given changes in the nominally equivalent open-loop scheme. Again, the closed-
loop scheme will be more or less sensitive to changes in the plant depending on the
“size” of S.

Using (2.2.6) and (2.2.7) we have

Aye(jw) ol Hﬁyo(jW)
<o (S(jw)
and
9ye(jw) > o(S(jw)) 9oljw)
0 Nszspor 9 lszspom
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The closed-loop scheme is uniformly less sensitive to changes in system parameters
than the open-loop scheme when E(S(jw)) < 1 and is uniformly more sensitive
when o(S(jw)) > 1. If neither of the above inequalities are satisfied, the closed-
loop scheme will only offer a reduction in sensitivity for signals in the subspace (of
the output space) spanned by the singular vectors corresponding to the singular
values that are less than one.

A feedback design objective might be to ensure that

7(S(jw)w(jw)) <1 (2.3.2)

for some scalar valued frequency dependent weighting function w. The weighting
function should satisfy |w(jw)| > 1 over the range of frequencies in which sensitivity
reduction is desired. The objective (2.3.2) ensures that (S (jw)) < 1 over the range
of frequencies of interest.

Using (2.2.17), it follows that

E(S(jw)w(jw)) <l & Q(I* G(jw)K(jw)) > lw(jw)|
= o(G(jw)K(jw)) > [w(jw)| — 1. (2.3.3)

Therefore, good sensitivity reduction (i.e., [w(jw)| > 1 in (2.3.2)) demands high
loop gain (¢ (G(jw)K (jw)) > 1). Also,

o(G(jw) K (jw)) > [w(jw)| + 1 = 7(S(jw)w(jw)) <1, (2.3.4)

which shows that high loop gain ensures good sensitivity reduction.

In the above, we introduced the sensitivity operator via a special parametric
sensitivity analysis. As we will discover as we progress through the book, the
sensitivity operator also has an important role to play in the assessment of other
feedback objectives such as disturbance rejection and closed-loop tracking.

2.4 Robust stability analysis

Control systems are designed using mathematical models that are only approxi-
mate representations of the real hardware. Since discrepancies between a system
and its mathematical representation may lead to a violation of some performance
specification, or even closed-loop instability, accounting for modelling errors is nec-
essarily an integral part of the design process. The modelling of a physical system
is therefore only complete when the modelling errors have been quantified. By their
very nature, modelling errors defy precise mathematical description and must be
quantified in terms of bounds or probability distributions of some type.

In this section, we analyze the stability robustness of closed-loop systems with
respect to modelling errors quantified in terms of singular values. The treatment
given in this chapter is restricted to systems described by rational matrix func-
tions with real coefficients. A more general situation is considered following the
introduction of the small gain theorem in Chapter 3.
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The difference between the model and the true system may be represented in
several ways. The simplest is the absolute or additive representation

G, =G+ A,

in which G is the nominal model, G; represents the true system and A is an additive
perturbation.
The model error may also be represented in the relative or multiplicative form

G:=({I+A1)G,

so that A} = (Gy — G)G ! is the modelling error relative to the nominal model.
An alternative multiplicative representation is to take the model error relative to
the true system, so that Ay = (Gy — G)G; ', which gives

G:=(-A)"'G.

In each case, the size of the modelling error at any frequency is determined by its
maximum singular value at that frequency. Robust stability may be quantified in
terms of the maximum modelling error that will not destabilize a nominally stable
closed loop.

If G and G; are the same in each case, the various representations are related
by the identities

A = AG
A = (I-Ay)'AG

~ AG (for 7(A3) < 1)
A, = I—(IT+A)!

A; (for 7(A7) < 1).

The various representations of modelling error are therefore equivalent and any
particular selection is purely a matter of convenience. For example, if E(Al( jw)) is
small, the model is accurate in absolute terms when E(G(jw)) is small also, since

Ql

7(A) = 7(A1G)
< F(A)FG).

On the other hand, if 7(A(jw)) is small, the model is accurate in relative terms
when ¢ (G(jw)) is large since

(A1)

Il
qQl

IA
A A
2
A
9




38 MULTIVARIABLE FREQUENCY RESPONSE DESIGN

It may be the case that different representations of modelling error are useful over
different frequency ranges.

In contrast to Section 2.3, the modelling error here is not parametric and is
usually referred to as an unstructured modelling error or as unstructured uncer-
tainty. Its main purpose is to allow for high-frequency phenomena that are poorly
modelled or completely neglected. Neglected high-frequency mechanical resonance
is a typical example. Parametric errors also induce modelling errors which may be
represented in the unstructured way considered in this section. However, conclu-
sions about parametric errors that are based on a nonparametric analysis may be
conservative, since the parametric nature of the error is not taken into account.

The robust stability analysis we will present here is based on a Nyquist type
stability theorem.

2.4.1 A Nyquist stability theorem

Following a multivariable version of the basic internal stability lemma, a Nyquist
type test for nominal closed-loop stability will be given in terms of the determinant
of the return-difference matrix.

Definition 2.4.1 Suppose G and K as given in Figure 2.1 are proper* rational
transfer function mcgtrices and let 1,'7[ denote the closed-loop transfer function matriz
mapping [ w' d' | to [ W y' |. Then

1. The feedback loop is well-posed if H is proper;
2. The feedback loop is internally stable if H is stable.

Lemma 2.4.1 Suppose G and K in Figure 2.1 are proper rational transfer function
matrices. Then the feedback loop shown in Figure 2.1 is well-posed if and only if
det (I — G(00)K (00)) # 0 and is internally stable if and only if

(2.4.1)

v ]

-G I
is stable.

Proof. From Figure 2.1 we obtain

=l T

which shows that the closed-loop transfer function matrix H mapping [ w' d ]l
to [ u o ]/ is given by (2.4.1). In addition,

I -K I 0 I —-K
det{_G I ] = det[_G I—GK]det[() I ]
= det(I - GK).

4 A rational transfer function matrix is proper if it is bounded at infinity.
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Therefore H will be proper if and only if det(I — G(00)K (00)) # 0. We conclude
that the loop is internally stable if and only if H is stable. ]

Theorem 2.4.2 Let G and K in Figure 2.1 be given proper rational transfer func-
tions that form a well-posed closed loop, and let G and K have ng and ni poles
(counting multiplicities) respectively in the closed-right-half plane (CRHP). Now
suppose that Dpg is the Nyquist “D” contour of radius R and with semi-circular
indentations of radius € into the left-half plane whenever G or K has a pole on the
imaginary aris.®

The feedback loop of Figure 2.1 is internally stable if and only if the Nyquist
diagram I' = det (I— GK(S)), s € Dr, makes ng +nk anticlockwise encirclements

of the origin (without crossing it).
Proof. Let G = ND7 ! and K = PQ ™! be right coprime polynomial matrix
fraction descriptions of G and K, so that ng and nx are the number of CRHP

zeros of det(D) and det(Q) respectively.® The closed-loop transfer function matrix
H in (2.4.1) has right matrix fraction description

I -K|1"' [D o D -p|" (24.2)

-G I 10 Q -N Q ’ o
which is coprime as a consequence of the coprimeness of N and D and of P and
Q. Hence, the poles of the closed-loop transfer function matrix H are the zeros of

the polynomial
D
o - w0

D -—-P
= det{ G I- GK}det[O Q]
= det(D)det(Q)det(I — GK).

Since the factorization in (2.4.2) is coprime, no zero of det(D) in D or det(Q) in
Dpr can be a zero of ¢ in Dg. Consequently, every zero of ¢ in Dg is a zero of
det(I — GK) in Dg and every pole of det(I — GK) in Dy is a zero of det(D) or
a zero of det(Q) in Dg since ¢ is polynomial. Thus, the closed loop has no poles
in Dp if and only if det(I — GK) has no zeros in Dg and exactly ng + ni poles
there. By applying the Principle of the Argument to det(/ — GK) on the Nyquist
contour Dp, we conclude that the closed loop has no poles in Dg if and only if
det (I -GK (s))7 s € Dpg, makes ng +nx anticlockwise encirclements of the origin
(without crossing it). |

5In this, and all other Nyquist type theorems, we assume that Dp is given a clockwise orienta-
tion and that R is chosen large enough to contain the CRHP poles of G, K and of the closed-loop
transfer function matrix H. The parameter ¢ must be such that none of the left-half-plane poles
of G, K or H are contained within Dg.

6See, for example, Kailath [105].
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2.4.2 Additive model error

Consider the feedback configuration shown in Figure 2.6, in which G is a nominal
system transfer function, A is an additive perturbation and K is a controller selected
to ensure the internal stability of the nominal closed loop. We would like to know
how large E(A( jw)) can become before the closed loop becomes unstable.

K

Figure 2.6: Feedback loop with additive model error.

Since the nominal closed loop (i.e., when A = 0) is assumed stable, the roots of
det(I — GK) all lie in the open-left-half plane. Thus

det (I — GK(jw)) #0

for all real w. Now suppose that A brings the perturbed system to the stability
boundary, so that for some frequency wy
0 = det(I — GK(jwy) — AK (jwo))
det (1 — AK(I = GK) ™' (jwo)) (I - GK (jw)))
= det(I - AK(I — GK) ' (jwp)) det(I — GK (jwy)),

which is equivalent to
0=det(I - AK(I — GK) ™' (jw))
since det(I — GK (jwo)) # 0. By Corollary 2.2.3, this situation cannot arise if
7(AK(I — GK) '(jw)) <1 for all real w. (2.4.3)

This inequality still depends on the detailed structure of A, which is unknown.
However, the inequality (2.4.3) is implied by
1

7(A(jw)) < K- GR)w) for all real w (2.4.4)




2.4 ROBUST STABILITY ANALYSIS 41

and one is led to the conjecture that this is a sufficient condition on the size of
E(A(jw)) for the closed-loop stability of the perturbed system. The next theorem
shows that this is indeed the case.

Theorem 2.4.3 Let G and K in Figure 2.6 be given rational transfer function
matrices. Then the feedback loop of Figure 2.6 is internally stable if the following
conditions are satisfied:

1. The nominal closed-loop system is internally stable;

2. The model error A is a rational transfer function matriz such that G and
G + A have the same number of poles in the closed-right-half plane;

3. The model error A satisfies the bound

1
o(K( - GK) '(s))

7(A(s)) < for all s € Dg.

Furthermore, there exists a rational transfer function matriz A satisfying Condi-

tion 2 and ]

7(K(I - GK) '(jw))

7(A(jw)) <

for all real w

such that the closed loop is not internally stable.

Proof. Let Dgr be a Nyquist contour as in Theorem 2.4.2. Since the nominal
closed loop is stable, the curve I'g defined by

Iy =det(I — GK(s)), s € Dg,

makes ng + nix anticlockwise encirclements of the origin. By Condition 2, the
perturbed system will have no poles in Dy provided the curve I' defined by

I'=det(I — (G+ A)K(s)), s€ Dg, (2.4.5)

also has ng +nx anticlockwise encirclements of the origin. By an elementary result
from algebraic topology, the two curves I'g and I' will encircle the origin the same
number of times if one curve may be continuously deformed into the other without
crossing the origin. Consider the curve

I =det(] — (G +€A)K(s)) for s € Dy and € € [0,1].

Since the determinant is a continuous function of €, I'y deforms continuously into I"
as € varies from 0 to 1. We therefore need to show that I'c does not cross the origin
for any € € [0, 1]. That is, that

det(I — (G +€A)K(s)) #0 for all s € D and all € € [0, 1].
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Since I — GK (s) is nonsingular on Dp, and since
I—(G+€eA)K = (I —eAK(I - GK)™ ') (I - GK),
it follows that the closed loop will have no poles in Dy provided
det(I —eAK(I — GK) '(s)) #0 (2.4.6)
for all s € Dg and for all € € [0,1]. From Condition 3 and (2.2.16),
(eAK(I — GK)'(s)) < 1for s € Dy and € € [0, 1].

Corollary 2.2.3 therefore implies that (2.4.6) holds for all s € Dy and for all e € [0, 1].
The loop is therefore internally stable.
To establish the existence of a destabilizing perturbation with the required prop-

erties, let
1

7(K(I - GK) '(jw))

wo = arg min
w

(2.4.7)

and let .
K(I-GK) '(jwo) = Y _ ojuy;
i=1

be an SVD. Let A = o, 'yju}, which is a constant, but complex, matrix. Then
7(A) =o' and I — AK(I — GK)~'(jwp) is singular. To realize the destabilizing
perturbation as a physical system, set

aleiel

Yy = and  uj = [ b1e ... byettm |,

a,,ei0n

in which the a;’s and b;’s are real numbers. The signs of these numbers are selected
to ensure that 0;, ¢; € [0,—m) for i = 1,2,...,m. It is now possible to find positive
numbers «; and 3; so that 6; is the phase of <M> and ¢; is the phase of

Jwota;
Jwo—PBi :
(j‘*&)‘f’ﬁi ) . Setting

a (3752)
aco | () () ]
an (5552)
gives A stable with A(jwo) = A = o7 'y1uf. Furthermore, 7(A(jw)) = o7 ! for all
real w. Consequently, by the choice of wq in (2.4.7),

1
#(K(I - GK) '(jw))

7(A(jw)) <
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for all w, with equality at w = wy.
The instability of the loop under the influence of this perturbation follows from
the fact that the closed loop will have imaginary-axis poles at +jw,. ]

If G has right-half-plane poles, the result allows them to be perturbed, but no
poles are allowed to cross the imaginary axis (in either direction). That is, G must
contain exactly as many unstable poles as the true system G + A."

In the scalar case, with k = 1, Condition 3 says that robustness to additive
modelling error degrades in proportion to the distance between the Nyquist diagram
of g and the critical +1 point. If

1
11— g(jw)|

for all real w and v > 0, the Nyquist diagram of g cannot enter the circle of radius
1/~ with center at +1 (see Figure 2.7).

imaginary
axis

guaranteed "
phase >
margin
=11

2sin (ﬂ)

Figure 2.7: The circles \ﬁ| =~vand [{%]=1.

In the case that G is stable, K = 0 will lead to a nominally stable closed loop.
In this case the quantity E(K (I -GK )_1) is zero and the robust stability margin
is arbitrarily large; this is a trivial illustration of low controller gain leading to good

7A robustness theorem that allows a different number of unstable poles in the nominal model
and the true system will be presented in Chapter 12.
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robustness margins. In the general case it may be shown using Lemma 2.2.2 that

_ 1. _ . Y
if 1 — 7o (G(jw)) > 0
and
7(K(I-GK) '(jw) <7 « 7(K(jw)) < 7 (2.4.9)

T 1495(G(jw))

Verifiction of these implications is requested in an exercise. The first inequality
shows that if the robust stability margin is large, (i.e., the closed loop is stable for
all perturbations satisfying Condition 2 in Theorem 2.4.3) and 7(A) < v~ ! for a
small value of v, then the controller gain is necessarily small. Conversely, it follows
from the second inequality that a low controller gain ensures good robust stability
margins (provided such a controller can stabilize the nominal plant).

2.4.3 Multiplicative model error

A disadvantage of the additive representation of modelling error is that the er-
ror in GG is not the error in the compensated loop-gain operator GK. This is
because (G + A)K # GK + A. It is therefore difficult to envisage the effect
of the additive perturbation A on GK. Multiplicative representations of model
error do not suffer from this disadvantage because a multiplicative perturbation
on G is also a multiplicative perturbation on GK. To see this we observe that
(I+A)G)K =(I+A1)GK and (I — A2)"'G)K = (I - A;)"'GK.

AN

K O~

Figure 2.8:  Loop with multiplicative model error.

Theorem 2.4.4 Let G and K be given rational transfer function matrices. Then
the feedback loop of Figure 2.8 is internally stable if the following conditions are
satisfied:

1. The nominal closed loop is internally stable;
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2. The model error Ay is a rational transfer function matriz such that G and
(I + A1)G have the same number of poles in the closed-right-half plane;

3. The model error A1 satisfies

1
7(GK(I - GK)~(s))

7(A(s)) < for all s € Dp. (2.4.10)

Furthermore, there exists a rational Ay that satisfies Condition 2 and

J— > 1
O'(Al(jw)) < E(GK(I* GK)_l(jW))

for all real w

such that the closed loop is not stable.

Proof. The proof is similar to that of Theorem 2.4.3 and makes use of the identity
I—(I+eA))GK = (I —eAGK(I - GK)™')(I - GK).

The details are requested as an exercise. [ |

In the scalar case, Condition 3 says that robustness to multiplicative perturba-
tions degrades in inverse proportion to |%|7 with g = gk, which has an M-circle
interpretation. Bounds on the gain and phase margins can be obtained from this
objective. Suppose

lg(jw)|
11— q(jw)|
for some v > 0. Then the Nyquist diagram of g cannot cross the circle defined by
|s|] = |1 — s|. Since this circle intersects the real axis at v/(y+ 1) and v/(y — 1),
the loop will be stable for all gains in the range (1+ %, 1-— %) In other words, if we

(2.4.11)

consider the gain variations to be a multiplicative model error, (2.4.11) and Theo-
rem 2.4.4 will guarantee closed-loop stability provided the relative gain variation is
less than £1/+. To determine the phase margin, we consider the intersection of the
circles |s| = 1 and |s| = 7|1 —s|. If v < 1/2, |s| = |1 — s| implies |s| < 1, so the
circles |s| = 4|1 — s| and |s| = 1 do not intersect and the phase margin is infinite.
Otherwise, for v > 1/2, the circles |s| = 1 and |s| = |1 — s| intersect at two points
e*79 (see Figure 2.7). By the cosine rule,
! 2(1 — cosb)
2

= 4sin?(0/2).

The phase margin 6,,, therefore satisfies

1
|0, | > 2sin—1(a) (2.4.12)
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Figure 2.9:  Guaranteed phase margin as a function of ~.

for v > 1/2. A plot of 6,, versus  is shown in Figure 2.9.
Once again, the bound (2.4.10) is arbitrarily large if GK = 0. Otherwise, with
Q=GK,
=7(Q(jw)) < 1% ify <1

7(QU-Q)'(jw) <7 (2.4.13)
<=7(Q(w)) < 115

The first inequality shows that if v < 1, the loop gain E(Q(jw)) is small.
Notice, however, that v < 1 is not achievable if the open-loop is unstable, since the
perturbation A; = —I will open the feedback loop. The second inequality says that
good robustness margins will be guaranteed if it is possible to stabilize the nominal
plant with a controller that results in (Q(jw)) being small.

The last theorem of this section considers multiplicative model error represen-
tations of the form G; = (I — A,)"'G.

Theorem 2.4.5 Let G and K be given rational transfer function matrices. Then
the feedback loop of Figure 2.10 is internally stable if the following conditions are
satisfied:

1. The nominal closed loop is internally stable;
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A;

K O

Figure 2.10:  Loop with feedback multiplicative model error.

2. The model error As is a rational transfer function matriz such that G and
(I — A2)"rG have the same number of poles in the closed-right-half plane;

3. The model error Ag satisfies
7(Az(s)) <min{l,0((I — GK)(s))} for all s € Dp. (2.4.14)

_
E(S(s))

Furthermore, there exists a rational Ao satisfying Condition 2 and

(Note that o(I — GK (s)) = 2

7(A2(jw)) <min{l,o((I - GK)(jw))}  for all real w
such that the closed loop is not stable.

Proof. Note that 7(Az(s)) < 1 and Corollary 2.2.3 ensures that (I — eAs(s))
is nonsingular for all € € [0,1]. This means that (I — eAs(s)) has no zeros on
the Nyquist Dgi contour. The proof now proceeds along lines similar the proof of
Theorem 2.4.3 by making use of the identity

I—(I—-eA))'Q = (I —eAy) H(I—-Q —cAy).
The details are requested as an exercise. [ |

In the scalar case, Condition 3 says that the robustness margin degrades in
proportion to the distance between the Nyquist diagram of ¢ = gk and the critical
+1 point.

2.4.4 Examples

We will now illustrate the robust stability analysis by revisiting our two earlier
examples.
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Example 2.4.1. Consider the feedback loop shown in Figure 2.1 with K = —TI

and ) .
o-[s F[% &[5 7]
6 7 0 pE;) 6 7

as in Example 2.1.1.

102 e e e e e T T T T

IR B I s

10t

[ N K

100

T T T TTTITT
R R B B A 1

101

T T T TTTTIT
[ B A S AR

102 L R R L T
102 10t 100 101 102 103

frequency (rad/s)

Figure 2.11: Singular value plots of 1/5(GKS(jw)) (solid) and 1/7(KS(jw))
(dashed).

Figure 2.11 shows singular value plots indicating the robust stability margins
for multiplicative (solid) and additive (dashed) perturbations. At 3 rad/s, these
curves drop down to a minimum value of 0.0612, indicating that a multiplicative or
additive perturbation of infinity norm 0.0612 could destabilize the loop.

To show that this system can be destabilized by a stable rational additive per-
turbation with (A (jw)) < 0.0612 for all real w, we will construct such an additive
perturbation. Using the singular value decomposition of K(I — GK)~1(j3), we
obtain the perturbation

/

0.6886 —0.7851 ( £=0.0341
A =0.0612 )

510.0341
—0.7959 (3—0.0509

s—0.0864
540.0509 —0.6194 570.0864

using the techniques described in the proof of Theorem 2.4.3; the details are re-
quested in the exercises.
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It can be seen that A is stable, that o(A(jw)) = 0.0612 and that A it is
destabilizing. The destabilization property follows from the fact that

I - AK(I - GK) '(j3)

is singular. This means that the closed-loop system will have imaginary-axis poles
at +53.

The important point is that the singular values of closed-loop operators such as
K(I-GK) ! and GK(I — GK)~! give information about the ability of the loop
to tolerate modelling errors.

If we designed an optimally robust controller ignoring all other possible require-
ments, the solution would simply be K = 0! \V4

Example 2.4.2. In this example, we consider the design of optimally robust
controllers. We will examine optimal robustness with respect to an additive model
error representation, a multiplicative model error representation and then a combi-
nation of both. Our purpose is to illustrate the properties of controllers and closed
loops that are optimal with respect to these different model error representations.

The optimal robustness problem for the model error representations introduced
so far is only interesting if the plant is unstable. We therefore consider the unstable

system
1

9=

The fact that g is a simple scalar transfer function allows our insights to develop in
a familiar environment where Nyquist diagrams and criteria such as gain and phase
margins may be used.

Elementary considerations reveal that the loop will be unstable for any constant
gain controller and hence some form of dynamic compensation is required. Such a
compensator can easily be designed using classical control techniques. Our approach
is to optimize robustness with respect to certain model error representations.

Taking the additive model error representation first, we seek a controller that
stabilizes all plants g, = g + @ with ||a||cc < 1/7 and with 4 minimized. This is
achieved by minimizing v = ||k(1 — gk)'|ls over the class of all controllers that
stabilize the nominal loop.

Although a solution using the elementary maximum modulus principle argument
of Chapter 1 is no longer possible, we can make use of more advanced techniques
covered later in the book to show that ~y,p: = 4v/'3 + 2v/2 and that the optimal
controller is

_ 4 — Yopts
s+3+ \/E

This controller will stabilize the loop for all additive model errors a such that
lalloc < 1/7opt = 0.1035. In the parlance of classical control, k, allows gain varia-
tions in the interval (0.85,1.1), while the phase margin is 6.3°. These are not good
margins and yet the controller is optimally robust! This apparent contradiction
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arises because gain and phase margins are indicators of robustness to certain mul-
tiplicative model errors. Optimal robustness with respect to additive model error
is not a good criterion if one is only interested in good gain and phase margins.

At high frequencies g(jw) ~ 0 and so |k(l — gk) |« < < implies that
lim,, 00 |[k(jw)| < . Thus, the additive robustness criterion limits the high-fre-
quency gain of the compensator. In effect, we have found a stabilizing controller
with a high-frequency gain limit.

We now turn our attention to optimizing robustness with respect to multiplica-
tive model errors. We seek a controller that stabilizes all plants g, = (1 + d)g
such that ||0||oc < 1/y with v minimized. To achieve this, we minimize v =
lg(1 — q@)7!|oo, in which ¢ = gk. Because the objective involves only g, and
not g or k separately, the optimization problem is relatively easy to solve.

We require the Nyquist diagram to encircle the +1 point anticlockwise twice,
while remaining in the region of the complex plane defined by |s/(1 —s)| < . Note
that the circle |s/(1—s)| = v has center 42 /(7%—1), radius /(7% —1) and intersects
the real axis at y/(y £ 1) (see Figure 2.7). It is therefore clear that we must have
~ > 1 in order that the Nyquist plot encircles +1. It is easy to see that for any
~ > 1, the Nyquist diagram of

Y 1+s 2+
=g \\i=s) 77

is precisely the circle defined by |s/(1 — s)| = v and that it makes two anticlockwise
encirclements of the +1 point. The corresponding controller is

_ 7
7?1

((s+1)*+7(s—1)%),

which is not proper. If a proper controller is required, we may use k,, /(7s+1)? with
7 sufficiently small. This illustrates an important feature of H,, optimal control
designs. In this case, the objective requires that the Nyquist diagram be excluded
from an M-circle of some particular radius. The resulting optimum occurs when
the Nyquist diagram is tight against the M-circle boundary.

In this case, there is no minimum achievable value of v and one can only approach
the greatest lower bound of 1.

Since gk, follows the circle |s/(1 — s)| = v exactly, the allowable gain range is
[1 —1/7,14 1/v] and the phase margin is 2sin_1(%). These impressive margins
should be viewed with some caution, however, because the controller has very high
gain at high frequencies and is therefore not implementable in practice. This phe-
nomenon occurs because the objective involves only the loop-gain function g = gk
and there is nothing in the optimization criterion to ensure the controller is reason-
able in any engineering sense.

We have seen that the additive robustness optimization problem places an ex-
plicit limit on the high-frequency controller gain, while the multiplicative version
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of the problem gives good gain and phase margins . In order to reap the benefits
associated with both problems, we will now represent the plant by

g; = (1+01)g + 26,

in which € a design parameter. The modelling error is given by

g —-g=1[d 52}[9],

€

and we will design a controller that accommodates || [ 61 &2 ||l < 7! with
~ minimized. Since g is low pass, the multiplicative part of the model error rep-
resentation, &1, will be emphasized at low frequencies where |g(jw)| > e. The
additive part of the model error representation, do, will then come into play at high
frequencies.

Since 1 — g,k can be written as

(1— [ 6, &5 ] {i’ ]k(l—gk)_1> (1 - gk),

it follows that the objective will be achieved by minimizing

'y:sgp5<[ g } k(1 —gk)_1> .

Note that this objective implies that ||gk(1 — gk) !|lee < 7 and that ||k(1 —
gk) o < /e
Taking e = 1/10, the optimal value of 7 is y,p: = 2.38 and the optimal controller
is
ke — 4.856 — 23.818s
T s+6.9049

The infinity norm bound means the loop will be stable for all multiplicative model
errors |01 (jw)| < 1/9opt = 0.4198 as well as all additive model errors |d2(jw)| <
1/(107ep) = 0.04198. The multiplicative model error bound implies the loop will
be stable for gains in the range [0.5802,1.4198] and that the phase margin is at least
+24°.

It follows from the Nyquist diagram of gk shown in Figure 2.12 that the actual
stable operating gain range is (0.5731,1.4241) and that the phase margin is 24.1°.
Note that the low-frequency region of the Nyquist diagram is close to the 1/vqp
M-circle defined by |s/(1 — s)| = 1/7opt- At the same time, the additive part of the
design criterion is limiting the controller gain to 1074, = 23.82. \V4

Main point of the section

Singular values can be used to generalize the classical intuition that
the distance to +1 (or —1 for a negative feedback sign convention) is a
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Figure 2.12: Compensated Nyquist diagram and the 1/7,,; M-circle.

measure of robust stability. Theorems 2.4.3, 2.4.4 and 2.4.5 make these
notions precise in the context of additive, multiplicative and inverse
multiplicative model error representations respectively.

2.5 Performance analysis and enhancement

The stabilization of a system is only rarely the major reason for introducing feed-
back control. Indeed, in the case of stable plants, we have seen that feedback control
can only have a detrimental effect on the stability robustness of the system in the
sense we have discussed it. The most common reason for introducing feedback
control is the enhancement of performance in the presence of uncertainty. In this
context, performance enhancing goals include such things as disturbance attenua-
tion, sensitivity reduction, the reduction of nonlinear effects and command tracking
enhancement.

It is well known that the benefits of feedback control accrue from high gain and
it is also known that high gain exacerbates the danger of loop instability, actuator
saturation and sensor noise amplification. This conflict between the high- and low-
gain requirements is what makes control system design interesting (and difficult).
In broad terms, a feedback system designer will try to “shape” the loop gain as
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a function of frequency so that the low-frequency, high-gain requirements are met
without infringing on the high-frequency, low-gain limits imposed by plant model
errors, sensor errors and actuator limits.

Gy

K

C

Figure 2.13: Closed-loop system.

In this section, our aim is to analyze various performance criteria and limits
using singular values. The closed-loop configuration we will use for much of this
discussion is shown in Figure 2.13.

2.5.1 Disturbance attenuation

The signal d represents an exogenous disturbance such as a load variation or wind
gust that affects the output y of the system via a transfer function matrix G4 in
an undesirable way. The disturbance attenuation problem is to find some means of
reducing or eliminating the influence of d on the output y. Before embarking on the
design of a feedback controller, it is as well to note that the disturbance attenuation
problem may also be addressed by other means.

It may be possible to modify the system in such a way that the disturbance
is eliminated or reduced in magnitude: the effect of wind gusts may be reduced
by constructing a wind-break around the system. Unwanted induced signals in an
electronic circuit may be attenuated by careful component layout, grounding and
shielding. A well designed suspension system reduces the influence of road surface
irregularities on the occupants of an automobile.

If plant modifications are not possible (or practical), one could measure the
disturbance and compensate for its effect via a feedforward compensator F' as shown
in Figure 2.14. In the open-loop situation with K = 0, the transfer function matrix
from d to y is G4+ G+ F so that the effect of the disturbance may be eliminated if G
is square and has no right-half-plane zeros by choosing F' = -G, 'G4. Complete
cancellation is not possible if G; has right-half-plane zeros. In this case, the effect
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Figure 2.14: Disturbance attenuation via feedforward compensation.

of d may be reduced by making G4 + G+F small. Specifically,
E((Gd + GtF)(jw)) <~

ensures that
ly(G)ll < ~lld(Gw)l-

This gives rise to an optimization problem of the same type as the command re-
sponse optimization problem discussed in Section 1.2.

Finally, a feedback controller may be used to attenuate the output disturbance.
In this case, the transfer function matrix from d to y in Figure 2.14 is

(I -GiK)™ ' (G4 + GF)
and we see that the sensitivity operator
S =(I-GK)! (2.5.1)
plays a role in disturbance attenuation using feedback. In particular,
7(Si(Gq+ G F)(jw)) < v (2.5.2)

ensures that
ly(G)ll < ~lld(Gw)ll-

Using the singular value inequalities (2.2.16) and (2.2.17), assuming v < 1, we
have

o(GK) > T(Gq+ GF)/y+1
= Q(GtK—I) Z E(Gd—‘rGtF)/’}/
= 7(S4)t(Gqa+GiF) < v
<

2

= E(St(Gd + GtF))

Good attenuation (y < 1) will be achieved if the minimum loop gain ¢ (G, K (jw))
is high (> 1).
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2.5.2 Tracking

The tracking or servo problem is to design the system in Figure 2.13 in such a way
that the output y tracks the command or reference signal r. Ideally, the transfer
function matrix relating r and y should be made equal to the identity matrix. As
indicated in Section 1.2, we may attack this as an open-loop compensation problem
where we seek to design the reference prefilter R. With no feedback (K = 0), the
transfer function matrix from reference r to error r — y is I — G¢R so

(I - GiR(jw)) <~
ensures that the error satisfies

Ir(jw) = y(Gw)l| < Allr(Gw)ll- (2.5.3)

Again, if the plant is square and has no right-half-plane zeros, the obvious (and
optimal) prefilter is R = G, L If the feedback loop is closed, the transfer function
matrix from reference r to error r — y becomes

St(I - Gt<K + R)>>
in which S} is the sensitivity matrix (2.5.1), so that
5(S:(I - G/(K + R))(jw)) < 7 (2:5.4)

ensures the objective (2.5.3). The common unity feedback situation corresponds to
the case where the restriction R = —K is imposed and in this case (2.5.4) simplifies
to an objective on the sensitivity operator:

7(Si(jw)) <. (2.5.5)
Since ‘
(I — Gi(K + R)(jw))
v
implies (2.5.4) (verify this as an exercise), good tracking (v < 1) is ensured if the

minimum loop gain o(G¢K (jw)) is high (> 1) where 7(I — G(K + R)(jw)) is
significant.

+1

o(GK(jw)) >

2.5.3 Sensor errors

The proper operation of any feedback system relies on accurate measurements of
the feedback quantities. Since sensors are never absolutely accurate or noise free,
the measurements they make differ from the signals they represent. As with distur-
bances, the effect of sensor errors is deleterious to the performance of the control
system and their influence on the system output should be reduced as far as possible.

Given that sensor errors are inevitable, it is important that their effect be con-
sidered in the feedback system analysis and design process. In Figure 2.13, sensor
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errors are represented by the signal n and the transfer function from n to y is
G.K S, in which S; is the sensitivity operator (2.5.1). Therefore

ensures that
ly(Gw)ll < ~lln(jw)ll.
Note that G, K S and S} are algebraically related by

S,-G,KS, = (I-GK)S,
= 1, (2.5.7)

which shows that S; and G;K S; cannot be small simultaneously. As a result of
this identity G K S, is sometimes called the complementary sensitivity operator. It
follows that

(G K S (jw)) >1—7(S:(jw))

and hence that
ly(Gw)ll > (1 =3 (S:(jw))) [n(Gw)|-

Objectives requiring that o(S;(jw)) be small (< 1), such as disturbance attenua-
tion and tracking, imply that sensor errors n(jw) will pass (almost) unattenuated
into the output signal y(jw). As a result, there must be a frequency separation be-
tween the requirement (2.5.6) and the objectives (2.5.2) and (2.5.5). Sensors must
be accurate over the operating bandwidth of any high-performance feedback sys-
tem. A sufficient condition for (2.5.6) in terms of the loop-gain operator is obtained
as follows:

o(G\K) < 1
= 7(GiK) < ~y(1-97(G/K))
= 7(G:K) < ~o(I — GiK)
= 0(G:K)7(S:) < v
= E(GtKSt) <

The effects of sensor errors are reduced by having low loop gain—in the extreme
case of open-loop control (K = 0), sensor errors have no effect on the output y!

This confirms that sensor noise attenuation conflicts with objectives requiring
high loop gain. Ensuring that sensor errors do not destroy high-gain objectives
such as disturbance attenuation generates an important trade-off in the design of
the feedback control system.

2.5.4 The control signal

It has been shown that many of the objectives of control system design are enhanced
by high loop gain. Our next calculation shows that high gain can produce excessive
actuator activity and that the closed-loop bandwidth cannot be made significantly
greater than that of the open loop without invoking high controller gain.
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It follows from Figure 2.13 that the control signal is given by

u = (I-KGy) ' (Rr+ Kn+ KGyd)
(I - KG;) 'K(—r+n+ Gyd) when R=—K. (2.5.8)
The matrix (I — KG;) 'K = KS;, which also arises in the analysis of stability
robustness with respect to additive model error, plays a vital role in assessing the

impact of external influences on the control signal.
From the identity (2.5.7), we may write

KS, =G;'(8,—1)
if G4 is nonsingular. Therefore
E(Gt (]u)))
This shows that if the sensitivity is smaller than 1 at frequencies beyond the open-
loop bandwidth, where E(Gt(jw)) < 1, the external signals are amplified at u.
The bandwidth over which the sensitivity may be made small is therefore limited

by actuator performance.
By considering the inequality

o(KS,.(jw)) > for 7(S,(jw)) < 1. (2.5.9)

o (G K (jw))
E(Gt(jw))

we see that any objective requiring high loop gain (i.e., Q(GtK(jw)) > 1) beyond
the open-loop bandwidth will demand high gain from the controller.

o(K(jw)) >

2.5.5 Robust performance

So far, we have analyzed performance assuming the true plant is known. Yet feed-
back control is fundamentally concerned with achieving performance objectives de-
spite modelling errors. We now consider the effect of plant model errors on per-
formance. We choose the multiplicative model error representation and summarize
performance by a sensitivity objective. Of course, a similar analysis can be per-
formed for other model error representations and performance objectives.

Suppose a nominal model G of a system G, is given. Suppose also that G lies
in a neighborhood of G defined by

G =(I+A)G (2.5.10)

with

7(A(jw)) < 0(jw) for all real w. (2.5.11)
Here, §(jw) is a given real-valued positive function. Typically, 6(jw) is an increasing
function of frequency—the model is a relatively good representation of the physical
system at low frequencies, but is less reliable at high frequencies. In very general
terms, the design problem is to find a controller K such that:
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1. The system is internally stable for all plants described by (2.5.10) and (2.5.11).

2. The closed-loop performance is acceptable as specified by tracking accuracy,
disturbance attenuation, sensitivity reduction and the reduction of nonlinear
effects.

3. The control signal is of reasonable bandwidth and magnitude.

By Theorem 2.4.4, the stability requirements are ensured provided the nominal
closed loop is internally stable, G; and G have the same number of poles in the
closed-right-half plane and

7(GKS(jw)) < 5(;@’ (2.5.12)
in which S is the (nominal) sensitivity operator
S=(I-GK)™"
The performance requirements may be translated into a condition such as
p(jw)o (Si(jw)) <1 for all real w (2.5.13)

on the (true) sensitivity operator S; = (I — G,K)™'. In (2.5.13), p(jw) is some

positive performance indicator, which will usually be large (>> 1) at low frequencies
and smaller at high frequencies. The frequency range over which p(jw) is large is
usually constrained by the need to avoid control signals of unacceptable bandwidth
or amplitude.
Noting that
S, =8(I-AGKS)™!,

it may be shown (exercise) that
p(jw)a(S(jw)) + d(jw)o (GK S(jw)) < 1 (2.5.14)
= pliw)o(Si(w)) < 1.
We also notice that (2.5.14) ensures (2.5.12); the simultaneous satisfaction of
(2.5.12) and (2.5.13) is an example of robust performance. We also conclude from
(2.5.14) that achieving performance objectives when a modelling error is present
requires additional gain.

To obtain a specification on the nominal sensitivity operator involving only p(jw)
and 0(jw), we note that S — GK S = I implies

7(GKS(jw)) <1+47(S(jw)).

Consequently, (i)
_ . 1-6(jw
780D < S+ 5Gw)

ensures (2.5.14).
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2.5.6 Analytic limits on performance

We have already studied the design limitations imposed by algebraic identities such
as
S—-GKS=1. (2.5.15)

If equations of this type were the only restriction, we could make E(S’ (jw)) small
for w € [0,wp] and 7(GK S(jw)) small for w € (wp, 00). Under these conditions we
could achieve high performance in the frequency range [0, wp] without compromising
stability. Unfortunately, the rapid change of the loop gain in the vicinity of wp
implied by this situation is not achievable.

Consider the scalar case with ¢ = gk stable and minimum phase.® The Bode
gain-phase relation given by

w + wo
W — Wo

1 / dlog |q(jw)| log dw (2.5.16)

T dw

arg(q(jwo)) — arg(q(O)) =
— 00
indicates that the phase at any frequency wy is largely determined by the rate of
change of gain in the vicinity of the frequency wgy. This follows from the logarithmic
singularity at w = wyp in the weighting factor. For frequencies much larger than wy,
the weighting factor is approximately 2wg/w, while at frequencies much less than
wo it is approximately 2w/wq. If |g(jw)| varies according to

dlali

% ~ —njw (2.5.17)
(that is, —n x 20 dB per decade) for w between wy and wp > 5wy, it is well known
that

arg(q(jwp)) — arg(g(0)) = —n x 90°.

As we will now show, this observation has implications for closed-loop stability.

Let us suppose that |g(jwp)| = 1 and that n = 3 in (2.5.17). Then the resulting
270° of phase change over the frequency interval [wg,wp] may well drive the closed-
loop system into instability (by producing an anticlockwise encirclement of +1).
Even if n in (2.5.17) is only 2 at the unity-gain cross-over frequency, the phase
change of about 180° could result in a small phase margin. Consequently, it is
normally recommended that the gain should decrease at no more than 20 dB per
decade (n =1 in (2.5.17)) in the vicinity of the unity-gain cross-over frequency.

The requirement that the closed loop be stable therefore imposes analytic con-
straints on the allowed behavior of the loop gain as a function of frequency. These
analytic constraints are consequences of Cauchy’s integral formula.

A clear statement of these constraints is Bode’s conservation of sensitivity the-
orem:

8This means that g has no poles or zeros in the closed-right-half plane, although it is allowed
infinite zeros.
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Theorem 2.5.1 Suppose that q has relative degree at least 2. If s = (1 —q)~ ' is
stable, then

/OOo log |s(jw)| dw = WZRe(pi), (2.5.18)

in which p; are the right-half-plane poles of q. If q has no right-half-plane pole,
then the right-hand side of (2.5.18) is zero.

10t

100

gain
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frequency (rad/s)

Figure 2.15: Plot of sensitivity on a logarithmic scale versus frequency on a linear
scale.

This theorem states that the average of the logarithm of the sensitivity is con-
served. All controllers such that the right-half-plane poles of ¢ = gk are at p; will
have the same average logarithmic sensitivity. If we make |s(jw)| < 1 in the fre-
quency range [0,wg], we must pay this back with |s(jw)| > 1 in the high-frequency
region. Figure 2.15 shows this phenomena for g = —1/s(s + 1).

Equation (2.5.18) may not appear to be a serious restriction, since the debt
incurred in making |s(jw)| < 1 in the frequency range [0, wp] may be repaid, in the-
ory, over the infinite frequency interval (wp,c0). In reality, however, the controller
bandwidth is limited and the repayment must be made in the active frequency range
of the controller. To clarify the implications of this fact, suppose wpqz is chosen
such that

. 1
lg(jw)| < ( for w > Wmaa-

10w/ wimaz )?
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Then -
/ log |s(jw)| dw < M < o0,

in which M depends only on wy,q..> Hence, if |s(jw)| < 1 on the frequency range
[0,wp], the debt must be repaid with |s(jw)| > 1 on the finite frequency interval
[WB, Wmaz]. Specifically, if |s(jw)| < 1/N for w € [0,wp], then

(Wmaz — wp) log(||sle) > log(N)wp — M + WZRe(pi)' (2.5.19)

As we press for more performance over a wider bandwidth (faster and more accurate
tracking for example), stability robustness will be degraded, since |gks(jw)| >
|s(jw)|—1 when |s(jw)| > 1. The inequality (2.5.19) therefore imposes a constraint
that must be respected in choosing the performance target. Note that unstable
open-loop poles make this analytic design trade-off even more restrictive.

It is possible to show that right-half-plane zeros in the open-loop transfer func-
tion also introduce an analytic design trade-off. If |s(jw)| < 1/N for w € [0,wg],
then (irrespective of how g behaves at infinity)

[8lloe > aalog N + aylog |s™1(z)], (2.5.20)

in which z is a zero of ¢ with R.(z) > 0 and «; and ay are constants depending
only on wp and z.
These phenomena have come to be known as the “waterbed effect”. Push the
sensitivity down in one range of frequencies and it must pop up somewhere else.
The following theorem summarizes the results that are available in the multi-
variable case:

Theorem 2.5.2 Suppose that Q = GK is n xn and has entries which are each of
relative degree at least 2. If S = (I — Q)™ ! is stable, then

/0oo log|det(S(jw))|dw = 7 Z R.(pi) (2.5.21)

o0

Z/o logoj(S(jw)) dw

T Z R.(pi) (2.5.22)

| ese(sto)ds < Z3 R (2.5.23)
/OoologE(S(jw))dw > %ZRe(pi), (2.5.24)

in which the p;’s are the right-half-plane poles of Q.

IM = Wmaz[In(99/100) + In(11/9)/10] ~ wWmax/100.
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Equations (2.5.21) and (2.5.22) provide conservation results for the multivariable
sensitivity operator. Any decrease in E(S ( jw)) on [0, wp] must be compensated for
by an increase in sensitivity at other frequencies or in other directions. There is the
tantalizing prospect that a reduction in 7(S(jw)) on the interval [0,wp] might be
traded against an increase in ¢ (S(jw)) on the interval [0, 00) (or [0, Wmaz]) Without
E(S(jw)) becoming large—the singular values might be squeezed closer together.
Inequalities (2.5.23) and (2.5.24) show the extent to which this is possible. When
all the singular values have been squeezed together, so that E(S(jw)) = Q(S(jw)),
(2.5.24) will hold with equality and the scalar situation is recovered.

Main points of the section

1. Performance objectives can be analyzed using singular values.

2. Disturbance attenuation and tracking are improved by making the
sensitivity operator small. This requires high loop gain.

3. Robust stability, and actuator and sensor constraints, limit the use
of high gain.

4. Uncertainty about the plant makes the trade-off between high- and
low-gain objectives more difficult to achieve.

5. Analytic constraints arising from Cauchy’s integral formula impose
“conservation laws” on stable closed-loop systems.

2.6 Example

We will now illustrate the use of singular values as an analysis tool by studying the
unstable batch reactor process first described by Rosenbrock ([172], page 213).
A linearized model of this process is

138 —0.2077  6.715 —5.676 0 0
s o | —0s814 —429 0 0675 | | 5679 0,
1.067  4.273 —6.654  5.803 1136 —3.146
0048 4273 1.343 —2.104 1.136 0
CJ1 01 -1
Y~ lo1o o

Since the eigenvalues of the A-matrix are (1.99, 0.064, —5.057, —8.67) the reactor
is unstable.

The two main aims of the control system are the stabilization of the process and
the improvement of its step response. Since the actual batch process is nonlinear, we
require stability robustness of the nominal linear closed loop. In order to achieve
zero steady-state tracking error we require E(S (0)) = 0. An adequate speed of
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response comes from ensuring that o(S(jw)) < € for all w € [0,wp] where € is
sufficiently small and wp is sufficiently large.

The objectives call for high loop gain (¢(GK (jw)) > 1) over a frequency range
that is wide enough to meet the sensitivity specification. The uncompensated plant
singular values o(G(jw)) are shown in Figure 2.16. Clearly some low-frequency
gain is required, because ¢ (G(;j1072)) < 0.4 implies that 5(S(j1072)) > 10/14.
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Figure 2.16: The two singular values uncompensated batch process.

There are many ways of designing control systems and many problems can be
solved without the aid of the latest theory. Simply using modern methods such as
H~ optimization for everything, without thought, may lead one to overlook simple
and elegant solutions. H., optimization is only one tool and we do not wish to
convey the impression that it is the only tool.

By studying the batch process’ inverse Nyquist array, Rosenbrock deduced that
the control system design task is simplified by crossing over the two inputs and
negating the sign of the first new loop. He then found that the system could easily
be controlled using proportional-plus-integral control. In our study we use

t
u=Ky(Yres —vy) + K; / (Yrey —y)dt
0
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where
0 2

Kp:[_5 0] and Ki:[_og g]
The proportional part is taken from Rosenbrock, while the integral part is ours—
Rosenbrock did not specify the integral term in his writing. The elegance and
simplicity of this solution is self evident.

From the singular values of the compensated plant O’(GK (jw)) shown in Fig-
ure 2.17, we see that the tracking requirements will now be met. Indeed, since
0(GK(jw)) > 1+ V2 implies that 7(S(jw)) < 1/v2 and 7(S(jw)) < 1/v2
implies that g(GK(jw)) > /2 — 1, the closed-loop bandwidth must be between
1.8 rad/s and 27.3 rad/s. These calculations illustrate the importance of simple
singular value inequalities in the selection of frequency shaping functions during the
design process.
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Figure 2.17: The two singular values of the loop-gain operator of the batch process
compensated by Rosenbrock’s controller.

Figure 2.18 shows the characteristics of U(S (w)) that are necessary for tracking
step reference inputs. These same characteristics will ensure the attenuation of
step-like disturbances at the system output. The closed-loop bandwidth is about
15.2 rad/s. The step response of the closed-loop system is given in Figure 2.19.

We may examine robust stability to multiplicative model error by plotting the
singular values of the complementary sensitivity GK S(jw), which are shown in
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Figure 2.18: The two singular values of the sensitivity operator of the batch process.

Figure 2.20. Since (GKS(jw)) < 1 beyond about 100 rad/s, considerable high-
frequency model error is tolerable. The peak of 1.34 at about 2.5 rad/s indicates
that the loop will be stable for all stable multiplicative perturbations A to G such
that 7(A(jw)) < 1/1.34 = 0.75 for all w. However, there is a A with 7(A(jw)) <
1/1.34 = 0.75 that will destabilize the loop (Problem 2.15). Sensor errors are
unlikely to be a problem if they are small at frequencies below about 100 rad/s.

2.7 Notes and References

There is a large literature on Nyquist array and characteristic locus methods and
some excellent books on the subject are available. We refer the interested reader to
MacFarlane [143], Rosenbrock [172] and Maciejowski [144].

Example 2.1.1 is from Doyle [50] (also Doyle and Stein [55]), who introduced it
to make much the same points. Example 2.1.2 is taken from Doyle [49], who showed
that LQG regulators have no guaranteed robust stability margins. For a treatment
of the robustness properties of the linear quadratic regulator, see Anderson and
Moore [11, 13] and Safonov and Athans [179].

The singular value decomposition and singular value inequalities are discussed
in many places. Three useful references are Golub and van Loan [81], Horn and
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Figure 2.19: Step response of the batch process compensated with Rosenbrock’s
controller. The first diagram shows the response to a step input of the form y,.y =
H(t)[1 0]', while the second is the response to yr.y = H(t)[0 1]’.

Johnson [94] and Stewart [198]. Readers interested in interlacing inequalities on the
sums and products of matrix valued operators are referred to Ky Fan [59].

The importance of the sensitivity operator in feedback design dates back to the
classical texts of Bode [31] and Horowitz [95]. The multivariable case was analyzed
in the early 1960s by Cruz and Perkins [38]. The parametric analysis in Section 2.3
follows that given in Anderson and Moore [13], page 112.

The use of singular values for the stability robustness analysis of multivariable
control systems began in the late 1970s. The papers by Safonov [176], Stein and
Doyle [197], and Sandell [190] in the 16th Annual Allerton Conference on Commau-
nications, Control and Computing, 1978, appear to be the first references containing
analysis along the lines presented in Section 2.4. The derivation using the general-
ized Nyquist theorem is due to Doyle [50]—Safonov derives his results (which allow
a larger class of model errors) from the sector bounded stability results in his Ph.D.
thesis [175] (see also [177]), while Sandell uses operator theoretic arguments. The
paper by Sandell contains the acknowledgment:

“The ideas in this paper arose during the course of discussions with M.
Athans, J.C. Doyle, A.J. Laub, M.G. Safonov and G. Stein.”
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Figure 2.20: The two singular values of the complementary sensitivity operator of
the batch process compensated with Rosenbrock’s controller.

The journal papers on the singular value analysis of multivariable control systems
by MacFarlane and Scott-Jones [142]; Doyle and Stein [55]; Safonov, Laub and
Hartmann [182]; and Postlethwaite, Edmunds and MacFarlane [166] appeared a
year or so later—all but one are in the IEEFE Transactions on Automatic Control
Special Issue on Linear Multivariable Control Systems [185] published in January
1981.

Analytic constraints on closed-loop performance date from the work of Bode [31],
who developed the famous gain-phase relations that bear his name and proved the
conservation of sensitivity result (Theorem 2.5.1) for the case of stable systems (see
page 285 of [31]). The result was generalized by Freudenberg and Looze [67] to
include open-loop unstable systems. An inequality similar to (2.5.19) appears in
the monograph by Freudenberg and Looze [68], page 53. The limits on performance
imposed by right-half-plane zeros have been studied at least since Horowitz [95]. An
explicit statement of the design trade-off equivalent to (2.5.20) is given in Francis
and Zames [66]. Multivariable extensions of the sensitivity conservation law were
developed by Boyd and Desoer [32] and Freudenberg and Looze [68].

The unstable batch reactor example first appeared in Rosenbrock [172].
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2.8 Problems

Problem 2.1. Suppose 7(Q) < 1.
1. Show that (I — @) is nonsingular.
2. Show that the series Y -, Q" converges.

3. Show that (I — Q)™ =322, Q".
Problem 2.2. Prove the following identities

QU-Q™ = (I-Q7'Q

-7 = I+QU -
K(I-GK)'!' = (I-KG)'K.
Problem 2.3. Let @Q be a p X p matrix with ordered singular values oy > g9 >
.2 0p>0.
1. Show that 7(Q~!) = U(lQ).

2. Show that 051 > .. § afl are the ordered singular values of Q~!.

Problem 2.4. Let Q be a p x p matrix with \;(Q), i =1,2,...,p, the eigenvalues

of Q.

1. Show that ,

det(Q) = [[ 2(Q) = e? [[ 0:(@)
i=1

i=1

for some phase 6.

Problem 2.5. Assume the feedback loop of Figure 2.1 is internally stable and that
the Nyquist diagram of each eigenvalue \;(s) has the property |1 —\;(jw)| > a; >0
for constants ;. What can one say about the stability robustness of the feedback
loop?

Problem 2.6. Suppose
1 —1
s-leqw &llE e
6 7 0 3 6 7

1. Sketch the Nyquist diagrams for the eigenvalues of G.
2. Show that G has the following state-space realization:

. -1 0 7T -8
To= [0 —2}“*[—12 14}“

<
|
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3. By evaluating the linear term of det(s — A — BK (') with
| kO
K= [ 0 ko } ’

show that 3 — 50ks +47k; > 0 is a necessary condition for the stability of the
feedback loop of Figure 2.1.
(Hint: you can simplify your calculations by setting k1 = k46 and ko = k—0.)

Problem 2.7. (M.C. Smith) The aim of this exercise is to demonstrate that the m
eigenvalue loci of m x m transfer functions do not necessarily form m closed curves.
To see this, plot the eigenvalue loci of

() (=32
(b)) (=250

for e = —0.005, 0.000, 4-0.005 and note the number of closed curves in each case.

J—

Problem 2.8. By mimicking the arguments used in the proof of Theorem 2.4.3,
establish Theorem 2.4.4.

Problem 2.9. By mimicking the arguments used in the proof of Theorem 2.4.3,
establish Theorem 2.4.5.

Problem 2.10. Derive the implications expressed in (2.4.8), (2.4.9) and (2.4.13).

Problem 2.11. The aim of this exercise is to check the calculations in Exam-
ple 2.4.1.
1. By making use of a computer package such as MATLAB'?, reconstruct Fig-
ure 2.11, thereby checking that

min {1/5(K(I - GK)'(jw))} = 0.0612

with
argrrgn {1/5(K(I - GK) '(jw))} = 3.

2
K(I -GK)™'(j3) = Zaiviuf,
i=1

show that I — AK (I — GK)~'(53) is singular if A = o 'ujv}.

3. Find a rational stable perturbation such that [|Alle < o' and A(53) =
o7 'uyvi. Compare your answer with the solution given in the text of Exam-
ple 2.1.1.

IOMATLAB is a registered trademark of The MathWorks, Inc.
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Problem 2.12. Show that
E(I -G(K + R)(jw))
v

+1

a(GK(jw)) >

ensures satisfaction of the reference tracking objective ||r(jw) — y(jw)|| < v||r(Fw)|
for the loop in Figure 2.13.

Problem 2.13.  Show that (2.5.14) implies (2.5.13). Show also that (2.5.13)
implies that p(jw)a(S(jw)) < 1+ §(jw)o(GK S(jw)).

Problem 2.14. Suppose a controller has been designed for the feedback loop
in Figure 2.4 such that ||r(jw) + y.(jw)|| < p(jw)|r(jw)| for all r(jw) and some
nonnegative function p(jw). Suppose also that Gy = (I + A2)~!G, in which A,
satisfies o(Az(jw)) < 0(jw) < 1 for some other nonnegative function §(jw). Show
that this objective will be achieved if

- p(iw)
U(S(]W)) S 1+ 5(jw)(1 + P(jw))7

in which § = (I — GK)™! is the nominal sensitivity function.

Problem 2.15. Consider the unstable batch reactor described in Example 2.6,
together with the controller

0 2]1,1[ 0 2
K‘{—5 O]J“E[—S 0]'

1. Using MATLAB!! or otherwise, plot 7(GK (I — GK)™'(jw)). Show that

1
i = 0.7451,
" F(GK(I - GK)1(jw))
and that 1
arg min — ~ 2.5

v 7(GK(I — GK) 1(jw))

2. Find a singular value decomposition of GK (I — GK)~1(j2.5).
3. Show that

0.9787 )] 0.9915(5—01656)

5+0.1656
0.2052 (iﬁi?gg} ~0.1299 (8*35936)

A =0.7451 [
5+3.5936

is a stable destabilizing perturbation satisfying ||A|lc < 0.7451.

HMATLAB is a registered trademark of The MathWorks, Inc.
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Signals and Systems

In Chapter 2, we presented singular values as a multivariable design tool for sys-
tems described by rational transfer function matrices—systems that are linear,
time-invariant and finite-dimensional. However, as all physical systems are both
time-varying and nonlinear to some extent, the assumption that both models and
modelling errors are described by transfer function matrices is unacceptable. In
particular, we need to be able to allow time-varying and nonlinear modelling errors.
Fortunately, a singular value bound of the form E(G(jw)) < 7 for all w has impli-
cations beyond linear, time-invariant theory. In this chapter we review the basic
definitions and properties of signals and systems required to make these generaliza-
tions. Two important results, the small gain theorem and the bounded real lemma,
are the main focus of the chapter.

Sections 3.1 and 3.2 are concerned with the basic definitions and properties of
signals and systems. The Lebesgue 2-spaces L£2[0,7] and £2[0,00) are reviewed.
The frequency domain Lebesgue space Lo and the Hardy space Ho are introduced.
Definitions of causality, time-invariance, stability and linearity are given. The infin-
ity norm is defined and the spaces Lo, and H, are introduced. The properties of
adjoint and allpass systems are reviewed. These sections do not attempt to provide
a definitive or comprehensive treatment of signal and system theory; we assume that
the reader is familiar with most of this material through exposure to senior under-
graduate or graduate level courses and texts. In particular, we assume familiarity
with state-space system descriptions, controllability, observability and minimality.
Our treatment does little more than introduce the terminology, notation and results
that will be required for our subsequent work.

In Section 3.3, the incremental gain and the induced norm are introduced as
measures of system size. In addition, the 2-norm of a system, which is the objective
function of interest in LQG optimal control, is defined. Section 3.4 presents the
small gain theorem. Some extensions of the basic result that can be obtained by

71
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simple loop transformations are presented in Section 3.5. Again, our treatment is
reasonably terse in order to restrict its length. We excuse this on the grounds that
this material is covered in several excellent texts. The small gain theorem allows
us to obtain robust stability results in Section 3.6 which permit time-varying and
nonlinear model errors. These results are natural generalizations of those given in
Chapter 2.

The chapter concludes with the bounded real lemma, which allows us to answer
the question “is E(G ( jw)) < v for all w?”. The proof of this result provides a warm-
up exercise for our later work on the synthesis of controllers that meet singular value
objectives.

3.1 Signals

A signal is a (Lebesgue) measurable function that maps the real numbers R to R™.
The set of signals is
S={f:R—R"}.

Note here, once and for all, that S is formally being considered as a set of equivalence
classes of signals—signals which differ only on sets of (Lebesgue) measure zero are
formally identical. Readers not familiar with measure theory may regard S as a set
which contains all signals that could occur in an engineering system. It also contains
many functions which could not conceivably occur in any engineering system.

Signals form a natural vector space under addition and scalar multiplication,
which are defined by

(f+9)t) = [f(t)+g(t)
(af)(t) = af().
It is convenient to define the two subspaces

St = {feS:f(t)=0forallt<0}
S = {feS:f(t)=0forallt>0}.

3.1.1 The size of signals

The size of a signal will be measured by a 2-norm defined over either a finite or
infinite time interval. In the sequel, ||z|| = V#’z is the Euclidean norm.!

1We also use || X|| to denote the matrix norm &(X). The use of upper-case letters for matrices
and lower-case letters for vectors means that no confusion should arise.
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Finite horizon

The finite-horizon 2-norm is defined by

T 2
1f1l2,f0,71 = {/0 ||f(t)||2dt} - (3.L.1)

The set of signals for which this norm is finite is known as the finite-horizon Lebesgue
2-space:
Lo[0,T) = {f €8s + | fllajorr) < 0} (3.12)

Any signal that is continuous on [0,7] is bounded and is therefore in £5[0,T].
Signals like ﬁ are not in £-[0,T].

A signal f is in the finite-horizon 2-space Ls[to, T if and only if the time-shifted
signal g(t) = f(t + to) is in L2[0,T — to]. The norm || fl|o 1, 7] is defined in the
obvious way.

Infinite horizon

In order to address stability issues, we must consider the behavior of signals over
infinite time intervals. The infinite-horizon Lebesgue 2-space is defined by

Lo(—00,00) = {f €S :||f]2 < oo}, (3.1.3)

in which )
3

1= { [~ nrna} (3.1.4)

The spaces £3]0,00) and Lo(—00, 0] are defined by £5]0,00) = S N La(—00, 00)
and Lo(—00,0] = S_ N Lo(—00, 00).

Establishing that signals are in £3[0,00) will often be done in several steps,
with each step corresponding to increasingly stringent growth conditions. For this
purpose, it is convenient to introduce the extended 2-space Lo, defined by

Loe ={f € L2]0,T] for all T' < oo} . (3.1.5)

Note, however, that f € L. does not imply supy || f]|2,j0,7] < oo. For example,
f(t) =t and g(t) = €', t > 0, are both in La., but are not in £3[0, 00).

Inner product

The space L2(—00,00) is a Hilbert space with inner product defined by

(f,9) = /00 g () f(t) dt.

— 00
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Two signals f and g are orthogonal if (f,g) = 0. This is a natural extension of
orthogonality in R™. Note that f € £3]0,00) and g € L2(—00,0] implies that
(f,g) = 0, which means that £5[0,00) and L2(—00,0] are orthogonal subspaces of
Lo(—00,00).

The spaces L2[0,00), Lo2(—00,0] and L2[0,T] are all Hilbert spaces in their own
right, with the inner product integral taken over the appropriate time interval. For
example, for £2[0,T] we have

T
(fs 90,17 :/0 g () f(t)dt.

Note that || f||3 = (f, f) and that the inner product satisfies the Cauchy-Schwarz
inequality?
1ol < Afl2llgll2:
The 2-norm of exponential signals

The following theorem shows that the initial condition response of a time-varying
state-space system is always in Lo, and, in the time-invariant case, gives conditions
under which the initial condition response is in £5[0,00). The proof provides an
elementary introduction to the techniques we will use to prove the bounded real
lemma and the later results on controller synthesis.

Theorem 3.1.1 Consider a signal z such that
o(t) = A(t)x(t),  x(0) = o,
2(t) = C@)z(),

in which A(t) and C(t) are continuous matriz valued functions of appropriate di-
MENSION.

1. The finite-horizon case:

(a) z € Lae for all xy.
(b) HZH%[O’T] = 2Q(0)xo, in which Q(t) is the observability gramian gener-
ated by

—Q(t) = QWA(t) + A'(HQ(t) + C'(H)C(t), Q(T)=0.  (3.1.6)
2. The infinite-horizon case: Assume that A and C are constant.

(a) The following are equivalent:
(i) z € L3]0,00) for all xg.

2Any inner product satisfies the Cauchy-Schwarz inequality.
y 1% Yy q Y
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(i5) CeAt — 0 ast — oo.
(#ii) Every observable eigenspace of A is asymptotically stable.

(iv) Q(t) satisfying
—Q(t)=QMHA+A'Qt)+C'C,  Q(T)=0, (3.1.7)

is uniformly bounded on t <T.
In this case, Q = lim;, o Q(t) exists, is independent of T and
satisfies
QA+AQ+C'C=0. (3.1.8)
Furthermore, @ > 0.
(v) There exists @ > 0 satisfying (3.1.8).
(Such a @ may not be equal to lim;—, o, Q(t), which is the smallest
nonnegative definite solution to (3.1.8).)
(b) If the conditions in Item 2a hold, then ||z||3 = x{,Qwo, in which Q =
hmt*,,:)o Q(t)

Proof.
1. The solution of the differential equation is given by z(t) = C(¢)®(¢,0)xg, in

which ®(¢, 7) denotes the transition matrix associated with the linear system:

d
%‘I)(tﬂ') = A)P(t, 1), O(r,7) =1

Some properties of ®(¢,7) that are needed in the sequel are explored in Prob-
lem 3.3. Since z is continuous, z € £5]0, 7] for any finite 7. Furthermore,

T T
/ St dt = xo{/ @’(t,O)C’(t)C(t)@(t,O)dt}xo
0 0
= x(M(0)x,

in which -
M(t) = /t &' (1,4)C"(1)C(1)®(7,t) d.

Invoking Leibniz’s rule concerning the interchange of the order of integration
and differentiation, we obtain

d
EM(t)

~C'(t)O(t) —|—/75 %(@/(T, t)C'(T)C(1)®(T, t)) dr
= —C'(t)C(t) — A'(t)M(t) — M(t)A(t).

Since M (T') = 0 and Q(T') = 0, we conclude that M (t) = Q(t) as they satisfy
the same differential equation.
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(1)=(ii) Follows from z(t) = CeAtx.

(il)=(iii) If AW = WJ, in which J is a Jordan block corresponding to an
eigenvalue s with R.(s) > 0, then Ce*W = CWe’t. Hence CeA*W — 0 as
t — oo implies CW = 0.

(iil)=(iv) Q(t) is given by the integral
Tt
Q) = / e C'Ce’? do. (3.1.9)
0

Write A in the form

=t w4 4]8]

in which R, (/\Z-(Al)) <0, Re ()\i(Ag)) > 0and V = WL Since every un-
stable mode is unobservable, CWy = 0. Therefore, Ce?* = CW;e21*V; and
[CWier19Vi|| < aeM for A = max; Re(Ai(A1)) < 0 and some o < co. Hence

T—t
QW < / |CWeMo V|2 do
0

T—t
S OéQ / 62)\0 do
0

oo
< 2 2Aod _ Oé_
S« /(; (& g 2|)\|

Therefore Q(t) is uniformly bounded. From (3.1.9), it follows that Q(¢1) >
Q(t2) for any t; < to, which is to say that Q(¢) is monotonic. Consequently,
Q(t) uniformly bounded implies that lim;, ., Q(t) exists. From (3.1.9) we
see that @ = Q(—o0) is independent of ¢, satisfies (3.1.8) and @ > 0.

(iv)=(v) Set @ = lim;_,_ Q(1).

(v)=(i) Let @ be any nonnegative definite solution to (3.1.8) and define X (t) =
Q — Q(t). Then

2

X(t)=-XMA-AX(®), X(T)=0,

so that X (t) = eAT=0QeA T~ > 0 for all t,T. Hence 0 < Q(t) < Q for all
t < T, which shows that lim;_,_., Q(t) is the smallest nonnegative definite
solution to (3.1.8). It also shows that

T
/0 Z()z(t)dt = z(Q(0)xg

2y Q.

Since this bound is independent of T', it follows that z € £3[0, 00).

IA
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To prove Item 2(b), we note that ||z||2 = limr_ | 2]

2,[0,77]- n

3.1.2 Signals in the frequency domain

A frequency domain signal is a (measurable) function f(jw) that has the property
(f(jw))* = f'(—jw). The variable w is the real frequency variable in radians per
unit time and the superscript (-)* denotes the complex conjugate transpose. The
frequency domain 2-norm is defined by

1
2

1 [ ... .
Il ={ 55 [ 1)t s} (3.1.10)
The frequency domain Lebesgue 2-space consists of those signals with finite norm:

Lo = {f : ||f||2 < OO} (3.1.11)

Lo is a Hilbert space under the inner product

o =5 | g w) () . (3.1.12)

2 J_ o

The reason we use the same symbol for the norm and the inner product in both the
time and frequency domains is because the Fourier transform, which is a Hilbert
space isomorphism between Lo(—00,00) and Ly, preserves the inner product and
the 2-norm.3 For f € La(—00,0), the Fourier transform of f is

-~

T
f(jw) = lim /_ ) f(t)e It dt.

T—o0
Here, lim denotes convergence in the Lo norm.* Furthermore,

(f.9)={F.9), (3.1.13)

which is known as Parseval’s identity. A consequence of (3.1.13) is that ||f|2 =
1l

Since Lo(—00,00) and Lo are isomorphic, we will not make a notational distinc-
tion between time-domain signals and their frequency-domain counterparts—the
“hat” notation is only used on the rare occasions on which some confusion might
arise. Generally, the context determines whether signals are being considered as
elements of Lo(—00,00) or L.

3Isomorphism comes from the Greek for same shape. Two Hilbert spaces are isomorphic if
there is a bijective linear mapping from one to the other that preserves the inner product.

4That is, Hf— f_TT f®e It dt]|]a — 0 as T — oo.
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The space H-

The Hardy 2-space Hs consists of functions of a complex variable that are analytic
in the open right-half of the complex plane and such that the norm

1
2

1 [ . )
1= {sun 5 [~ rlatirsativ)dsf (3.114)
a>0 4T J _
is finite. That is,
Ho = {f: f(s) is analytic in R.(s) > 0 and || f]|2 < oo} . (3.1.15)

We also assume that (f(s))* = f'(3).

For any f € Ha, the boundary function defined by f3(jw) = limg o f(a + jw)
exists for almost all w, which is Fatou’s theorem. In addition: (1) f, € Lo; (2) the
mapping f — f is linear and injective’; and (3) || fp||2 = || f||2- This final property
means that we may evaluate the Hs norm by the formula

171 = {5 [ fbuw)*fb(jw)dw}%

instead of (3.1.14)—the supremum always occurs on the boundary o = 0.

Because the mapping from f € Hy to the boundary function f, € Lo is linear,
injective and norm preserving, we will drop the subscript b, writing f(jw) instead of
f»(jw), and will regard Hs as a closed subspace of L£2.5 The Paley- Wiener theorem
states that Ha is isomorphic to L3[0,00) under the Laplace transform. For any
signal f € S the Laplace transform is defined by the integral

fls) = /jo f(t)e = dt. (3.1.16)

For any particular f, the domain of definition (allowable values of s) depends on the
convergence of the integral. For f € £3[0,00) the domain of definition is Re(s) > 0
and fe Hs. The function f(s) is often defined outside this domain of convergence
by analytic continuation.

The space ‘H; defined by

Hy ={f: f(=s) € Ha}

is isomorphic to L£2(—00, 0] under the Laplace transform. It follows that the spaces
‘Hy and ‘H, are orthogonal.

5That is, the function f; is uniquely defined by the equation f,(jw) = limg o fa + jw).
SEvery f € Ha is identified with its boundary function f;, € La.
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Main points of the section

1. In this book, the size of a signal is its 2-norm, which is denoted by
| - Il2,0,77 in the case of a finite horizon and by || - [|2 in the case of
an infinite horizon.

2. The signals of interest to us are signals that have finite 2-norm.
This property defines the time-domain 2-spaces L2[0, T, £2]0, 00)
and Lo(—00,00), which are Hilbert spaces.

3. The Cauchy-Schwartz inequality |(f, g)| < || fll2]lg|lz holds.

4. The Fourier transform is a Hilbert space isomorphism from the
time-domain 2-space Lo(—00,00) to the frequency-domain 2-space
Lo.

5. The Laplace transform is a Hilbert space isomorphism from the
time-domain 2-space £L2[0, 00) to the frequency-domain 2-space Hs.
Signals in Ho are analytic in the open-right-half plane.

3.2 Systems

A system is a mapping from one signal space, the input space, to another signal
space, the output space:
G 81 — 82
w— z = Gw.
Systems form a linear space under addition (parallel connection) and multiplication
by a scalar, which are defined by
(G1 + Gg)w = Giw+ Gaw
(aG)w = o(Guw).
A system is called causal if the output up to time 7' depends only on the input

up to time T, for every T'. That is, G is causal if PrGPpr = PpG, in which Pp
is the projection operator defined by the truncation operation

(Prw)(t) = { g”(t) =7 (3.2.1)

Let z(t) be the response of a system G to input w(t). If the response to the
time-shifted input w(t —T) is z(¢ —T'), the system is called time-invariant. Defining
the time-shift operator St by

(Srw)(t) = w(t =T),

we see that a system is time-invariant if it commutes with the time-shift operator.
That is, if GSr = STG, for every T'.
A system G is stable if z = Gw is in £2[0, 00) whenever w is in £3]0, 00).
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3.2.1 Linear systems
A system G : §; — Sy is linear if
G(aw; + fws) = aGwy + BGws

for all scalars «, 8 and for all wy,ws € S;. The space of linear systems forms an
algebra under addition (parallel connection) and composition (series connection).
For systems G : §; — 81, this algebra has the identity [w = w for all w.

Any linear system may be represented by the integral operator

z(t) = /_OO G(t, m)w(T)dr.

The matrix valued function G(t,7) may have to be a generalized function’; a -
function for example.

The system is causal if and only if G(¢,7) = 0 for all 7 > ¢ and is time-invariant
if G(t,7) = G(t — 7,0) for all t,7. Thus any linear, time-invariant system may be
represented as a convolution integral

A(t) = /_OO Glt — TYw(r) dr, (3.2.2)

in which we have written G(¢ — 7) instead of G(t — 7,0) to make the formula more
compact.

Transfer function matrices

Taking the Laplace transform of (3.2.2), we have

in which -
G(s) = / Glt)e" dt.

The function G is known as the transfer function matriz of the system. Note that
any system described by a transfer function matriz is linear and time-invariant.
The transfer function is called proper if lim,_, ., G(s) exists and is finite.

In this book, a signal is a real vector valued function of time. It follows that the
impulse response matrix G(t) is a real matrix valued function and that the transfer
function matrix G(s) is a complex matrix valued function of s such that

G*(s) = G'(3).

For want of a better word, we shall call such transfer function matrices real transfer
function matrices—all transfer function matrices in this book are assumed to be
real.

"That is, for each t, G(t, T)dr is a measure.
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State-space systems

Systems that are described by linear differential equations are our main concern.
We shall assume that the design problem is governed by equations of this form and
that a controller of this form is desired. These systems will invariably be written as
state-space equations:

HO) = A@e()+BOu(), s =m R oo
z(t) = Ct)x(t) + D(t)w(t). o
In (3.2.3), w(t) € R™ is the input vector, z(t) € R™ is the state vector and z(t) € RP
is the output vector. We assume that A(t), B(t), C(t) and D(t) are continuous real
matrix valued functions of time with appropriate dimensions.

The equations (3.2.3) define a linear system

G :R"® S — S [f}f}l—nz.

In the case that z(tg) = 0, the system is said to be relaxed at time ¢y, and we may
write G : S§1 — Sy. It is often convenient to assume that the system is relaxed in
the infinitely remote past, i.e., that lim .o x(tg) = 0.

The quadruple of matrices (A(t), B(t), C(t), D(t)) is called a realization of the
system. We will also use the notation

o [ 1]

Realizations are not unique and we assume that the reader is familiar with con-
cepts such as controllability, observability and minimality.® Briefly, the realization
is observable if the pair (z(t),w(t)), t € [to, T], uniquely determines x(tp). This is
equivalent to Q(tp,T") > 0, in which Q(¢,T) is the observability gramian satisfying
(3.1.6). Thus observability depends only on A(t) and C(¢). In the time-invariant
case, (A, C) is observable if and only if CA¥z = 0 for k = 0,1,2, ... implies z = 0,
which is equivalent to the condition

{ ABAI ]xO:SJ:O,

which is known as the Popov-Belevitch-Hautus test. The realization is controllable
if and only if, for any xr € R™, there exists a w(t), t € [tg, T], such that z(T) = zr.
Controllability depends only on A(t) and B(t) and it can be shown that (A(t), B(t))
is controllable if and only if (A’(t), B'(t)) is observable. The realization is minimal
if no other realization with the same input-output properties has a lower state
dimension. It can be shown that the realization is minimal if and only if it is both
controllable and observable.

8See, for example, [105, 33, 126].
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Let ®(t, ) be the transition matriz associated with (3.2.3), which is the solution
to the array of first-order differential equations

d
E@(t,T) =AW)®(t,7), P(r,7)=1.
Then
z(t) = D(t)w(t) + C(t) /t O(t, 7)B(T)w(T)dr + C(t)®(t, to)xo- (3.2.4)

Notice that z € La[t, T| for any w € La[tg, T, so that w € Lg, implies z € Loe.

State-space systems are always causal on the restricted time interval [tg,00).
That is, PrGPr = P7G for all T > ty. State-space systems are time-invariant
when the matrices A(¢), B(t), C(t) and D(t) are constant. In this case, ®(¢,7) =
eA=7) and

i
2(t) = Dw(t) + C [ e* "7 Buw(r)dr + CeA(=0) g,
to

Taking Laplace transforms we obtain
z(s) = (D4 C(sI — A)"'B)w(s) + C(sI — A)~ .

The matrix valued function G = D + C(sI — A)"!B is the transfer function matrix
of the system. The number of poles in G(s) is known as the McMillan degree of
G. The McMillan degree of G is equal to the dimension of the state vector in a
minimal realization of the system.

The transfer function matrix G = D+ C(sI — A)~! B has no poles in the closed-
right-half plane if and only if G' defines a stable system. Therefore, G is stable if
and only if every unstable eigenspace of A is either uncontrollable or unobservable.
We say that (A, B) is stabilizable if every unstable eigenspace is controllable, and
we say that (A, C) is detectable if every unstable eigenspace is observable. Thus,
if (A, B,C, D) is a stabilizable and detectable realization, G is stable if and only
if A is asymptotically stable, which is to say its eigenvalues A;(A) all have strictly
negative real part (Re(Xi(A)) < 0 for all 7).

3.2.2 The space L.,

Our basic infinite-horizon signal space is Lo(—00,00), so we will be concerned with
systems G : La(—00,00) — L2(—00,00).

Because Lo(—00,00) is isomorphic to L9, a linear time-invariant system maps
Lo(—00,00) to Lo(—00,00) if and only if the transfer function matrix G is such that
Guw € L, for any w € L,. A sufficient condition for this is sup,, 7(G(jw)) < oo,
since

1 [ . .
IGult = o [ IGGWuGLI d

— 00
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1 o0

2 J o

supa(G(i) g [t P

7(G(jw))*w(jw)||? dw

IA

The class of systems for which the supremum is finite is known as L..:
Lo = {G 1 |Gl < 0},
in which the £.,-norm is defined by
IGloo = stipE(G(jw)). (3.2.5)

It is a straightforward exercise to show that || - ||oc is @ norm. We note that
IGw|l2 < ||G|lso]|wlle  for all w € Lo,
and also that the important submultiplicative property
|1GH ||oo < [[Glloo|[H ||oo

is satisfied.
When G is rational, G € L, if and only if G has no poles on the imaginary
axis. In this case 7(G(jw)) is a continuous function of w and

1Glloe <7< 7(G(jw)) <~ for all w € RU oo.

Thus bounds on ||G||« are equivalent to uniform bounds on o(G(jw)), thereby
allowing us to write objectives of the form E(G(jw)) <~y for all w using the more
compact notation |G|l < . All the design problems discussed in Chapter 2 can
be expressed in terms of bounds on the infinity norm of various closed-loop transfer
function matrices.

We have shown that G € L, implies that GLs C L5. The converse is also true.
To see why, choose any wy € R and let v and u be unit vectors such that

G(jwo)v = (G (jwo))u.

(i.e., v is the right singular vector corresponding to the maximum singular value of
G(jwo)). Considering w(jw) = V27062 (w — wy) we have that

IGulZ = / oG (ju) G w8 (w — wo) duo

— 00

= v'G"(jwo)G(jwo)v
= E(G(jwo))zu'u
= 7(G(jwn))".
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The right-hand side must be finite if Gw € L5 and we conclude that GLy C Ly =
|Gllc < oo. The trouble with this argument is that neither the input nor the
output considered are in L5 in the first place! However, these “functions” may be
approximated to arbitrary accuracy by signals that are in £5 and the argument can
be made rigorous.

Mathematically inclined readers may prefer the proof of this result presented in
[222], page 171, which is based on a different approach.

3.2.3 The space H,

If G is the transfer function matrix of a linear, time-invariant system, then G defines
a stable system if and only if 2 = Gw € Ha whenever w € Hy. This is because
L2[0,00) is isomorphic to Has.

Since z € Hs requires that z is analytic in the open-right-half plane, a necessary
condition for stability is that G is analytic in the open-right-half plane. A sufficient
condition for [|z]|z < 00 is sup, {sup,, 7(G(a + jw)) } < oo, since

1 & . .
[Guwl3 = sup 5~ [G(a + jw)w(a + jw)||? dw
a>0 4T J _
1 o0
< sup — 7(Gla+ jw))’|Jw(a + jw)||? dw
a>0 2m —o0
<

1 oo
{supsqu(G(a+jw))2}SuP—/ [w(a + jw)|? dw
a>0 271' — 00

a>0 w

— . 2
= supsupa(G(a+ jw)) [wl]3.
a>0 w

The class of systems for which G is analytic in the open-right-half plane and this
supremum is finite is known as Hoo:

Heo = {G : G is analytic in R.(s) > 0 and ||G||ec < o0}, (3.2.6)
in which
1G]l = sup {supa(Gla-+ )} (3.2.7)
a>0 w

A system that has a transfer function matrix in H, is a stable system. In fact, a
transfer function matrix G defines a stable system if and only if G € Ho.

We use the symbol || - || for both the Lo, and Ho, norms because the limit
Gp(jw) = limy o G(a + jw) exists for almost all w if G € Ho . Furthermore, the
mapping G — Gy, is linear, injective and

1Gloe = Sng(Gb(jW))

We therefore drop the b notation, writing G(jw) instead of Gy (jw), and regard Hoo
as a closed subspace of L.
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In the case that G is rational, G € H if and only if G has no pole in the
closed-right-half plane.

The terminology “Ho, control theory” derives from the fact that we would like
to achieve objectives on || - || subject to closed-loop stability.

Spaces of rational transfer function matrices

As we have previously indicated, we are primarily concerned with state-space sys-
tems. In the time-invariant case, such systems have transfer function matrices that
are rational functions of the Laplace transform variable s. We use the prefix R to
denote rationality. Thus RL., and RH, denote the rational subspaces of L., and
Hoo respectively.

3.2.4 Adjoint systems

Suppose G : S1 — Ss is a linear system and S; and Sy are Hilbert spaces such as
L2[0,T] or L£2[0,00). The adjoint system is the linear system G~ : So — S that
has the property

<Gw7 y>32 = <w’ Gwy>51

for all w € §; and all y € Ss. It is a standard exercise to show that G™ is uniquely
defined by this equation and that (G™)~ = G.

To determine the adjoint of G in the Hilbert space L£2[0,T], consider inputs
w € L5[0,T] and represent the linear system z = Gw by

z(t):/o G(t, T)w(r)dr.

(It is assumed that w(t) = 0 for t & [0,T]). For any y € L5[0, 7],

T T
(G, g /0 dt /0 Y (DGt () dr

T T
/0 dT/O (G (t,T)y(t)) w(T) dt

= (w, 77>[0,T],

in which

T
T](T):/ G'(t,7)y(t)dt.

0
The £5[0,T] adjoint of G is therefore the system G~ defined by

T
(G™y)(t) = /O & (r, )y(7) dr.



86 SIGNALS AND SYSTEMS

In the case of a state-space system,

CH)o(t, 7)B(r) + D)o(t—7) ift>r1
G(t’T):{ O()( B 0o otherwise,

and it is easily shown that n(t) = fOT G'(1,t)y(7) dr satisfies

plt) = —A@)pt)—C'y(t),  p(T)=0, (3.2.8)
n(t) = B'(t)p(t) + D'(t)y(t),

which is therefore a state-space realization of the adjoint system G~ . Note that a
zero terminal condition is applied to the state of G™.

If G is a transfer function matrix mapping Lo to Lo, which is to say G € L,
the adjoint system has transfer function matrix

G~ (s) = G'(—s).

If G has realization (A, B,C, D) then G™ has realization (—A’, —C’, B’, D’).

3.2.5 Allpass systems

An allpass system has the property that the norm of the output is equal to the norm
of the input.® The term “allpass” derives from the fact that, by definition, allpass
systems pass all signals with unchanged magnitude, in contrast to other systems
of interest such as low-pass, high-pass or band-pass systems, which attenuate the
magnitude of certain signals. The term lossless is also used in the network theory
literature. As we have already seen in Chapter 1, these systems play an important
role in the synthesis of Ho, optimal controllers.

Suppose S; and Ss are normed signal spaces such as £3]0,7T] or L2(—00,00),
with the norms on these spaces denoted by || - ||s,. If G : §; — S5 is linear, then G
is allpass if

IGw|s, = |lw|ls, for all w e ;. (3.2.10)

Note that an allpass system is necessarily injective, since (3.2.10) gives ||Gw||s, =
0% Jjw|s, =0.

In any real inner product space (Lo(—00,00) for example), the polarization
identity

Az, y) = llz +yl? = Iz - y)|?
holds. It follows that when the spaces S; are Hilbert spaces, G is an allpass if and
only if
(Gu, Gw)s, = (u,w)s,, forall u,w € &y,

9In the mathematician’s terminology, these systems are isometric operators.



3.2 SYSTEMS 87

which means an allpass system between two Hilbert spaces preserves the inner
product. Consequently, G is an allpass system between two Hilbert spaces if and
only if

G G=1. (3.2.11)

If an allpass system is a bijection (i.e., is surjective!? in addition to being injective),
then the spaces S; are necessarily of the same dimension and G~ = G~!. This
implies that GG~ = I.

Theorem 3.2.1 (A characterization of allpass state-space systems)

1. Suppose G is a state-space system with realization

z(t) = A@)z(t) + Bt)w(t), z(0) =0,
z2(t) = Ct)z(t) + D(t)w(t)
and let Q(t) be the observability gramian satisfying (3.1.6). If the realization
satisfies
D'(t)C(t)+ B'(t)Q(t) = 0
D'#)D(t) = I

for allt €10, T), then G is allpass on L2[0,T].

If the system is controllable, these conditions are also necessary.
2. Suppose the matrices A, B, C, D are constant and G(s) = D+C(s[—A)"'B.

(a) If there is a symmetric @ such that

QA+ AQ+C'C = (3.2.12)
D'C+BQ = 0 (3.2.13)
D'D = 1, (3.2.14)

then G7G =1 and G € L. Consequently, G is allpass on Ls.

(b) If there is a Q > 0 such that (3.2.12), (3.2.13) and (3.2.14) hold, then
G € He and GG = I. Consequently, G is allpass on Hs (and on
L2]0,00), with initial condition x(0) =0).

If (A, B) is controllable, then these conditions are also necessary.

10That is, for any z € Sz, there exists a w € S1 such that z = Gw.
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Proof.
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T
d
sl m = | (Co+Duy(CotDu)+ 4 (Qn)
0
since z(0) =0 and Q(T') = 0,

T
= / w'D'Dw + 2w (D'C + B'Q)x dt, using (3.1.6)
0

= Jjw %,[O,T]’

when D'C + B'Q =0and D'D = 1.

The proof that these conditions are necessary if the system is controllable is
left as an exercise. (Hint: consider w;» = Ppw and note that controllability
ensures that z(t*) spans R™ as w ranges over £5[0,7].)

(a)

If @ satisfies (3.2.12), then
GG = (D'+B'(-sI- A’)_lC’) (D+C(sI — A)_lB)
= D'D+B'(—sI-A)'C'D+DC(sI-A)"'B
+B'(—sI — A)7'C'C(sI — A)"'B
= D'D+B'(—sI-A)'C'D+DC(sI - A)~'B
+B'(—sI — A)7HQ(sT — A) + (—sI — A)Q](sI — A)"'B
= D'D+B'(—sI - A)"(C'D+QB)
+(D'C + B'Q)(sI — A)~'B. (3.2.15)
= 1T
if (3.2.13) and (3.2.14) hold. This also implies that G has no pole on the
imaginary axis, so G € L, is allpass on Ls.
If @ > 0, then every eigenvalue of A in the closed-right-half plane is
unobservable (see Theorem 3.1.1) and consequently G has no poles in
the closed-right-half plane, so G € H,,. The identity G™G follows as
before and G is allpass on Ho.
To prove necessity, we note that (A4, B) controllable and G € H, implies
that every eigenvalue of A in the closed right-half plane is unobservable.
We therefore let @ = lim;—,_ Q(¢t) with Q(¢) the solution to (3.1.7),
which satisfies (3.2.12) and @ > 0 by Theorem 3.1.1. Hence (3.2.15)
holds. Setting s = 0o in (3.2.15) results in D'D = I.
To conclude that D'C'+ B’Q = 0, we suppose (without loss of generality)

that A
_ 1 0 - B;

C

(& 0],
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in which A; is asymptotically stable and Ay has all its eigenvalues in
the closed right-half plane. Since Q = lim;—, o, Q(t) and Q(T) =

follows that 0
_ 1 0
=9 o)

From these considerations and (3.2.15), Z € H, defined by the realiza-
tion (Ay, B1,D'Cy + B1Q1,0) satisfies Z + Z™ = 0, which is equivalent
to Z = 0 because Z has all its poles in the open-left-half plane. Since
(A, B) is controllable, (A1, By) is also controllable and we conclude that
D'Cy + Bi{Q1 = 0. Tt now follows that D'C' + B'Q = 0. [ ]

Main points of the section

1.

The basic system theoretic notions of causality, time-invariance and
linearity have been reviewed. Stability has been defined to mean
w € L5]0,00) = Gw € L]0, 00).

. The infinity norm of a transfer function matrix G is defined by

|G|l = sup, o(G(jw)). A transfer function matrix G maps Lo
to Ly if and only if |G| is finite; this space is known as L.

. A transfer function matrix G defines a stable system if and only if

(a) G is analytic in the right-half of the complex plane;
(b) |G| is finite.

The space of transfer function matrices satisfying these properties
is called Ho.

A linear system G has adjoint system denoted by G™.

5. A system for which the norm of the output is equal to the norm of

the input is called an allpass system. A system is allpass if and only
if GG = 1. A condition for a state-space system to be allpass is
given in Theorem 3.2.1.

3.3 The size of a system

For a linear, time-invariant system, we may use the infinity norm of the transfer
function matrix as the measure of size. This notion of system size is ideally suited
to the frequency domain design ideas developed in Chapter 2, but is limited to
the linear time-invariant case. Since our aim is to obtain robust stability theorems
in which the systems may be time-varying and nonlinear, a generalization of the
notion of size to time-varying and nonlinear systems is required. The basic theorem
we need for such stability results is known as the small gain theorem and we will
measure the size of systems by a quantity known as the incremental gain. For
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systems that are causal and stable, the incremental gain is equal to the (Lipschitz)
induced norm. The incremental gain, the induced norm and the infinity norm are
identical for systems that are causal, linear, stable and time-invariant.

We also introduce the 2-norm of a system, which is the norm associated with
the LQG optimal control problem, although this will play only a minor role in this
book.

3.3.1 The incremental gain
Suppose G : Lo — Lo.. The incremental gain of the system G is defined by

1G) = inf{y: |Guw = Gllzj01 < 7llw — w201
for all w,w € Lo, and for all T > 0}. (3.3.1)

Since

(G + H)w— (G + H)i|z0.1) < |Gw — G|y o.1) + | Hw — H

|2,[O,T]a
it is clear that
G+ H) <~(G) +~(H).
Indeed, the incremental gain is a norm. In addition, the submultiplicative property
v(GH) < v(G)v(H)
which is vital to our work is satisfied. This follows from the inequalities
IGHw — GHwll3p077 < ~(G)|Hw— Hwls 0,1
< YG)(H)||w — @207
We note the following facts concerning the incremental gain:

1. Any system that has finite incremental gain is causal. To see this, sup-
pose v(G) is finite. Take w = Prw in the definition to obtain ||[(G —
GPr)wllz,jo,r) = 0 for all w and all T. Hence PrG = PrGPr for all
T, which shows G is causal.

2. Any system that has finite incremental gain is stable, since

IGwll20r7 < Y(G)|wll201
< G [wl2.
The right-hand side is finite if w € £5[0,00) and is independent of T. There-
fore |Gw||2 is finite.
3. Any system that has finite incremental gain is continuous on £L5[0,7], since

lw — 02,0, < €/7(G) implies that [|Gw — Gl|2,10,1) < €.

4. The memoryless system (fw)(t) = f(w(t)) with f a differentiable real valued
function of a real variable has v(f) = sup,, |4 |.
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3.3.2 The induced norm

Suppose G : & — Sy, where §; and Sy are normed spaces such as £3[0,7T] or
£5]0,00). The (Lipschitz) induced norm of G is defined by

Gl = sup 1G0Clls,

- (3.3.2)
w—iz0 | —10|s,

It follows trivially from the definition (3.3.2) that
|Gw — Gwl|s, < ||G||||lw— @|ls, foral w,w e .

Notice that although we have used the symbol || - || again, no confusion should arise.
[|X] is the induced norm of a system, ||X|| = 7(X) is a matrix norm (which is
induced by the Euclidean norm on R™) and ||z|| = v &’z is the Euclidean norm on
R™.

It is a standard exercise to show that an induced norm is indeed a norm. In
addition, the induced norm has the submultiplicative property

IGH]| < |G| H]- (3.3.3)

For systems that are causal and stable, |G| = 7(G), in which ||G] is the norm
induced by £3[0,00). We use || - [|o,7] to denote the norm induced by L2[0,T7.
In the case of linear systems, we may replace (3.3.2) by

1G] = sup 1G%ls: (3:3.4)
w0 |[wlls,

If G is a state-space system, it follows from (3.2.4) that ||G/[|jp, 7} is finite for any
finite T. To see this, we note that

z(t) = D(t)w(t) = /0 G(t,m)w(r)dr,

in which G(¢t,7) = C(t)®(¢t,7)B(7) for t > 7 and G(¢t,7) = 0 for t < 7. By the
Cauchy-Schwartz inequality,

l2(t) = D(H)w(t)|?

IN

/ a(en) dr / o) dr

M w3 0,715

IN

in which M? = maxc(o,1] fOTE(G(t,T))z dr < oo, since G(t,7) is continuous in ¢
and 7. Therefore

lzllz 01 < Iz = Dwlla, 0,1 + [[Dwll2,0,1)

E(Du))) o

< <MT1/2 + max 2,[0,7]-

= T]
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As D(t) is continuous, the maximum is finite and we conclude that ||G||(o, 7} is finite.

When the system G is linear and time-invariant, it may be represented by a
transfer function matrix G(s). Since z(s) = G(s)w(s) we may define ||G(s)|| to be
the norm induced by a frequency domain signal norm such as the £5 norm. By
Parseval’s identity, this induced norm on the transfer function matrix is identical
to the norm on the system induced by L2(—00,00) and we may therefore write

Gl = G(s)]l.
For w € £5 and z = Gw we have
1 o0
8 = 5 [ el do
<

_ w2 L[ .
up(G(w)* 5 [ )| do
= |GI%]wl3.

Hence, by (3.3.4), |G|| < ||G||~- In fact
G = [|Glloo-

That is, for a linear, time-invariant system, the norm induced by the 2-norm is
precisely the infinity norm of its transfer function matrix.
Induced norms and allpass systems

Suppose a system G : Sy — Sz and A : Sy — S3 is allpass. Since ||AGuw||s, =
|Gw||s, for all w € S; it follows from (3.3.4) that

IAG] =[Gl (3.3.5)

Considering the case G = I, any allpass system A has ||A| = 1.

The induced norm of the adjoint system

Suppose §; and S, are Hilbert spaces and G : &1 — Sy is a linear system with
adjoint G™. Then for any z € Sy

IG™2|l5, = (G™2,G™2)s,

(GG™z,2)s,

IGG™z||s,||zlls, by the Cauchy-Schwarz inequality
IGIG™2[|s, lI2]ls,-

INIA

Therefore, |G™z|ls, < ||G]l||#]|s, for all z. Consequently ||G™|| < ||G||. Since
(G™)~ = G, we also see that |G| = [[(G™)™~|| < ||G™||. Hence

G~ =Gl (3.3.6)
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3.3.3 The 2-norm of a system

The 2-norm of the system G is the expected root-mean-square (RMS) value of the
output when the input is a realization of a unit variance white noise process. That
is, if the input is

(3.3.7)

w(t) = a unit variance white noise process, t € [0, 7T
1 0 otherwise.

and z = Gw, the finite-horizon 2-norm of G is defined by
1 T
G0 = £ 47 [ Z0x0ary, (338)
in which £(-) is the expectation operator.

In the case of a linear system,
T
/ G(t,m)w(r)dr
0

when w is given by (3.3.7). Substituting into (3.3.8), noting that 2’z = trace(zz’)
and interchanging the order of integration and expectation we obtain

, 1 T T T / ,
||G||27[07T] = T/o dt/o dT/O trace(G(t,T)E{w(T)w (J)}G(t,a))do

1 /7 T
= / dt/ trace(G(t, 7)G'(t,7)) dr (3.3.9)
T Jo 0
since &(w(r)w'(0)) = I6(T — o).
Note that the right-hand side of (3.3.9) is finite if and only if G(-,-) € £3]0,T] x

L5[0,T]. In particular, G(-,-) must not contain delta functions. Thus, the system
defined by w(t) — D(t)w(t), which we may write as

/ D#)5(t — ryw(r) dr,
has infinite 2-norm (unless D(¢) = 0).

In the time-invariant case G(t,7) = G(t — 7,0). Writing G(¢ — 7) instead of
G(t — 7,0) and setting ¢ =t — 7 in (3.3.9) we obtain

||G||§,[0,T] / dt/ trace(G(0)G' (o)) do

Interchanging the order of integration yields
T
IGIE oy = / trace(G)G/ (1) d

—% /T trace(G(t)G'(t) + G(—t)G'(—t))t dt.
0
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If G is such that the integrals remain bounded!! as 7' — oo we obtain the infinite-
horizon 2-norm of G:

Gl = [ wace(Gc o) (3:3.10)
= % _OO trace(G(jw)G* (jw)) dw. (3.3.11)

Here G(jw) is the Fourier transform of G(t); the final equality follows from Parse-
val’s identity. It follows from (3.3.11) that a necessary and sufficient condition for
HGHQ finite is that G € Ls.

Although ||-||2 defines a norm on systems, the submultiplicative property satisfied
by the incremental gain, the induced norm and the infinity norm does not hold for
|| - |]2. That is, ||GH |2 may be greater than or less than ||G||2||H||2 (an exercise
requests an example of each case). This is why it is not possible to obtain stability
robustness results using the 2-norm as the measure of system size.

The adjoint of G on L5[0,T] has the form

G™y() = / G/ (. tyy(r) dr.

Since trace[XY’] = trace[Y’X] for any matrices X and Y of the same dimensions, it
follows from (3.3.9) that [|G™[|2,j0,77 = |G/l2,j0,7] and from (3.3.10) that [|G™ ]2 =
IGll.

The following result expresses the 2-norm of a state-space system in terms of
the controllability or observability gramian of the realization.

Theorem 3.3.1 Suppose G is a linear system described by the state-space equations

z(t) = A(t)x(t) + B(t)u(t), o =0,
y(t) = C(t)x(t) + D(t)w(t).

1. A necessary and sufficient condition for |G|z, 0, < oo is D(t) = 0 for all
tel0,T].

2. If D(t) =0 for allt € [0,T), then
1 T
G301 = T/o trace(C(t)P(t)C'(t)) dt (3.3.12)

T
= %/0 trace(B’(t)Q(t)B(t))dt, (3.3.13)

in which P(t) is the controllability gramian satisfying
P(t) = A(t)P(t) + P(t)A'(t) + B(t)B'(t), P(0) =0,

1 For example, assume that trace (G(t)G’(t)) < ae Bl
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and Q(t) is the observability gramian satisfying
—Q(t) = QA1) + A'(HQ(H) + C'(H)C(t),  Q(T) =0.

3. If the matrices A, B and C' and D are constant and A is asymptotically stable,
then ||G||2 is finite if and only if D = 0 and in this case

IGI? = trace(CPC")
= trace(B'QB),

in which
AP+ PA' + BB =
QA+AQ+C'C

Proof. Let ®(¢,7) denote the transition matrix associated with A(t). Then

Git.7) = { g(t)@(t,T)B(r) +D(t)s(t —7) oftolfeivisz.

We see that G(t,7) € L2[0,T] x L2]0,T] if and only if D(t) = 0 for ¢ € [0,7], and
consequently ||G/|z,o,7] is finite if and only if D(t) = 0 for ¢ € [0,T], which we
henceforth assume. Substituting G(¢,7) into (3.3.9) we obtain

1 T
G o = 7 | trace(COMOC" 1)

in which .
M(t) = / &(t,7)B(T)B' (1)®'(t, 7) dr.
0
Invoking Leibniz’s rule on interchanging the order of differentiation and integration
we obtain

%M(t) = B(t)B'(t) + A(t)M(t) + M (t)A'(t).

Since M (0) = 0, we see that P(¢) = M (t) and (3.3.12) follows.
To obtain (3.3.13), we note that

d
= (PR

PH)Q(t) + P(H)Q(t)
= APQ - PQA+BB'Q— PC'C.

Integrating from 0 to T yields
T
/ P)C'(t)C(t)dt
0

- / (AM)PHQ() — POQUA() + BB ()Q(1)) dt.
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Taking the trace of this identity, we have that

/ trace(C(t)P(t)C’(t)) dt = / trace(B'(t)Q(t)B(t)) dt.
0 0

For the infinite-horizon result, since A is asymptotically stable, the controllability
and observability gramians P(t) and Q(t) converge to constant matrices, which are
the unique solutions to the stated algebraic equations. |

Main points of the section

1. We have introduced three ways of determining the “size” of a sys-
tem. These are the incremental gain, the induced norm and the
2-norm.

2. A system with finite incremental gain is causal and stable.
3. The £5]0,T] induced norm of a state-space system is finite.

4. For causal, stable systems, the incremental gain and the £5[0, c0)
induced norm are equal. If, in addition, the system is linear and
time-invariant, the incremental gain and the induced norm are
equal to the infinity norm.

5. An allpass system A has the property |GA| = ||G||. In particular,
| Al = 1.
6. A linear system and its adjoint system have the same induced norm.

7. The 2-norm of a system is the expected value of the RMS power
of the output when the system is driven by white noise of unit
variance.

8. A linear system and its adjoint system have the same 2-norm.

9. The 2-norm of a state-space system is given by a trace formula
involving either the controllability or the observability gramian of
the realization.

3.4 The small gain theorem

The small gain theorem is the key result on which the robust stability analysis in
this book depends. Essentially, the small gain theorem states that if a feedback
loop consists of stable systems and the loop-gain product is less than unity, then
the feedback loop is internally stable. Several versions of the small gain theorem
are available in the literature. The version we will use is based on the incremental
gain and it guarantees the existence of solutions to the loop equations as well as
their stability.

The small gain theorem is based on a fixed point theorem known as the contrac-
tion mapping theorem, which we now present.



3.4 THE SMALL GAIN THEOREM 97

Contractive systems

A system S : S — S in which S is a Banach space (such as £5[0,7T] or £2[0,00)) is
a contraction if its (Lipschitz) induced norm is less than 1. That is, there exists a
~v < 1 such that

|Sw — Sw|s < y||lw—w||s for all w,w € S.

For example, a system S : Lo, — Lo, with v(S) < 1 is a contraction on £5[0, T for
any 7T

A contractive system S has the property that there exists w € S such that
w = Sw. This is known as the contraction mapping theorem.

To see that such a w exists, choose any wy € S and define the sequence wy41 =
Swy,. This sequence is Cauchy, since ||wg+1 — wg|| < v||lwg — wg—1|| for some v < 1,
and this implies limg o [|wry1 — wi|| = 0. Since S is a Banach space, there is a
w € 8 such that w = limy_, o wg. Since ||S]|s is finite, S is continuous on S. Hence
w = limg 00 (Swi—1) = S(limg— 0o wp—1) = Sw.

The small gain theorem

G

€2 Wo
G-

Figure 3.1: Feedback loop for the small gain theorem.

Theorem 3.4.1 Suppose the systems G1 : Lo, +— Lo and Go : Lo — Lo in
Figure 3.1 have finite incremental gains such that v(G1)y(Gz2) < 1. Then:

1. For all wy, wy € Lo, there exist unique solutions ey, eq € Lo.

2. For all wy, wy € L3]0,00), there exist unique solutions ey, es € L3]0,00).
That is, the closed loop is internally stable.

Proof. Let wir = Prw; and wer = Prws and define the system S by
Sear = wor + Pr (Gy (wir + Pr(Gaear))) .
S is a contraction on £2[0,T] since v(G1)y(G2) < 1 and

|Sear — Sear||2,0,1]
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|Gy (wir + Pr(Gaear)) — Gr(wir + Pr(Gaear))ll2, 0,1
Y(G1)||G2ear — G2ea7|l2,10,7)
Y(G1)v(G2)lle2r — €|

IAIA

2,[0,7]-

Consequently, by the contraction mapping theorem, there is an ear € L2[0, 7] such
that eosp = Sear for any T'. That is,

ear = wor + Pr (G1(wir + Pr(Gaeor))) .

Recalling that the finite incremental gain assumption implies that the systems G;
are causal, it follows that

eor = Pr (wz + Gi(wy + G262))
= Prey,

in which ey satisfies the loop equations (on [0,7]). Since T was arbitrary, we
conclude that for any w; and we € Lo, there is an ey € Lo satisfying the loop
equations. The same holds for e; by a similar argument.

When wy and ws are in £2][0, 00), we may apply the above arguments on £5[0, o)
instead of £2[0, 7] to obtain the result. |

The remarkable feature of this theorem is that we can establish the internal
stability of the closed loop without any precise knowledge of the systems G; making
up the loop. All we need to know is that the systems G; have finite incremental
gains such that the product of their incremental gains is smaller than 1.

Example 3.4.1. Suppose G is the saturation nonlinearity

_ e1(t) if [lex ()] < M
(G1e1)(t) = { Msign(el(t)) otherwise,

which has v(G1) = 1. Then the feedback loop will be internally stable for any
system G5 for which v(G2) < 1. \VA
Main point of the section

If the product of the incremental gains of systems in a feedback loop is
strictly less than unity, the feedback loop is internally stable. This is
known as the small gain theorem.

3.5 Loop transformation

It is often the case that the systems comprising a feedback loop fail to satisfy the
hypotheses of the small gain theorem. In such cases, it may be possible to establish
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the stability of the closed loop by applying the small gain theorem to a modified
form of the feedback system that has the same stability properties.

Three common loop transformations will be introduced. The first is a linear
multiplier or weight, the second is a linear shift and the third is the famous trans-
formation relating passive and contractive systems. Readers familiar with classical
network theory will recall this as the transformation relating the admittance de-
scription of a circuit to its scattering description. Many other loop transformations
are possible—sector bounded nonlinearities, for example, may be transformed into
systems that have incremental gain less than unity (see Section 4.7). These trans-
formations have a linear fractional character that will be considered in more detail
in the next chapter. Our purpose here is to show that loop transformations can
extend the range of applicability of the small gain theorem.

3.5.1 Multipliers or weights

The use of “multipliers” or “weights” is common currency in control system op-
timization. In the case of infinity norm optimization, the introduction of weights
allows the frequency dependent characteristics of signals and systems to be cap-
tured as well as their size. For example, if G is known to be low-pass, mean-
ing that E(G(jw)) < w(jw) for all w and some scalar low-pass weight w, then
[w™lGl|ls < 1 contains this information in a compact way. Similarly, a low-
frequency disturbance is modelled by [[w~!d||s < 1, in preference to the model
ld]]2 < 1, which does not contain the a priori knowledge about the low-frequency
nature of the disturbance.

The following result justifies the use of weights in determining closed-loop sta-
bility.

G, =WaG,

O—e G1—>W

€2 € Wy = Wy
G2 WO
Gy =G,W!

Figure 3.2: Feedback loop with weight.

Lemma 3.5.1 Consider the two feedback loops shown in Figures 3.1 and 3.2. Sup-
pose G, Gg : Log — Loe and that W : Lo +— Lo is a linear system such that
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WL Lop — Lo

1. If wy, we € Lo implies e1, es € Lo in Figure 3.1, then w1, Wa € Lo implies
e1, €z € Lo in Figure 3.2.

2. If wy, Wq € Lo implies e1, €3 € Lo in Figure 3.2, then wy, wy € Lo implies
e1, ea € Log in Figure 3.1.

If W and W™ are stable, then

3. The loop in Figure 3.1 is internally stable if and only if the loop in Figure 3.2
is internally stable.

. 1 . 1.
Proof. Since W™ " is linear, we have

es = wo+ Gireg
= W_l(WU)Q + WGlel),

which verifies that the loop in Figure 3.2 generates the same signal as that in
Figure 3.1.

1. Let wy, @y € Loe. Define wy = W i, € Lo, and apply the inputs wy and wo
to the loop of Figure 3.1 to obtain ey, es € Lo.. Now define €3 = Wey € Lo.

2. Let wy, we € Loe. Define Wy = Wwsy and apply the inputs w; and @y to the
loop in Figure 3.2 to obtain e; and €5 € L3.. Now define e; = W71€2 € Log.

3. Repeat the above arguments with Lo, replaced by £3]0, 00). [ |
Combining this with the small gain theorem we have, for example:

Corollary 3.5.2 Suppose G1, G4 are stable. Then the loop in Figure 3.1 is in-
ternally stable if there exists a stable linear system W such that W™ is stable
and

’}/(WGl)’y(GQWil) < 1.

3.5.2 Linear shift

Lemma 3.5.3 Consider the two feedback loops shown in Figures 3.1 and 3.3. Sup-
pose G1, Go : Lo — Loe and that H : Lo, — Log is a linear system such that
GQ(I — HG2)71 : Loe — Log.

1. If wy, we € Lo implies e1, es € Lo in Figure 3.1, then w1, We € Lo implies
e1, ea € Lo in Figure 3.3.

2. If wy, Wy € Lo implies e1, €3 € Lo in Figure 3.3, then wy, wy € Lo implies
e1, ea € Log in Figure 3.1.

If H and Go(I — HG3)™! are stable, then



3.5 LOOP TRANSFORMATION 101

Gi=G -H
—-H
€1
LGS G,
e e Wy =
G, 2 2 We = wo + Hwq
H
@2 = GQ(I — 1'{(;2)_1

Figure 3.3: Linear shift transformation.

8. The loop in Figure 3.1 is internally stable if and only if the loop in Figure 3.3
is internally stable.

Proof. Since H is linear, we have

He, = H(w; + Gaes)
= HU)1+HG2€27

which verifies that the loop in Figure 3.3 generates the same signal as that in
Figure 3.1.

1. Let wy, we € Lg.. Define wo = wy — Hw; € Lo, and apply the inputs
wy and wy to the loop of Figure 3.1 to obtain ej, ex € Ly.. Now define
/6\2 = (I— HGQ)GQ € Lo.

2. Let wy, wy € Lg.. Define Wy = we + Hwy € Lo, and apply the inputs w,
and Wy to the loop in Figure 3.3 to obtain e; and e; € Lo.. Now define

€y = (I+HG2(I_ HGQ)_l)é\g € Lo.

3. Repeat the above arguments with Ly, replaced by £2]0, 00). Note that internal
stability of the loop in Figure 3.1 implies that Gaea = e; — w1 € L2]0, 00) for
all w1, Wo € EQ[O, OO) | ]
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This linear shift together with the small gain theorem yields, for example, the
following closed-loop stability result.

Corollary 3.5.4 The loop in Figure 3.1 is internally stable if there exists a stable
linear system H such that Go(I — HG9)™! has finite incremental gain and

’}/(Gl — H)’}/(GQ(I — HGQ)il) < 1.

Note that this corollary requires that we have sufficient information about G4 to
determine whether Go(I — HG5) ™ is stable.

3.5.3 Passivity

The passivity theorem is another theorem which allows us to conclude closed-loop
stability from very general properties of the systems comprising the feedback loop.
Any negative feedback loop which is made up of a passive system and a strictly
passive system will be stable. We now show how a version of this result may be
deduced from the small gain theorem.

A system P : Lo, — Lo, is incrementally strictly passive if there exists an € > 0
such that

(Pw—Po,w— @)y, 1) > ellw—|3 4,7
for all w,w € Lafty,T] and all T. (3.5.1)

It is assumed that the system is relaxed at time ty = 0. If € = 0 is allowed, the
system is incrementally passive, rather than incrementally strictly passive.

To motivate this definition, let Z be the impedance of a linear, passive circuit,
which maps the vector of port currents ¢ to the vector of port voltages v. Then

T
(Zi,i)o1) = /0 i (t)yo(t) dt (3.5.2)

is the energy consumed by the circuit over the time interval [0,7]. Since a passive
circuit never produces energy, the integral in (3.5.2) must be nonnegative. A strictly
passive circuit consumes energy for any port current ¢ # 0 and all terminal times
T, so the integral in (3.5.2) must be positive for any i # 0. By evaluating the inner
product in the frequency domain, one can show that the (time-invariant) circuit is
incrementally strictly passive if and only if the transfer function matrix Z is in H
and satisfies
Z(jw)+ Z*(jw) > 2€l.

A proof of this is requested as an exercise (Problem 3.15). Since this inequality
is equivalent to the requirement that the real part of Z(jw) is larger than e for
all w, such transfer function matrices are called strictly positive real.'? If z is a

12The transfer function matrix is positive real if € = 0 is allowed.
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scalar positive real transfer function, the positive real condition is equivalent to
the requirement that the phase of z lies between £90°. It is easy to see that if a
positive real transfer function z; and a strictly positive real transfer function z5 are
connected in a negative feedback configuration, then the Nyquist diagram of z;z9
can never encircle the —1 point. Therefore, the feedback loop must be stable by the
Nyquist criterion.

To derive the passivity theorem from the small gain theorem, we will need the
following properties of passive systems.

Lemma 3.5.5 Suppose P : Lo — Lo is incrementally strictly passive and has
finite incremental gain. Then

1. P Lo — Lo, exists, is incrementally strictly passive and V(P_l) <1/e.

2. (I +P)~t: Lo — Lo exists, is incrementally strictly passive and 7(([ +
P)7) <1.

Proof.

1. Note that z = Pw is equivalent to w = w + a(z — Pw), for a # 0. Choose
2 € Lo and set o = €/+2, where € is such that (3.5.1) is satisfied and v = ~(P).
Define the system S by Sw = w+ a(z — Pw). Then S is a contraction, since

[Sw—S@l3 07 = lw—w©-a(Pw-Pa)|3qqn
= Nw— @307 + 1 Pw— Pw|3 41
—20a(Pw — P, w — W)[o,1]

3,[0,T] (01272 — 2ea + 1)

(1= (/7)) llw = @13, 10,7y

Hence, there exists a unique w € Lo such that w = Sw. That is, for any

2 € Lo, there is a unique w € Lo, such that Pw = z. Thus P~ exists.

Notice that

||w —w

lw =207 = [PP'w—PP il
Y(P)|P~ w — P 1|3, 0,7y-

IN

Therefore
<P71’LU — Pilﬁ), w — ﬁ)>2,[0,T]
(P™'w— P ', PP~ 'w — PP "0)q o 1)

ellP~ w — P71d|3 o

vV

¢ =112
WHU}_wHZ[O,T]a

vV
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which shows that P! is incrementally strictly passive.
Also,
|1P~ w — P_lw“g,[o,T]
< (PP 'w—PP 9, P 'w—P i)y 0

(w—10, P~ w — Py 0,7

il o

< sz — @|o, 0,7 |1P w — P10 0,77

by Cauchy-Schwartz. Hence

_ 1 1 -
1P~ w — P10, 1) < EHU’ — |3 1017,
which shows that v(P~') < 1/e.

2. Since P is incrementally strictly passive, the system I+ P is also incrementally
strictly passive:

(I +P)w — (I + P)w,w — )]
= Jw- ’J’”g,[o,T] + (Pw — P, w — U~’>[0,T]
> (1+6)|lw— 3 po.1-
The result now follows from Item 1. ]

This result implies that the closed-loop system of Figure 3.1 with G = —1I is in-
ternally stable provided G has finite incremental gain and is incrementally strictly
passive. Item 2, however, does not provide a complete connection between pas-
sive and “small gain” systems, since v(S) < 1 does not imply P = 8§~ — I is
incrementally strictly passive.

x T_ w G Z_l Yy

Figure 3.4: Transformation between passive and contractive systems.

Lemma 3.5.6

1. If 8 : Loe — Loe and v(S) < 1, then P = (I — S)(I + 8S)™1 : Lo — Lo is
incrementally strictly passive and has finite incremental gain.
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2. If P : Lo. — Lo is incrementally strictly passive and has finite incremental
gain, then the system S = (I — P)(I + P)~1 : Lo + Lo and v(S) < 1.

Proof.

1. If §: Loe — L. and v(S) < 1, then (I +8)~1 : Lo, — Lo, by the small gain
theorem (Theorem 3.4.1). Furthermore (exercise),

W18 < gy
giving . s
V(P) < w <00

It remains to show that P is incrementally strictly passive.

Consider two signals # and Z entering the loop of Figure 3.4 in which we set
G = S. Let y and y be the corresponding outputs and let w, w and z, Z be
the intermediate signals. Note that these signals are all in Lo, by the small
gain theorem.

(Yy—0,v—=3)pr = (W—2z—(0—-2),w+z~—(0+2)pmn
= Nlw =307 — Iz = 23 0.1y
> (1-7(8)")lw - )2 o
1—7(S)

m”z —5~C||§,[0,T]-

The last inequality follows from = — & = (I + S)w — (I + S)w, which implies
that ||z — Zl|2,0,77 < (1 +7(S))|lw — @|l5,50,r). Hence P is incrementally
strictly passive.

2. If P: Ly, — Lo is incrementally strictly passive and has finite incremental
gain, then (I + P)™! : Ly, + Lo, by Lemma 3.5.5. It remains to show that
7(S) < 1.

Consider two signals x and Z entering the loop of Figure 3.4 in which we set
G = P. Let y and g be the corresponding outputs and let w, w and z, Z be the
intermediate signals. Note that these signals are all in £, by Lemma 3.5.5.

Iy = 9113 10,77
= (w—2z—(0—2),w—2z— (0 —Z2))0,1

o — @13 10,29 + llz = 21130,y — 20 — 2w — Doy

< (w—0+ (2= 2),w— D+ (2 — 2o — dellw — @|3 .1y
= |- f”%,[o,T] — dellw — ng,[O,T]
4e
< |1-— | llz =230
2 2,10,7]
( (1+~(P)) )
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The last inequality follows from z — & = (I + P)w — (I + P)w as before. ®H

Using this transformation and the small gain theorem, we obtain the passivity
theorem:

P,

€2 Wa
Py

Figure 3.5: Feedback loop for passivity theorem.

Theorem 3.5.7 Suppose that in Figure 3.5 the systems P1, Ps : Loe — Lo, have
finite incremental gain and are incrementally strictly passive. Then

1. For all wy, we € Lo, there exist unique solutions ey, ea € Lo.

2. For all wy, wy € L3]0,00), there exist unique solutions ey, es € L3]0,00).
That is, the loop is internally stable.

Proof. Redraw the loop of Figure 3.1 as shown in Figure 3.6. The results follow
immediately from Lemma 3.5.6 and the small gain theorem (Theorem 3.4.1). ]

Sl = (I— Pl)(I—FPl)il

wyp — w2 l
O O Pl \

—e —

w1 + wo

C

) O
U P2 € _T

SQ = (I— PQ)(I+P2)_1

Figure 3.6: Loop shifting transformation for passivity theorem.
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Main points of the section

1. Loop transformations may be introduced before applying the small
gain theorem.

2. Multipliers or weights must be stable, linear systems with stable
inverses if stability properties are to be preserved.

3. By introducing a simple loop transformation, a passivity condition
may be converted into a small gain condition.

4. Two incrementally strictly passive systems may be connected to
form a stable negative feedback loop.

3.6 Robust stability revisited

By using the small gain theorem, the robust stability results of Chapter 2 may
be extended to encompass systems that may be time-varying and nonlinear. The
general situation is depicted in Figure 3.7.

21 ¢ W1

22 W2

Figure 3.7: Figure for robust stability considerations.
Theorem 3.6.1 Consider the system shown in Figure 3.7. Suppose that A : Lo, +—
Loe and that P : Log — Log is causal and linearly connected in the sense that

z1 = Ppw + Prws

2z = Pojwy + Pasws.
Suppose also that P11 has finite incremental gain. Then
V(P <1 (3.6.1)
implies that for any wo € Lo, there exist unique solutions wy, z1, 22 € Loe.

If, in addition, P is stable, then we € L]0, 00) implies w1, 21, 2o € L2]0,00).
That is, the closed loop is stable.
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Proof. Write the loop equations as
z1 = Prw + (Praws)
w1 = AZl.

Noting that [P1ows] € Lo for any we € Lg., the result follows from the small gain
theorem (Theorem 3.4.1). When P is stable, replace Lo, with £2]0, 00). [ |

As an example of the application of this theorem, we consider the analysis of
robustness with respect to an additive model error. The situation is shown in
Figure 3.8, in which G and K are assumed to be causal and linear.

Z2 w22
K

Figure 3.8: Feedback system with additive uncertainty.

The loop may be redrawn in the form of Figure 3.7 by choosing z;, zo and w;
as shown in Figure 3.8 and setting

wa1
we = .
A routine calculation reveals that P is given by

K(I-GK)"'| I-GK)! K(I-GK)!
(I-GK)' | (I-GK)"'G (I-GK)!

If P is stable and 'y(K(I — GK)_l) < 00, the closed-loop system will map inputs
wg € L2[0,00) to “outputs” z1, zo € L2][0, 00) provided
1
v(K(I-GK)™Y)

7(A) < (3.6.2)
The stability of the system P is (by definition) equivalent to the internal stability
of the nominal (A = 0) closed loop. Therefore, provided K stabilizes the nominal

loop, the closed-loop system will be internally stable for any model error A that
satisfies (3.6.2).
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Main points of the section

1. The feedback loop of Figure 3.7 is stable provided P is a stable
linearly connected system with (P1;) finite and v(P11)v(A) < 1.

2. The stability robustness theorems of Chapter 2 can be extended to
time-varying, nonlinear model errors by replacing conditions of the
form 7(A(jw)) < 6 for all w with v(A) < 4.

3.7 The bounded real lemma

In Chapter 2, we argued that performance and robustness issues in feedback system
design could be posed as objectives for certain closed-loop transfer matrices of the
form 7(G(jw)) < v for all w. These objectives may be written as infinity norm
objectives of the form ||G|lo < 7, since sup,7(G(jw)) = ||G|l. It is therefore
important that we are able to determine whether ||G|loc < 7.

One approach is to plot E(G ( jw)) as a function of w and determine the maximum
by inspection. A more sophisticated version of this approach might involve a search
over w performed by a computer. Such an approach cannot determine whether
|G|ls < v because for any wy, the evaluation of &(G(jwo)) merely informs us that
[Glls > 7(G(jwo)). If we have smoothness information about 7(G(jw)), we can
determine ||G||oo from such an approach to any desired accuracy.

Alternatively, if we have a method of determining whether |G|l < 7, then
|G |lco may be found from

|Gl = f{ |G < 7

This technique of finding |G|« involves a search over v > 0. For each v, we test
whether ||G||s < 7 and then decrease or increase v accordingly. The algorithm may
be designed so that at any time we can stop and conclude that o < [|Glloo <

Yhigh-

If G is a state-space system, determining whether |G|l < 7 is an algebraic
problem: find conditions on a realization (A, B,C, D) of G that are equivalent to
|G|lsc < 7. The bounded real lemma provides this characterization.'?

Theorem 3.7.1 Suppose G = D + C(sI — A)~'B with A asymptotically stable.
Then ||G|leo < 7 if and only if

1. |D|| <~  (equivalently R =~*I — D'D > 0);
2. There exists P = P’ satisfying the Riccati equation

P(A+BR'D'C)+ (A+BR'D'C)P
+PBR'B'P+C'(I+DR'D)C=0 (3.7.1)

13Tn network theory, matrices S € Hoo satisfying ||S|jco < 1 are called strictly bounded real.
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such that A+ BR™Y(D'C + B'P) is asymptotically stable.

Furthermore, when such a P exists, P > 0.

1

s—a’

Example 3.7.1. Consider the system g = with a < 0 and realization

(a,1,1,0). The Riccati equation (3.7.1) is
2ap +p*/y* +1=0,

which has solutions p = v?(—a 4 v/a? —v~2). Now a + p/v? = £\/a? —y~ 2 is
either pure imaginary or real and therefore can be asymptotically stable only if
real. In this case, the solution with the minus sign is asymptotically stable. Thus
lglloo < if and only if v > 1/|a|. Hence,

lgllee = infly > flglloc] = 1/lal. v

Two proofs of the bounded real lemma will be given. The first is based on
purely algebraic arguments, while the second is based on an optimization problem.
The first proof shows that the question of whether P exists may be settled by an
eigenvalue calculation and provides an algebraic procedure for determining P. The
second proof shows that P may be determined, when it exists, as the steady-state
solution to a matrix Riccati differential equation. It is also applicable to time-
varying systems—we can determine whether [|G||jo,7] < v and whether v(G) < v.
The optimal control proof also provides a preview of the approach we will use to
solve the controller synthesis problem.

Before proceeding to these complete proofs, we present an sufficiency argument
based on spectral factorization.

Spectral factorization proof of sufficiency

Suppose there is a transfer function matrix W € R'Hoo such that W™ € RHoo

and
V1= G (jw)G(jw) = W™ (j) W (juw). (37.2)

Any such transfer function matrix W is called a spectral factor of v2I — G~ G.
Since W™ € RHo, the right-hand side of (3.7.2) is strictly positive for all real w.
Therefore, if a spectral factor W exists, |G|l < 7.
Conditions 1 and 2 of the bounded real lemma, namely that R > 0 and that
P exists, enable us to construct a spectral factor of v2I — G~ G. Let W be any
nonsingular matrix such that W'W = ~2I — D'D, define L = —(W')~1(D'C + B'P)
and define
W =W + L(sI — A)"'B. (3.7.3)

Note that W™ has realization (A — BW 'L, BW~!, -W 'L, W~1). Since A and
A — BW™'L are asymptotically stable, W and W ™! are in RH. From (3.7.1)
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and the definition of W and L, we obtain

PA+AP+ [ C L’}[g} = 0

[,y—lDl 'y_IWI ] |: g:|+,le/P = 0
—17y —1157/ 771D _

[q/D WW][’ylW} = I

By Theorem 3.2.1, the transfer function matrix

A|~'B
L |~y 'w

is allpass. Hence G~G + W™~W = ~2I and we conclude that W is the desired
spectral factor.

Note

Theorem 3.7.1 characterizes state-space systems that satisfy |G||s < 7. The term

“bounded real lemma” generally refers to the characterization of state-space systems
that satisfy |Glle < 7

If A is asymptotically stable, then |G|l < 7 if and only if there exist
real matrices P > 0, L and W satisfying

PA+AP+C'C = -L'L
D'C+BP = -W'L
vI-D'D = WW.

The sufficiency proof follows by the spectral factorization argument above. When
|Gllc = 7, the spectral factor W = W + L(sI — A)~!B will have zeros on the
imaginary axis. The strict inequality case is technically easier and is all we require.

3.7.1 An algebraic proof

The question of whether |G|l < v may be settled by determining whether some
object has imaginary axis roots. To see this, choose any wy € RUoco. If 7(G(jwp)) >
7, then ||G||< > 7. If, on the other hand, (G (jwo)) < 7, then 7(G(jw)) < 7 for
all w if and only if v — E(G(jw)) is never zero. It is convenient to take wy = oo,
which yields the following lemma. It is worth noting that this result has the added
advantage of not requiring that A be asymptotically stable.
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Lemma 3.7.2 Suppose G = D+ C(sI — A)"'B in which A has no imaginary ais

etgenvalue. Then
sup7 (G(jw)) <~ (3.7.4)

w

if and only if:
1. |ID|| <~ (equivalently R =~*I — D'D > 0);
A 0 —-B 1
H—{_C,C _A,}—[C,D}R [ D'C B (3.7.5)
has no eigenvalue on the imaginary axis.

Proof.  Condition 1 is obtained from || D|| = 7(G(c0)) < sup, 7(G(jw)) < 7.
Assuming now that || D] < 7,

sup(G(jw)) <v & I -G (jw)G(jw) >0 for allw
& det(v’] — G™ (jw)G(jw)) #0 for any w.
A 0 -B

2r-grgt| -cc A | op | (3.7.6)
D'C B |*-DD

Since A has no eigenvalue on the imaginary axis, the realization in (3.7.6) has no
uncontrollable or unobservable mode on the imaginary axis. Therefore, v2I — G~ G
has no zero on the imaginary axis if and only if H has no eigenvalue on the imaginary
axis. [ ]

Example 3.7.2. Consider g = ﬁ again. Then

-2
_ a v
H = [ 1 4 ] (3.7.7)
has eigenvalues &1/a? —y~2. Clearly H has no imaginary axis eigenvalue if and
only if 7 > 1/laf = [|g]|o- v

The next result links the spectral condition on the Hamiltonian matrix (3.7.5)
with the existence of a stabilizing solution to the Riccati equation (3.7.1).

Lemma 3.7.3 Suppose A is asymptotically stable, | D|| <~ and H is as in (5.7.5).
Then H has no imaginary axis eigenvalue if and only if there exists a matriz P
satisfying Condition 2 of Theorem 3.7.1. Furthermore, P > 0.
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Proof. Suppose P satisfying Condition 2 exists. Then
I 0 I 0
e el

in which A = A+ BR™Y(D'C + B'P). Since A is asymptotically stable, it follows
that H has no imaginary axis eigenvalue.

Now suppose H has no imaginary axis eigenvalue. Since H is Hamiltonian, its
eigenvalues are symmetric with respect to the imaginary axis (see Problem 3.21)
and since none are on the axis, H has n eigenvalues with strictly negative real part.

Let
. { 2 } - [ §; }A» (3.7.8)

A BR'B
0 —A

X3
2n x n real matrix with full column rank, in which n is the dimension of A. From
the properties of Hamiltonian matrices, X;X; = X{ X2 (see Problem 3.21).

. . . . . X .
in which A is an n x n, asymptotically stable and real matrix, and [ ! ] is a

Claim X; is nonsingular. Suppose, to the contrary, that X;2z = 0, z # 0. From
(3.7.8), we have

(A4+ BR™'D'C)X, + BR™'B'Xy = X;A. (3.7.9)
Hence
XA+ BR'D'C)X, + X4}BR B’ Xy = X)X, A = X| XsA.

Multiplying by 2’ on the left and by z on the right, and noting that R~! > 0
by assumption, we obtain B’Xsz = 0. Now multiply (3.7.9) by z to obtain
X1Az = 0. Iterating this argument yields

X

X1z=0 = |:B/X2

]Akzzofork:0,1,2,...

X, .
= (A, [ B'X, }) is not observable.

Consequently, by the Popov-Belevich-Hautus observability test (see Kailath
[105], for example), there exists y # 0 and A such that

A=A
Xl y:O
B'X,

Note that Rc(A) < 0 because A is asymptotically stable. From (3.7.8) we have
that
~C'(I+DR™'DCX, — (A + C'DR™'B) Xy = X,A.
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Multiplying by y we get —A’ X5y = AX,y, which we may rearrange to obtain
(M + A")Xoy = 0. Because A is asymptotically stable and Re(A) < 0, A\ + A’
is nonsingular and therefore Xoy = 0. We now have X;y = 0 and Xoy = 0,

X } We conclude that X is

which contradicts the full rank property of [ X
2

nonsingular.

To obtain P, set P = Xy X; !. It is easy to show that (3.7.1) is satisfied and that
A+BRYD'C+ B'P)=X;AX{ !,

which is asymptotically stable. (The required calculations are requested in Prob-
lem 3.21.)
To show that P > 0, write the Riccati equation (3.7.1) as

PA+A'P+(D'C+ B'PYRYD'C+B'P)+C'C=0. (3.7.10)

This, together with A stable and R~! > 0, implies P > 0, since P is the observability
. C

gramian of (A’[R%(D’C—FB'P) }) -

The bounded real lemma is obtained by combining these two results.

3.7.2 An optimal control proof
Instead of using the property |G|l = supwE(G(jw)), we now use the property

that, for a stable system,

1Glle = sup 22
weLs]0,00) 1W]l2

in which z = Gw. Hence |G||oc < 7 if and only if there is an € > 0 such that
12]13 = 2|Jwl||3 < —€||w|]3 for all w € L£3]0,00). The optimal control problem

max o) = [T 0:0 -0 0u0) ar

wEL2[0,00)
is therefore intimately related to the question at hand.

Initially, we consider the optimization problem on the finite time interval [0, T7;
this determines whether the £3[0,7] induced norm is strictly less than 7. For
this work, there is no advantage in assuming that the system is time-invariant.
By allowing the horizon length 7" to be arbitrary, we may determine whether the
incremental gain v(G) is strictly less than «. For the infinite-horizon problem, the
main technical issue is to show that the maximizing w is actually in £3]0, 0o) rather
than L9.. For this work we restrict our attention to the time-invariant case.
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The finite-horizon case
Consider the state-space system

i(t) = A{t)z+Blw(t),  =(0)=0, (3.7.11)
At = C(t)z(t). (3.7.12)

To simplify the expressions, we have assumed that D(t) = 0, since this assump-
tion results in no loss of generality (see Problem 4.16). In the following, the time
dependence is not shown explicitly. Define the performance index

Jr(w) = /0 (22 — y*w'w) dt. (3.7.13)

w € L5[0,T] if and only if the Riccati differential equation
~P=PA+ AP+~ 2PBB'P+C'C, P(T)=0 (3.7.14)

Theorem 3.7.4 There exists an € > 0 such that Jr(w) < —e||w||§[0 ) Jor all

has a solution on [0,T].
If the solution P(t) exists on [0,T], then P(t) >0 for any t € [0,T].

An alternative statement of the result is that ||G||jo,r) < 7 if and only if (3.7.14)
has a solution on [0, T].
Recall that for a linear system the incremental gain is given by

Y(G) = inf{y : [|Gwl|2,j0,7) < Y|lwll2,[0,7) for all w € Lo and for all T'}.

Hence v(G) < « if and only if the Riccati differential equation (3.7.14) has a solution
on [0, 7] for all finite T

Example 3.7.3. We return to the system g = Sia, a < 0, once more. Let

T=T—1t, A= /a? — 72, and note that +\ are the eigenvalues of H in (3.7.7).
When A is imaginary (i.e., v < 1/|al) let A = jw. The solution to the Riccati
equation is then given by

(=—o
P = weot(wr) —a’
tan~!(w/a)

Hence p(t) exists only for T — ¢ <
T < tan’l(w/a).
w

, so that [|g[jo,r] < v if and only if

In the case when A\ is real,
1
= ———
P = S omon) —a’

which exists for all ¢ < T, since the denominator can never be zero for 7 > 0.
Evaluating p(0) in the limit as T — oo gives

; — 1 — 2 2 -2
Jim p(0) = +— = —"(a+Va? —772).
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Thus, when v > ||g]|, the solution to the Riccati differential equation converges
to the stabilizing solution to the algebraic Riccati equation. \V4

Proof of sufficiency

We prove sufficiency using a time-varying, finite-horizon version of the spectral
factorization argument.
Suppose the solution P(t) exists and define

s A | B
W =
—y1B'P | 41
Then .
L[ G s O e
v w | = C 0
ABP| T
is allpass on £3]0,7] by Theorem 3.2.1. Hence HZH;[QT] + H17||§7[07T} = ||fyw||§7[07T],

in which 7 = W, for all w € L5[0, T]. Since W has a nonsingular D-matrix, W ™"
exists and |[W™!|jg7) < 00. Setting € = 1/HW_1||[20’T]7 we have
12113 0,71 = vwll3 .01 = =013, 10.17 < —ellwll3 0,775

which is equivalent to Jr(w) < —e||lwl|3, for all w € £5[0,T].

Proof of necessity

We prove necessity using a conjugate point argument frequently used in the calculus
of variations and optimal control.

Conjugate points:

Two times tg and ¢y, with ¢y < ¢y, are conjugate points of the two-point-
boundary-value problem (TPBVP)

a*(t) | A ~2BB’ x*(t) x*(te) | | O
o [l T ] 1] =10
(3.7.15)
if (3.7.15) has a nontrivial solution.'*
Equation (3.7.15) is a two-point-boundary-value problem because there is an initial
condition on z* and a terminal condition on .

14The trivial solution is the solution z* = 0 and X = 0.
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Example 3.7.4. If a> — v~2 < 0, then the TPBVP

- la D) )-8

has the nontrivial solution

[ x*(t) ] _ [ sin(wo(t — to)) }
At) | | 7Pwocos (wo (t — to)) —~2a Sin(wo (t — to))
whenever u
cot(wo(ty —to)) = o
In the above, wg = /772 — a?. \V/

We now have the following result, which can be thought of as a finite-horizon
version of Lemma 3.7.2

Lemma 3.7.5 Suppose t* € [0,T] and that there exists an € > 0 such that Jp(w) <
—GH’LUH;[O’T] for all w € L£3]0,T]. Then t* and T are not conjugate points of the
TPBVP (3.7.15).

Proof. For t* =T, the result is trivial. Now consider 0 < t* < T and let z*, A be
any solution to (3.7.15). Define

_ 2BAt) t>t*
w(t):{fy 0 " t<tr.

Apply @ to the system (3.7.11) and note that x(¢) = 0 for ¢t < t* and z(t) = z*(¢)
for ¢t > t*. This gives

T
Jr(w) = / (22 — y*'w) dt
0
T
= / (z*'C'Cx* —y2NBB'\)dt  as w(t) =0 for t < t*
t

5

= /T(—x*’(x + AN + (Azt — @)\ dt

T d o
I /t Lo dr
= @A) = (@ A)(T) = 0.

Since Jp(w) < —e||wH§’[O’T] for all w, we must have ||1I)H§1[O’T] =0, giving B'A(t) =0
on [t*,T]. This reduces the TPBVP to

¥ B A 0 x* z*(t*) | |0
i Jo=[ de S e 156 ]-10]
and we conclude that z* = 0 and A = 0. That is, t* and T are not conjugate points,
since any solution to the TPBVP has been shown to be trivial. [ |
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Lemma 3.7.6 If there exists an € > 0 such that Jp(w) < —elw||? o,7) Jor all w e
L2[0,T], then the Riccati equation (3.7.14) has a solution on [0,T] and P(t) > 0.

Proof. Let ®(¢,T) be the transition matrix associated with the differential equa-
tion (3.7.15). Imposing the boundary condition A(T') = 0, we have that

x* _ by *
o= 2 jenem.
Since the transition matrix ®(t,T) is nonsingular for all ¢, T,
{ z () ] =0« 2*(T) = 0. (3.7.16)

We now show that ®1(¢,7") is nonsingular for all ¢ € [0,7]. We do this by
showing that if ®1;(¢*,T)v = 0 for some t* and some v, then v = 0. Choose
t* € [0,7] and let v be any vector such that ®1;(t*,T)v = 0. Setting t; = T,
to = ¢* and imposing the boundary condition z*(7T) = v results in a solution to
(3.7.15). By Lemma 3.7.5, t* and T cannot be conjugate points and we conclude that
2*(t) = 0 and A(¢) = 0 on [t*,T]. It now follows from (3.7.16) that v = 2*(T) = 0,
which means that ®1,(¢*,T") is nonsingular. Since t* was arbitrary, the claim that
®14(t,T) is nonsingular for any ¢ € [0, 7] is established.

It can be verified (Problem 3.22) that P(t) = ®o1(t, T)®1;'(t, T) is the solution
to the Riccati equation (3.7.14).

To see that P(t) > 0, note that X(t) = P(t) — Q(¢), in which Q(¢) is the
observability gramian (see (3.1.6)), satisfies

~X=XA+AX+~72PBB'P, X(T)=0.

That is, X is the observability gramian of (4,7 ! B’P). Hence P — Q > 0 and we
conclude that P > 0. [

Example 3.7.5. The solution to
d | ¢n [ a A7 11 b1 1
dt [ 021 } 1= [ -1 —a } [ $21 ] &), [ ¢ } &)= [ 0 ]
is given by
{ o1 ] (t,T) 1 [ MM + e ) —a(er — e ) ] |

¢21 = ﬁ ez\r _ e—)\‘r

in which 7 = T — t and A\ = \/a? — y=2. Tt can be verified that ¢ (t, T)é 1 (¢, T)
yields the solutions to the Riccati equation that are given in Example 3.7.3. \V4
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The infinite-horizon case

We now turn our attention to the case when the time horizon T is infinite and the
matrices A, B and C are constant. Our aim is to show that if |G||cc < 7, the
algebraic Riccati equation

0=1IIA+ AT+~ *IBB'Nl + C'C (3.7.17)

has a solution such that A 4+ v 2BBIl is asymptotically stable and that such a
solution is nonnegative definite. Our approach is to examine the behavior of the
solution to the Riccati differential equation in the limit as T — oco.

The argument we use to show that P(t) converges to the desired solution II
(when |G|« < ) depends on a monotonicity property of the solution P(t). Specif-
ically, the solution P(t) to (3.7.14) is monotonically nonincreasing as a function of
t when the matrices A, B and C are constant. To see this, differentiate (3.7.14) to
obtain

~P=P(A+~y2BB'P)+(A+~+?BB'P)P, P(T)=-C'C.
If ® is the transition matrix associated with (A +~~2BB’P)’, then
P(t) = —®(t, T)C'CP'(t,T) <0,
which establishes the desired monotonicity property.

Lemma 3.7.7 Suppose the matrices A, B and C are constant, that A is asymp-
totically stable and that

#(t) = Ax(t)+ Bw(t), z(0)=0
z(t) = Cz(t).

Define the cost function
J(w) = / (22 — y*w'w) dt. (3.7.18)
0

If there exists an € > 0 such that J(w) < —¢||w||3 for all w € L2]0, 00), then:

1. The Riccati differential equation (3.7.14) has a solution P(t,T) on [0,T] for
all finite T

2. There exists a constant 5 such that P(t,T) < BI for allt € [0,T] and all
finite T.

3. II = limp_,o0 P(t,T) exists and satisfies (3.7.17). Furthermore, II > 0 and
A+ ~72BB'Il has no eigenvalue on the imaginary axis.

4. A4+~"2BB'Tl is asymptotically stable.
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Proof.

1. Let T' > 0 be arbitrary, let w be an arbitrary £5]0,7] signal and define the
L2[0,00) signal w by Prw = w and w(t) = 0 for ¢ > T. Then Jp(w) <
J(w) < —¢||w|3 = —e||u?||§’[0,T]. Hence P(t,T) exists.

2. Consider the dynamics

& = Az+ Bw, z(0) = g
= (b,

in which w € £5[0,00) is arbitrary and xq is arbitrary. Write z = z,, + 24,
in which 2, is that part of the response due to zg, and z,, is that part of the
response due to w. Note that |2[3 < 12z, |3 + 126 I3 + 2lzas 2 2ull2- Since

A is asymptotically stable, ||z, |l2 < ozl for some a > 0. Thus

Hw) < [ = 2P de+ allal @l + 2zl
< el +alwol(alzoll + 2vw]2)
= el ~ T aoll? + 021 + Lol ?
<

2
o? (1 + %) N

The particular input

w(t) =

{ Yy 2B'P(t)z(t) te[0,T)
0 t>T

gives

T
/ (22 — y*w'w)dt since w(t) =0 for t > T
0

=
g
v

Td
= - — (2' Px) dt
/0 dt(x x)

on substituting for w and P. Hence

2
zHP(0,T)xo < o? (1 + l) l|lzo]|? for all z and all T.
€

The monotonicity of P(t,T) ensures that P(t,T) < o?(1 + ?)I for ¢ € [0,T7.
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3. Since 0 < P(¢,T) < BI and P(t,T) is monotonic, II(¢) = limp_,o P(t,T)
exists for all t. To see that II(¢) is constant, we observe that
H(tl) = lim P(tl,T)
T—o0
= Tlim P(to, T 4+ ty —t1) by time-invariance

T—o0

= H(tg).

To see that IT satisfies (3.7.17), we make use of the fact that a solution of the
differential equation (3.7.14) depends continuously on the terminal condition
(see Problem 3.22). That is, if P(¢,T, %) denotes the solution to (3.7.14) with
terminal condition P(T") = X, then P(¢,T,3) is continuous in ¥. Note also
that, by definition, P(¢,T,%) = P(t,Tl,P(ThT,Z)), forany t < Ty < T.
Therefore

In = Tlim P(t,T,0)
= Th*rgop(tTlaP(TlaTa 0))
= P(t, 11, Tlim P(Ty,T, 0)) by continuity
= P(t,Ty,1I).
That is, IT is a solution to the Riccati equation (3.7.14) with terminal condition

II. Noting that IT = 0, we see that II satisfies (3.7.17). II > 0 because
P(t) > 0.

To show that A4~ ~2BB'Il has no imaginary axis eigenvalue, we observe that
12112 — 72 ||w||3 = —?||w — w*||3 has the transfer function matrix form
VI -GG =W"W, (3.7.19)
in which G = C(sI — A)~'B and
W =~I — 4 'B'TI(s] — A)"'B. (3.7.20)

(This follows by observing that Ww = v(w — w*), or by direct calculation,
or by Theorem 3.2.1). Since ||G|loc < 7, we have W'(jw)W (jw) > 0, so
W has no zeros on the imaginary axis. Since A is asymptotically stable,
the realization (3.7.20) has no uncontrollable or unobservable modes on the
imaginary axis and we conclude that A +~y~2BB'Il has no eigenvalue on the
imaginary axis.

4. To show that II is the stabilizing solution, subtract (3.7.14) from (3.7.17) and
rearrange to obtain
P = (II—-P)(A+~y 2BBT)+ (A+~2BB'T)(Il - P)
—y "3l - P)BB'(Il - P), P(T) = 0. (3.7.21)
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We now make the assumption that (II — P)(t) is nonsingular for all finite ¢.
The extension to the case when this is not necessarily true is called for in

Problem 3.24. Let V(t) = (I — P(T —t))~". Since V() = V(t)%(P(T —
t))V(t), we have from (3.7.21) that

V(t)= —(A+~72BB'TV(t) - V(t)(A+~ 2BB'Tl) + vy 2BB’. (3.7.22)

If y # 0 is such that (A 4+~ 2BB'Il)'y = Ay, then

d

E?J
But y*V(t)y is unbounded on ¢ > 0, since (Il — P(T —t)) — 0 as t — oo
and o((V(t)) = 1/a(Il = P(T —t)). Consequently —(X+ A) > 0, and (since
A + ~y72BB'Tl has no eigenvalue on the imaginary axis) we conclude that
A+ ~y72BB'Il is asymptotically stable. [ ]

V(tly =M+ Ny V(t)y +v %y BB'y.

Main points of the section

3.8

1. The infinity norm of a transfer function matrix G € RH is
bounded by a given number v if and only if (a) 7(G(x0)) < v
and (b) the algebraic Riccati equation (3.7.1) has a stabilizing so-
lution. This is known as the bounded real lemma.

2. The solution of the algebraic Riccati equation, when it exists, may
be determined either by an eigenvalue calculation on the Hamil-
tonian matrix (3.7.5) constructed from a realization of G and =,
or as the limiting (steady-state) solution to the Riccati differential
equation (3.7.14), generalized to the D # 0 case.

3. In the case of a transfer function matrix G € RL.., an eigenvalue
calculation on the Hamiltonian matrix (3.7.5) determines whether
|Gloe < 7-

4. The incremental gain of a time-varying, state-space system with
realization (4, B, C,0) is bounded by a given number ~ if and only
if the Riccati differential equation (3.7.14) has a solution on [0, 7]
for all finite T'.

Notes and References

The material presented in this chapter is standard and is covered in several excellent

texts.

The signals and systems text by Kwakernaak and Sivan [126] provides an intro-
duction to the mathematical properties of signals and systems. Lebesgue 2-spaces,
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the Fourier transform and Parseval’s identity are treated in many books on signal
and systems theory ([126] or example) and in many books on integration, analysis
or Hilbert space. See Rudin [174] and Young [222], for example. Hardy spaces and
the Paley-Wiener theorem are treated in detail in Hoffman [93] and Duren [56],
and there is a chapter on this topic in Rudin [174] and in Young [222]. State-space
systems are widely used in control and system theory and are covered in many
modern texts on these subjects. Brockett [33] is still amongst the best treatments
of the general time-varying case. Linear systems driven by white noise processes
are analyzed in Kwakernaak and Sivan [125] and other texts on stochastic optimal
control—Davis [40] contains a reasonably accessible treatment and a good intro-
duction to the stochastic process literature.

There was a great deal of interest in the late 1950s and early 1960s in the
stability of feedback systems containing nonlinear elements. These problems were
approached using frequency domain (function analytic) methods, Lyapunov stabil-
ity theory and input-output (operator theoretic) analysis. The papers of Sandberg
[187, 186, 188, 189] and Zames [224, 225, 226] are regarded as providing the general
framework for the small gain theorem and in developing its application to specific
problems of interest in the literature. Of these, Zames provides the more accessible
account. The book by Willems [210] also considers the stability of feedback systems.
Our treatment of nonlinear system stability follows the text by Desoer and Vidya-
sagar [47], in which a unified approach to the input-output stability of nonlinear
feedback systems based on the small gain theorem is presented. The relationships
between the small gain theorem, the passivity theorem, the Popov criterion and the
circle criterion are explored in detail.

The book by Safonov [177] develops a general framework for considering the sta-
bility of feedback loops containing sector bounded relations, which includes passive
and small gain systems, and does not require that the exogenous signals enter the
loop in a linear manner. Stability theorems that allow structural and size constraints
to be imposed on the systems comprising the closed loop have been developed by
Doyle [51] and Safonov [178].

The positive real lemma (see Problem 3.25), which is equivalent to the bounded
real lemma, originates from the Problem of Lur’e, which concerns a feedback loop
containing a linear time-invariant system and a memoryless nonlinearity. Popov
[165] provided a frequency domain criterion for the stability of the closed loop—the
closed loop is globally asymptotically stable if a certain transfer function is posi-
tive real. He also showed that the existence of a Lyapunov function that was “a
quadratic form plus an integral of the nonlinearity” and which ensured the global
asymptotic stability of the closed loop implied his positive real condition. The
questions which remained were (a) does Popov’s positive real condition imply the
existence of a Lyapunov function of the desired form? (b) how can the Lyapunov
function be constructed? Yakubovi¢ [219] and Kalman [107] solved these prob-
lems by developing a state-space characterization of positive real transfer functions,
which is known as the positive real lemma—the term “lemma’” derives from Kal-
man, who called the result the Main Lemma. The positive real lemma showed
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that the frequency domain criterion of Popov was equivalent to the existence of a
Lyapunov function of the desired form and provided an “effective procedure” for
computing the Lyapunov function. This work was the first example of an approach
to feedback synthesis that is now known as “H. control”. The design specifica-
tion (global asymptotic stability) was converted into a frequency response criterion
(Popov’s positive real criterion) and a state-space synthesis procedure (the positive
real lemma) was developed.

The multivariable extension of the positive real lemma was stated without proof
by Kalman [108], and was established in its full generality by Anderson [9]. The most
complete treatment of the positive real lemma, the bounded real lemma and also the
characterization of allpass systems (the lossless bounded real lemma) can be found
in the text on network analysis and synthesis by Anderson and Vongpanitlerd [14].

3.9 Problems

Problem 3.1.
1. Show that f(t) =t%, ¢ > 0, is in £5]0, 7] if and only if « > f%. Show that f
is not in £5[0, c0) for any «.
2. Show that ¢g(¢) = (¢t +1)*, ¢t > 0, is in L9 for any a. Show that ¢ is in
L5]0,00) if and only if o < —3.
Problem 3.2. Show that for any differentiable matrix function X (¢),

4
dt

for all ¢ for which the inverse exists.

X't)=-X""t) (X)X ()

dt

Problem 3.3. Suppose ®(t,7) is the transition matrix associated with A(¢).
That is,

d
EQ)(t’ T) = A(t)®(t, 7), O(r,7)=1.

1. Show that ® satisfies the functional equation ®(to,t1) = ®(ta, 7)P(7, 1) for
any t1, to and 7.

2. Show that ®(¢,7) is nonsingular and that ®(7,t) = ®~1(¢, 7).
3. Show that

%@(tﬂ') = —®(t, 7)A(T).
Problem 3.4.
1. Consider the frequency domain signal f(s) = ﬁ, a < 0. Show that, for
a >0,
1 [ ., ) o) dio — 1
o R R ey

Conclude that || f]|2 =

1
—2a’
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2. Consider the time-domain signal f(¢) = e, ¢ > 0 and a < 0. Use Theo-
rem 3.1.1 to show that f € £5][0,00) and || f]|2 = \/%2&

Problem 3.5. Suppose QA+ A'Q + C'C = 0.
1. Show that A asymptotically stable implies that @ > 0.
2. Show that @ > 0 implies that every unstable mode of A is unobservable.

Problem 3.6. Consider two systems G; and G5 defined by

{i}i(t) = Ai(t)l'i(t)'i‘Bi(f)wi(t)
zi(t) = Ci(t)ai(t) + Di(t)wi(t)

for i = 1,2. In the following, the time dependence of the matrices is not shown
explicitly.
1. Assuming that the dimensions of w; and ws and the dimensions of z; and 25
are equal, show that the system z = (G; + G2)w has realization

Ay 0 By
0 A2 By
C1 C, | Dy + D,

2. Assuming the dimension of z; is equal to the dimension of ws, show that the
system z = (G2G1)w has realization

Ay 0 By
ByCy Ay | BoDy
DzCl CQ ’ Do D1

3. Show that if D;(¢) is nonsingular on the time interval of interest, then the
inverse system G ' has realization

Al—B1D1101|B1D11]{A1 Bl][ I 0 ]‘1
N

e ‘ Dt 0 I Ci D
4. Suppose
A | B
o [4f
2 Cy | Dy

with D; nonsingular on the time interval of interest. Show that the system
G>G7 " has realization
-1
| A B I 0
T Cy Dy Ci Dy ’

Problem 3.7. Let G have realization (A(t), B(t),C(t), D(t)).

A-BD{'Cy | BD*
Cy— DyD;'Cy | DyDyt
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1. Show that if D(¢) is nonsingular on [0,7] then there exist constants e; > 0
and ey > 0 such that

erllwllz o, < [12ll2,0,17 < €llwll2 o175

in which z = Gw, for all w € £2[0,T].
2. Show that when the system is time-invariant, the result holds for the space
L5[0, 00) if the transfer function matrix is such that G and G~ € H..

Problem 3.8. Let G be a time-invariant system with realization (A, B,C, D).
Suppose that D satisfies (3.2.14) and that there is a @ such that (3.2.12) and (3.2.13)
hold.

1. Show that

G(s)*G(s) =1~ (s+5)B'(5 — A)~'Q(sI — A)~'B.

Conclude that if @ > 0, then G(s)*G(s) < I for all R.(s) > 0.
2. Show that there exist matrices B, and D, such that the system G. with

realization N
s B Be
Ge = [ C|D D. ]

is square and allpass. Do not assume that () is nonsingular.

Problem 3.9. For a given pair (A, C), suppose every purely imaginary mode of
A is unobservable through C'. If V is a basis for the space spanned by the imaginary
axis modes of A, show that there exists a Q = @’ such that QV = 0 and

QA+AQ+C'C=0.

Problem 3.10. Consider the memoryless system (fw) (t) = f(w(t)), in which f
is a real valued function of a real variable.
1. Find a function f that is not differentiable everywhere for which v(f) is finite.
2. Show that if f is differentiable, then v(f) = sup, \%L What can you say if
f is differentiable except at isolated points?
3. Suppose ’y( f) < 1. Graphically explain why the equation w = fw always
has a solution.

Problem 3.11.
1. Show that trace(XY") = trace(Y'X) for any matrices X and Y of the same
dimension.
2. Show that

trace(X X') = Z xz,
0,J

in which z;; is the ¢, j element of X.
3. Show that y/trace(X X’) defines a norm on the space of matrices.
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Problem 3.12. Find transfer functions g and h such that ||hg|2 > ||g]2||k]2-

Problem 3.13.
1. Suppose that B : § — S is allpass. Show that |GB| = |G|, in which || - ||
is the appropriate induced norm.
2. Suppose that A is allpass. Show that |AG||2 = ||G||2 for any system G.

Problem 3.14.  Show that a transfer function matrix Z defines an incrementally
strictly passive system with finite incremental gain if and only if Z € H., and

Z(s)+ Z*(s) > 2el >0 for all Re(s) > 0. (3.9.1)

Transfer function matrices that are analytic in Re(s) > 0 and satisfy (3.9.1) are
called strictly positive real.!®

Problem 3.15. Suppose Z € H,,. Show that Z is strictly positive real if and
only if
Z(jw) + Z*(jw) > 2el >0 for all w.

Problem 3.16.
1. Suppose Z is strictly positive real. Show that Z(s) is nonsingular for any
Re(s) >0
2. Suppose Z = D + C(sI — A)~1B in which A is asymptotically stable. Show
that if Z is strictly positive real then A — BD~'C is asymptotically stable.

Problem 3.17.  Consider a system G with realization (A(t), B(t),C(t), D(t)).
Show that if (I + D(t)) is nonsingular on the time interval of interest, then the
system (I — G)(I + G)~! has realization

A-B(I+D)'C| B(I+D)!
—2(I+D)C |(I-D)I+D)" |

Problem 3.18. Consider the feedback loop of Figure 2.8. Assume that G and
K are linear, that the nominal (A; = 0) closed loop is internally stable and that
Y(GK(I - GK)™) < o0.

1. Show that the actual closed loop is stable if

v(A1)y(GK(I -GK)™) < 1.

2. Suppose now that A; is incrementally strictly passive and has finite incre-
mental gain. Determine an incremental gain condition that ensures the actual
closed loop is internally stable.

Problem 3.19. (Structured uncertainty) Consider the feedback loop in
Figure 3.9.

15The condition that Z is real is assumed—only real systems are considered in this book.
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w1 €1

€2 Wo

G

Figure 3.9: Feedback system.

Suppose that A is stable and block diagonal:

A 0 0
A1 = 0 0 )
0 0 A,

and denote this set of stable block-diagonal A’s by U.
1. Show that the feedback system is internally stable if G is stable and

V(A)r%ny(DGD*) <1, (3.9.2)

in which the minimum is taken over the set D defined by
D= {D : D and D! are linear, stable and DA = AD for all A € U} .

2. Suppose the A € U are linear, in addition to being stable and block diagonal,
and that each A; is square. Determine the set D.
(Hint: DX = XD for all p x p matrices X with p > 2 if and only if D = al.)

Problem 3.20. Show that the equation
QA+AQ+C'C=0
has a unique solution if and only if A;(A4) + A;(A) # 0 for any 4, j.

Problem 3.21. A Hamiltonian matriz is any real 2n X 2n matrix

Hy1 Hio
H =
[ Hy  H }
. .. . 0 -1,
such that SH is symmetric, in which S = I 0

1. Show that the eigenvalues of H are symmetric about the imaginary axis.
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2. Suppose X is a 2n x n real matrix such that
HX = XA, (3.9.3)

in which A is an n x n real matrix with Re(X;(A)) < 0 for all i. Show that
X'SX =0.

3. Suppose X = [ X| X} ]/ is a 2n X n real matrix satisfying (3.9.3), with
R.\i(A) < 0 for all 4, such that X is nonsingular. Show that P = X, X ' is
symmetric and satisfies

PHy, + H{\P+PH,P —Hy = 0
Hi 4+ HisP = XAX;L
Problem 3.22. Suppose H(t) is a (time-varying) Hamiltonian matrix (see
Problem 3.21) and that ®(¢,7) is the transition matrix associated with H(¢). That
is
d

ZO(t7) = HO2(L7),  @(r7) =L

Let ¥ be any n x n matrix such that X (¢t) = ®11(¢,T) + ®12(¢,T)X is nonsingular
for t € [0,7] and define
P(t) = Xa() X1 (1),

in which Xg(t) = @21@, T) + @22(15, T)E
1. Show that

—P=PHy, + H|, P+ PH\,P— Hy, P(T)=%.

2. Show that P(t) is a continuous function of X.

Problem 3.23. Suppose A is asymptotically stable and II is any solution to
(3.7.17).
1. If (A, Q) is observable, show that II is nonsingular.
2. Suppose A + v !BB'Il is asymptotically stable. Show that kerII is the
unobservable subspace of (4, C).
3. Conclude that if A+~y~!'BB'Il is asymptotically stable, then II is nonsingular
if and only if (A, C) is observable.

Problem 3.24. Suppose P(t) is a solution to the Riccati differential equation
(3.7.14) and that II = lim;_ o, P(t) exists.
1. Show that (IT— P(t))z = 0 for some ¢ < T if and only if (Il — P(t))x = 0 for

allt <T.
2. Show that there exists a constant nonsingular matrix M such that
e | IL-PA() O

in which IT; — P (¢) is nonsingular.
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3. Show that A 4+ v 2BBII is asymptotically stable.

Problem 3.25. (The positive real lemma) Suppose Z = D + C (sl — A)™'B
in which A is asymptotically stable. Show that Z is strictly positive real (see
Problem 3.14) if and only if R = D + D’ > 0 and there exists a P satisfying

P(A-BR'C)+(A—-BR'C)P+PBR 'B'P+C'R'C=0 (3.9.4)

such that A — BR™}(C — B'P) is asymptotically stable and P > 0.
(Hint: If Z is strictly positive real, then ||(I — Z)(I + Z)7!||oc < 1. Apply the
bounded real lemma to obtain P. The identity

I—-(I+D)'I-D)YI-D)I+D)y'=20+D)yYD+D)I+D)*
makes the calculations fairly easy.)

Problem 3.26. (Spectral factorization) Consider a transfer function matrix
P cRL.
1. Show that if
®=W""W, (3.9.5)

in which W and W™~ are elements of RH,., then ® = &~ and ®(jw) > 0
for all w. Show that when W exists, it is unique up to multiplication by an
orthogonal matrix.

2. Show that ® = &~ and ®(jw) > 0 for all w if and only if

®=Z+2Z"

for some strictly positive real transfer function matrix Z.
(Hint: consider a partial fraction expansion of ®.)

3. Suppose that ® = Z + Z™, in which Z is strictly positive real. Let Z =
D+C(sI — A)~!'B in which A is asymptotically stable. Show that a solution
to (3.9.5) such that W and W' € RH,, is given by

W =W + L(sI — A)"'B, (3.9.6)
in which W is nonsingular and

W'W = D+ D
W'L = C-BP

and P is the stabilizing solution to (3.9.4).
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Linear Fractional
Transformations

4.1 Introduction

Linear fractional transformations (LFTs) occur in many areas of network and system
theory.! Several examples relevant to H,, optimal control and model reduction
spring to mind: (1) The transformation z = }fz, which maps the left-half plane
into the unit disc, is used in the study of discrete time systems and is frequently
referred to as the bilinear transformation. (2) The closely related transformation
P = (I—-8S)(I+S)~!, which relates a positive real transfer function matrix P and
a bounded real transfer function matrix S, is used in passive circuit theory. (3) The
transfer function g = Zjidb represents a first-order system such as a phase-lead or
phase-lag controller. First-order systems of this type are often used as weighting
functions in Heo control system design. (4) Every stabilizing controller for a stable
plant may be parametrized by the formula K = Q(I + GQ)™!, in which Q is
stable, but otherwise arbitrary. This formula is a linear fractional transformation
between stable transfer function matrices and stabilizing controllers. (5) Closed-
loop operators that are important in the design of control systems, such as the
sensitivity operator (I — GK)~! and and the complementary sensitivity operator
GK(I — GK)™!, are linear fractional in character. (6) We will show that all
solutions to the Hs, control problem and all solutions to the optimal Hankel norm
model reduction problem are described by linear fractional transformations.

To set the scene for our study of LFTs, we will briefly review some of the

1Linear fractional transformations are also known as bilinear transformations.

131
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properties of the first order rational fraction

as+b

£= (4.1.1)

Each of the coefficients is a complex number, and s and £ are complex variables.

1. Under the assumption that ad — be # 0, it is well known that (4.1.1) maps
circles or straight lines in the s-plane into circles or straight lines in the &-
plane.

2. By writing £ = & /&, with & and & defined by
S| _Ja b s
S| | ¢ d 1|’
we may represent (4.1.1) in terms of a matrix of coefficients. The coefficient
matrix is unique up to multiplication by a complex number.

3. The composition of two LFTs is another LF'T. Suppose that w = w; /ws where

[ wy _ a b [ =»n
w2 | ¢ d]|]| =

(21 ] [a B]s
BN

Then w is given in terms of s by

=Ll sl

This shows that the set of LFTs of the type given in (4.1.1) is closed under
the composition operation and that compositions of LFTs may be constructed
from the product of their coefficient matrices.

and that z = z1/2z2 where

4. Compositions of LETs are associative because matrix multiplication is.

5. The identity transformation exists and its coefficient matrix is the identity
matrix.

6. The inverse transformation exists if the coeflicient matrix is nonsingular and
is given by
1 d —=b
ad — be { —-c a } ’

which is the inverse of the coefficient matrix associated with (4.1.1).

7. It follows from Items 3, 4, 5 and 6 that nonsingular LFTs form a group under
composition.
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Alternative forms of LFT

The LFT given in (4.1.1) has a useful alternative representation. In the case that
d # 0, we have that

as+b
cs+d
= bd '+ (a—bd te)s(14+d tes) a7t (4.1.2)

This is the form we will usually use for LFTs, because it corresponds naturally to
input-output block diagram representations of control systems. To see this, consider

z w

- e

(et

Figure 4.1: Lower linear fractional transformation.

the feedback configuration in Figure 4.1, which is defined by the equations
R S i | I
Y u P21 P22 U
u = sy. (4.1.4)
Eliminating v and y we obtain the relationship
< -1
5~ Pu + p128(1 — p22s)” p:
between w and z. Comparing this with (4.1.2), we see that the ratio £ = (z/w) in

Figure 4.1 is a linear fractional transformation of the variable s. The correspondence
between the coefficients a, b, ¢, d and P is given by

bd=' a—bdtc
P=| 11 i1, (4.1.5)
We will use the notation
Fi(P,s) = pu1 + pr2s(1 — pa2s) ' pan (4.1.6)

for this form of LFT.
In the sequel, we will need generalizations of (4.1.6) of the form

Fi(P,K) =Py + P, K(I — Py, K) ' Py, (4.1.7)
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in which the P;;’s and K are transfer function matrices or systems. The LFT is
called well-posed if the inverse (I — Py K )1 exists.?
By eliminating y and u from the feedback system defined by

RN
Yy Py Py u
v = Ky,

which is illustrated in Figure 4.2, it is easily seen that z = Fy(P, K)w.

z w
P

Y e o U
K

Figure 4.2: Linear fractional transformation on systems.

Most of the properties of LE'Ts of interest to us follow from routine applications
of the definition (4.1.7). These properties are explored in the exercises at the end
of the chapter which should, as always, be read as an integral part of the text.

4.1.1 The composition formula

The purpose of this section is to give a composition formula for the interconnection
of two LFTs in the framework of Figure 4.3. This formula will be extensively used
in what follows.

The interconnection given in Figure 4.3 is defined by the equations

z _ P, Py w

Y B Py Py u

w | K1 Kio Yy

r N K Ko U
Eliminating y and u, we obtain

[ i ] =Ci(P, K) [ v ] : (4.1.8)

2The sense in which the inverse is required to exist is context dependent. In the case of state-
space systems, the LFT is well-posed if (I — PQQK)71 can be represented as a state-space system.
If we suppose that P and K are the transfer function matrices of (time-invariant) state-space

systems, well-posedness is equivalent to det (I — P> (oo)K(oo)) # 0.
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z w
-+ jf«—
P
y U

r
v K

Figure 4.3: The interconnection of two LFTs.

in which the composition operator Cy(-,-) is

Fo(P, K1) P1,SK

C(P,K) = ~ ,
el ) K9 SPy1 Ko+ K31 P2 SKip

(4.1.9)

with § = (I — Py K1)~ and § = (I — K11 P3y)~ L.

Now suppose we close the loop between r and v in Figure 4.3 by v = Fr. Then
we see that u = Fy(K, F)y and that z = Fg(P,}'@(K7F))w. By (4.1.8), we also
have z = F4(Co(P, K), F)w. That is,

Fo(P,Fo(K,F)) = F(C(P,K), F). (4.1.10)

The cascade of two LFTs is another LF'T involving the composition operator Ce(-, -).
By augmenting P, we may write the composition operator as a LFT, since

Py 0| Py 0
_ 0o 0| 0 I K1 Ko
Co(P,K)=F, Py 0| Py 0| |: Koy Kop :| (4.1.11)
0O I| 0 O

(The verification of this identity is left as an exercise). This means that the prop-
erties of LFTs carry over to the composition operator.

4.1.2 Interconnections of state-space LFTs

This section provides a state-space realization for interconnections of LFTs defined
by state-space realizations and considers some cancellation properties. We will
need these results during our development of a representation formula for all H .,
controllers in the output feedback case.
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Lemma 4.1.1 Consider the composition interconnection shown in Figure 4.3, in
which

A| B B
P=| Ci| 0 D and K=| |0 I
Co| D O Co| I 0

Then a state-space realization for the system R = Co(P, K) : [ 1;) ] — [ i ] is

. ~A—I-BzCNH } ~B2é1~ B B
R A+ BiCy —A—ByCy A—ByCy | BiDyy — By By — By
Cy + D1aCy D15Ch 0 Do
Cy+ Oy Cy Do 0

Proof. To begin, we note that

t = Ax+ Biyw -+ Bau
z = Ciz+ Disu

y = Cox+ Dyw

i = Ai+Biy+ By
u = C‘lzi + v

ro= Cyi+uy.

Eliminating v and y from these equations gives

C:C . ~A Bg?l X + ~Bl ?2 w
z B B,C, A z B1Dy1 Bs v
z o Cl Dlgél x + 0 D12 w
T a CQ CQ T D21 0 v ’
Changing variables we get
) T o _ ~A+BQC~’1 B ~Bgél~ xT
T—x o A+BlcQ—A—BQCl A—Bgcl T—x

+ B Bl B BQ w
Bngl — Bl BQ - BZ v

z _ C1 + Dlgél Dlgél x
r Cy + Co Cy T—x

O D12 w
Lo B]V)

which completes the proof. |
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The next result pins down the exact locations of any pole-zero cancellations that
may occur in LFTs involving time-invariant state-space systems.

Lemma 4.1.2 Let the (p1 +p2) X (m1 +ma) transfer function matriz P that maps
w z .
[ ] to[y] be given by

u
A| B B

“Z“ ﬁ”}é Cr[Dn Du |
2 22 Cy | Da1 Doy

in which ma < p1 and pa < my. Suppose that K maps y to u and that it has a

minimal realization o
A|B
C|D

satisfying the condition det(l — DQQD) %0 for a well-posed closed loop. Then

(¢)

K<

fl(Pa K)
A+ ~BJ)MOQ By(I +~ﬁMD22~)C~' By +~32DMD21
= BMCy A+ BM Dy, C BM Dy,
C1 + D12DMCs  Dis(I + DM Dyy)C ‘ D1 + D12DM Dy

in which M = (I — DggD)_l. This is referred to as the natural realization of
the LFT, since it results from the elimination of u and y.

(b) Every unobservable mode of the realization in (a) is a value of A such that
{ A—-X B;

oy Dis } has less than full column rank.

(c) Every uncontrollable mode of the realization in (a) is a value of \ such that
A-X B
has less than full row rank.
[ Co Dy } 4
Proof. The equations describing R.,.,, the closed-loop system mapping w to z,
are

T Ax + Biw + Bau

z = Ciz+ Dyiw—+ Disu
y = Chz+ Doyw + Daou
& = AZ+ By

v = Ci+ Dy
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Eliminating u and y from the above equations establishes the (a) part.
If X\ is an unobservable mode of the closed-loop state-space model, there exists
a vector [ w*  u* ]* = 0 such that

A+ ByDMCy — A\ By(I + DM Doy)C
BMC, A+ BMDyC — AI [ v } = 0. (4.1.12)
C1+ D1aDMCy Dlg(I + DMDQQ)O

Defining

A— NI BQ w -0
Ch Dis y |

The proof of the (b) part is completed by noting that [ w*  u* TF 2 0 implies that

gives

[ w*  y* ]* # 0. Suppose for contradiction that [ w*  y* ]* = 0. This gives
(I + DMDy)Cu = 0
=Cu = 0,

since the nonsingularity of M implies the nonsingularity of (I + DM Dsys). We also
get from (4.1.12) that }
(A= Au=0.

Taken together, these two conditions contradict the assumed minimality of the
realization of K. The validity of part (c¢) may be established by a dual sequence of
arguments. |

4.2 LFTs in controller synthesis

Each of the controller synthesis problems considered in this book may be described
in the language of LFTs. The value of this observation lies in the fact that a single
theoretical framework may be used to solve a variety of optimization problems. We
illustrate this with an example of robust stability optimization.

Suppose a plant is described by a given transfer function matrix G' and suppose
we seek a controller that stabilizes (G + A) for all model errors A : £5[0,00) —
L]0, 00) satisfying

F(W3 AW <1,

in which () denotes the incremental gain. The weights W and Wy are transfer
function matrices that reflect a priori information about the modelling error.

If the weights W1 and Wy and their inverses are stable (i.e., Wlié € Heo), We
conclude from Figure 4.4 and small gain considerations (see Theorem 3.6.1) that
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a sufficient condition for the internal stability of the closed-loop system is that K
stabilizes the nominal loop and that

W K(I -GK) 'Wy|, < 1.

wytAaw !
Ry ichiin

W1 W2
G i
P K °
u Y

Figure 4.4: A frequency weighted robust stabilization problem.

To set this problem up in a LFT framework, we observe that
z | 0o W, w
y| | Wo G u
u = Ky.

T o0 W,
Pl e

and that

Hence, setting

we obtain
Fo(P,K)=W K(I - GK)’1W2.

The synthesis problem is to find a controller K that stabilizes F(P, K) and satisfies
|Fo(P. K| < 1.

When solving these problems using a computer, we suppose that a state-space
realization of P will be supplied as data. The computer program will return a

state-space realization of the controller. If
A|B A1 B1 A2 B2
C 01 D1 ’ 02 D2 ’

s
) 1=

S

G= W, 2
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are state-space models of the plant and weights, then

A 0 0]0 B
0 A 0|0 B
0 0 Ay|By, 0
0 C1 0|0 D
C 0 Cy|Dy D

is a state-space realization of P.

The robust stability problem is an example of a single-target problem, because
the aim is to find a controller that satisfies the single norm constraint |W; K (I —
GK) W]l < 1. Realistic design exercises will be more complex than this and
may require a stabilizing controller that satisfies multitarget objectives such as

I[7 Jste <

oo

in which § = (I — GK)~!. To set this problem up in an LFT framework, we use
the identity S = I + GK S to obtain

¥ Jate 1[4

Comparing terms with

]+[é]KS[G 1.

~ O

Fo(P,K) = Py +P12K(I*P22K)71P21,

we see that

I
Py = [g ?}7 P, = {G}’
Py = [G I], Py = G
Thus, if G = D + C(sI — A)"!'B, we have
A ‘[B 0 ] B
s 0 0 O I
pele]]ln 7] o]
¢ |[D 1] D

Setting up design problems in the LEF'T framework is routine and the exercises
at the end of the chapter should provide the reader with sufficient practise.
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4.2.1 The generalized regulator problem

Consider the closed-loop system shown in Figure 4.5, in which P : Lo, — Lo is
causal and linearly connected in the sense that

HEEESM

and K : Lo — Lo, u = Ky, is a causal linear controller.

z w
P

Y e o U
K

Figure 4.5: The generalized regulator configuration.

The signal w of dimension ! contains all exogenous inputs and model-error
outputs?, the signal u of dimension m is the controller output (the manipulated
variables) and the signal y of dimension g is the controller input signal (the measure-
ments, references and other signals that are available for on-line control purposes).
The signal z of dimension p is the objective.

We aim to select K so that the closed-loop system Fy(P,K) mapping w to
z is small in a suitable norm, subject to the constraint that the closed loop is
internally stable. Internal stability in this case (and in all cases involving LFTSs)
means that z, u and y are in £5]0,00) whenever w, v; and vy are in £3[0,00) in
Figure 4.6. (The additional inputs v; and ve are needed to ensure that no unstable
cancellations occur.) Since the objective is to make z small, this problem is known
as the generalized regulator problem. The system P is known as the generalized
plant.

Although we have posed the problem in terms of a general linearly connected
system P, our main interest is focused on the case in which P is a state-space
system:

Al| B B
PZ| C | Dy D |. (4.2.1)
CQ D21 D22

That is, z and y are the solutions of ordinary linear differential equations driven by

3In the robust stability example, the signal w is the output of the the model error A, not an
exogenous input.
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z w
- fe———
P
U1
y u
K (%)

Figure 4.6: Generalized regulator: Internal stability.

w and u:
T A B1 BQ x
z = Cl D11 D12 w
Yy Cy D21 Da u

The dimension of the state vector x is n and the matrices in the realization (4.2.1)
have dimensions compatible with the appropriate signals w, u, z, y and x.*

The controller synthesis problem is to find a causal linear controller K : Lo, —
Lo, (if one exists) that:

1. Stabilizes the closed-loop operator Fy(P, K).
2. Enforces the norm bound

(a) [|[Fe(P, K)ll2 <~ or
(b) [1Fe(P, K)o < -

The internal stability properties of the generalized regulator, including necessary
and sufficient conditions for the existence of a stabilizing controller, and a LFT
parametrizing all such controllers (when they exist), are given in Appendix A.

It is often convenient to assume that v = 1 in the generalized regulator problem.
This may be done by considering the scaled problem Fy(P, K), in which

P v Py v Py
Py Py

In the case of the 2-norm objective in Item 2a, the signal w is a realization of a
unit variance white noise process and attainment of the objective ensures that the
average RMS power of z is less than 7. In general, no robust stability interpreta-
tion is possible. The LQG problem is the optimal version of this problem—find a
stabilizing K such that ||F;(P, K)||2 is minimized. The term Hs control is used by
some authors for deterministic formulations of this problem.

4Aisnxn, Biisnxl, Byisnxm, Cyispxmn, Cais qgxn, Dy is px 1, Dia is p x m, Da1
is ¢ x l and Dag is ¢ X m.
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In the case of the objective | F¢(P, K)| oo < 7, we have that
12ll2 < vllwll2

for all w € L£5]0,00), which corresponds to the interpretation of w as an exogenous
input. We also know that the closed-loop system in Figure 4.7, defined by

w = Az
z = Fo(P,K)w,

is internally stable for all A : £[0,00) — L£3[0, 00) such that y(A) <y~ L.

A

A o W
P

Y e o U
K

Figure 4.7: Generalized regulator with robustness interpretation.

Assumptions

In solving the generalized regulator problem, we shall make the following assump-
tions concerning the generalized plant in (4.2.1):

1. (A, Bg, C9) is stabilizable and detectable.
2. rank(D12) = m and rank(Ds1) = q.

3. rank [ ijCI— 4 ;)?22 ] =m + n for all real w.
4. rank [ ijC,Q_ 4 _Dfll ] = g+ n for all real w.

These four assumptions are standard technical requirements on the data. As we
proceed through the book, we will explain in detail why they are needed. Briefly,
Assumption 1 is necessary and sufficient for the existence of stabilizing controllers.
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Assumption 2 eliminates the possibility of singular problems. It is clear from Fig-
ure 4.5 that this assumption requires the dimension of z to be at least that of u,
while the dimension of w must be at least that of y. Put another way, we assume
that there are at least as many objectives as controls, and at least as many exoge-
nous inputs as measurements. Since no measurement is error free, and no control
action is costless, these are reasonable assumptions. Assumptions 3 and 4 are nec-
essary for the existence of stabilizing solutions to the Riccati equations that are
involved in the solution of the synthesis problem.

The solution of the synthesis problem for LFTs of this generality is intricate. A
particular concern is that the direct feedthrough terms D17 and Dsy complicate the
calculations and formulas, distracting attention from the central ideas. Fortunately,
these terms may be eliminated by transforming the general problem description of
(4.2.1) into an equivalent problem of the form

(4.2.2)

A further simplification comes about if we scale the D12 and Da; entries so that
DT2D12 = Im and D21D§1 = Iq.

The transformations that reduce the problem description in (4.2.1) to one of the
form (4.2.2) involve LFTs with constant (nondynamic) coefficient matrices. Essen-
tially, the reduction involves solving a nondynamic generalized regulator problem.
Although this exercise provides some insights into the solution of the general prob-
lem, it may be skipped on a first reading. The full dynamical implications of the
transformations will be picked up towards the end of this chapter.

Finite horizon synthesis problem

Although our main interest is in the infinite-horizon system norms || F¢(P, K)||2,00,
we shall also consider the finite-horizon controller synthesis problem, in which we
seek a causal, linear controller K : £5]0,T] — L2[0,T] (if one exists) such that

L ||Fe(P, K)ll2,j0,m) <7 or
2. [[Fe(P, K)lljo,r) < -

Consideration of these finite-horizon objectives allows the synthesis equations and
ideas to be developed in an environment in which stability issues do not arise.
For the finite-horizon synthesis problem, we allow the matrices in the state-space
realization of the generalized plant P to be arbitrary continuous matrix valued
functions of appropriate dimensions, with Djs(¢) and Ds;(t) full column rank and
full row rank respectively for all times of interest.
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4.2.2 The full-information problem

The synthesis theory for the generalized regulator problem, even with the simplified
D-matrix in (4.2.2), is complex. In particular, the requirement that the controller
achieves the regulation objective on z while only having access to the measurement
1y is a significant complication. In order to tackle the generalized regulator problem
in manageable steps, it is fruitful to assume that the controller has access to full
information rather than just the measurable outputs, enabling us to concentrate on
the conditions required to achieve the regulation objective on z. As we will show, the
process of reconstructing full information from the available output measurement
information is a dual problem that can then be dealt with separately. In the case
of the LQG problem, full information may be constructed using a Kalman filter,
while in the case of H, control an H, filter is required.

The configuration associated with the full-information problem is shown in Fig-
ure 4.8. In this diagram, the control signal is generated from both the state z and
the disturbance w by

u=[ K, KQ]{:Z} (4.2.3)

We assume that K7 and Ko are causal and linear.

Figure 4.8:  The full-information configuration.

The full-information controller structure defines a LF'T with special features we
will now study. Let us write down the equations that describe the situation so far.
As before, the state x of the generalized plant and the objective z are related to the
inputs w and u by

z(t) = A@)z(t) + Bi(t)w(t) + B2(t)u(t), x(0) =0, (4.2.4)
z(t) = Ci(t)z(t) + D (t)w(t) + Dia(t)u(t). (4.2.5)

In the sequel, the time-dependence will not be shown explicitly. The controller
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input is
=7 (4.2.6)
Yr1 = w 2.
instead of
y = Cox + Doyw + Daou. (427)

Clearly, (4.2.6) is a special case of (4.2.7), since we obtain (4.2.6) by setting

fi] me[3] eee2)

Because Dy; does not have full row rank, the full-information problem does not
satisfy the assumptions required of the generalized plant in Section 4.2.1.

If the plant is open-loop stable, measuring the state is unnecessary, because by
exploiting state reconstruction within the controller via (4.2.4), any control signal
that can be generated by a full-information controller can also be generated by an
open-loop controller acting on w alone. To see how this idea generalizes to the
unstable plant case, we set

u=—Fz+u, (4.2.8)

in which F' is an arbitrary state feedback law that stabilizes the system. This gives

together with
i-| K K| { . } : (4.2.10)

where ’121 = K+ F. Since (4.2.9) describes a stable system, we can always replace
(4.2.10) with an equivalent open-loop control acting on w—this means that we can

set f{\l = 0 without loss of generality. This information redundancy has a number
of interesting consequences, which we will now investigate.
A parametrization of all control signals

In light of the redundant information structure of the full-information configuration,
we expect to be able to generate all possible control signals that could result from

ur, = Lz + Low (4.2.11)

by considering
u=Kiz+ (Ko + U)w, (4.2.12)
in which K = [ K, K, ] as any given full-information controller and U ranges

over the class of causal linear systems.
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To see that this is indeed the case, suppose (4.2.11) is implemented, giving
T = (A + Ble)ajL + (Bl + BQLQ)w, .Z‘(O) =0.

This differential equation describes a causal linear system W mapping w — zj.

Hence
ur, = (LyWp + Lo)w.

Setting x = xy, in (4.2.12) gives
u=(K1Wr+ Ks+U)w.
In order to generate the control signal uy, from (4.2.12), we simply set
U= (L, - K;))Wp+ Ly, — K.

We conclude that all control signals that can be generated by full-information con-
trol laws can also be generated by

K, Ky |I
[Kl K2+U}:f[(|: 01 I2 0:|’U>7

with U ranging over all causal linear systems.

A parametrization of a particular control signal

Suppose we have a full-information controller K = [ K, K, ] that generates the
control signal

x
We would like to find every other full-information controller that generates the same
control signal. Since any two controllers that generate the same control signal must
generate the same closed-loop system w +— z, this will also provide a parametrization
of all controllers that generate a given closed-loop.

Let Z be the solution to the differential equation

&= (A+BK1)Z+ (By + BoKo)w+ Bor,  %(0) =0, (4.2.14)

in which r is given by
r=V(x—7Z),

with V' an arbitrary causal linear system.
Since (0) = x(0), we have r(0) = 0 for any V. As a consequence, ¥ = z and
r =0 for all ¢ > 0. Therefore

u=Kiz+ Kyw-+r



148 LINEAR FRACTIONAL TRANSFORMATIONS

for all ¢ > 0. This gives

x
u o K1 K2 I
BRI o
r = V(z-72), (4.2.16)
in which W is described by
Q.CA = (A + BQKl)Z/L'\+ (Bl + BQKQ)’U],
while W, is described by
3.,‘\: (A+B2K1)§}\—|—BQT
Setting
| K1 Ky | 1
K, = { T W, | W, } (4.2.17)
gives
u = F(K, V) [ fj} } (4.2.18)
= [Ki+2Z K2_ZW1][ZJ]; (4.2.19)
in which
Z=V({I+W,V) " (4.2.20)

The control signal « in (4.2.19) is identical to that resulting from (4.2.13) because
x = Wiw. Hence (4.2.18) generates a class of controllers that produce the same
control signal as (4.2.13). To see that this LFT actually captures them all as V
ranges over all causal linear systems, we observe that there is a one-to-one corre-
spondence between Z and V in (4.2.20). Thus, given an arbitrary Z, we can always
find a V that generates it. This shows that Ky + Z is arbitrary in (4.2.19) as V
varies, and we conclude that all the control laws that have the same control signal
as (4.2.13) are generated by (4.2.18).

A parametrization of all controllers

We will now find a representation formula for all full-information controllers by
combining the parametrization of all control signals with the parametrization of all
controllers that give rise to the same control signal. To carry out this concatenation,
we combine (4.2.15) with

r=V(-2)+Uw.

This gives
u=F(Kaa, [ V U ), (4.2.21)



4.2 LFTS IN CONTROLLER SYNTHESIS 149

where
K, K, | I
K, = I W | -W,
0 I 0
To see that
[ Ly Ly | =Fu(Ku, [V U)) (4.2.22)

generates all full-information control laws, we note that (4.2.22) can always be solved
for V and U because the (1,2)- and (2, 1)-blocks of K, have causal inverses. That
is, there is a one-to-one correspondence between L1, Ly and V, U in (4.2.22).

Internal stability

We conclude this section by briefly mentioning the necessary and sufficient con-
ditions on V' and U in (4.2.22) for an internally-stable closed loop. We suppose
now that all the systems involved are time-invariant in addition to being causal and
linear.

Suppose that K = [ K, K, ] is a fixed internally-stabilizing controller. Since
the internal dynamics of V' are unobservable at the output of the controller (any V'
generates the same control signall), it is necessary that V' be stable in order that
the closed loop be internally stable. Since the parameter U defines an open-loop
map from w to 7, it too must be stable if the closed loop is to be internally stable.
To see that the stability of V' and U is sufficient for internal stability, one needs to
verify that the nine closed-loop transfer function matrices in mapping w, vy and ve
to u, z and y = [ ' w ]/ in Figure 4.6 are stable for any stable [ vV U ] pair.
These matters are considered in more detail in Appendix A.

Main points of the section

1. A large class of controller synthesis problems may be described in
terms of linear fractional transformations involving the controller
K and a generalized plant P.

2. The generalized plant is assumed to have a known state-space re-
alization and the aim is to synthesize an internally-stabilizing con-
troller that satisfies a norm constraint on the closed-loop operator.
We shall require either || Fo(P, K)|2 <y or [|Fe(P, K)|e < . By
dividing P11 and P15 by 7, these problems can always be scaled
so that v = 1.

3. A number of technical assumptions concerning the state-space re-
alization of the generalized plant P are imposed.

4. The problem may be transformed to an equivalent problem in which
D11 = O, D22 = 0 and DQlDél = ] and D/12D12 = . This sim-
plification is made using certain constant matrix LFTs, which are
explained in Section 4.6.
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5. The full-information problem is a feedback problem in which the
controller has access to the state x and to the exogenous input w.
This is a redundant information structure, because we can always
construct a copy of the state from the exogenous input, provided
we know the initial state. A consequence of this redundancy is that
any given control signal (and hence any given closed loop) can be
generated by many controllers.

6. All full-information controllers may be described in terms of a
pair of parameters. The U parameter is used to generate all full-
information control signals, while the V' parameter is used to gen-
erate every controller that gives rise to the same control signal (and
consequently the same closed-loop operator). The closed loop will
be internally stable if and only if: (a) K is stabilizing; (b) U is
stable; and (c¢) V is stable.

4.3 Contractive LFT's

Contractive systems play an important role in the synthesis of controllers that
meet closed-loop norm objectives. The properties of these systems will be used
throughout the remainder of the book.

To begin our analysis of LFTs involving contractive systems, we deduce condi-
tions on the coefficients in the simple first-order fraction

& as+b
& esH+d

3 (4.3.1)

such that the origin-centered unit disc is mapped into itself. If |s| < 1, we seek
conditions on the coefficient set (a, b, ¢,d) such that |£| < 1. Suppose

=l alli]

Then
aleP-ve = [& &)l 4|8
= [s ]}S*JS{ f}7
in which
S:{i Z} and J:[(l) _01}

If the coefficient matrix S has the J-contractive property

S*JS < J, (4.3.2)
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we see that -
&IEP —1& < [s]* - 1.

Thus |s| < 1 implies |¢] < 1. The J-contractive property given in (4.3.2) therefore
implies that the LFT given in (4.3.1) maps the unit disc into itself.

The J-contractive property of S in (4.3.2) induces a similar contractive property
on the P matrix defined in (4.1.5). It follows by direct calculation that

IS _ ] — al* —]¢)* =1 ab —éd }

ba—de b2+ 1—|d?
SRR
H(P*P—I)“ g},

S

and d # 0 is assumed. This shows that

QI

jSHEeY!

since

S*JS<J < P'P<I

If P*P < I in Figure 4.1, it follows that
[ @ u}(P*P—I)[w}go
u
for all w and u. This gives the inequality
21? = |w|* < |ul? = |y/?,

which can be thought of as a dissipation or passivity property.

These ideas can be generalized to include matrix and operator valued LFTs. We
first consider LFTs defined by constant matrices, in which stability is not an issue.
The case of LFTs defined by transfer function matrices will then be tackled.

4.3.1 Constant matrix case

The following theorem considers constant matrix LFTs of the form

D D _
f@ (|: Dll D12 :| ,F> = D11 —+ D12F(I — DQQF) 1D21, (433)
21 22

in which F' and the D;;’s are complex constant matrices with D*D < I.

Theorem 4.3.1 Suppose D and F' are complex matrices such that det(I — Dy F') #
0.
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(a) If |D|| <1, then ||F|| < 1 implies ||Fe(D, F)|| < 1.

(b) If D*D = I, then F*F = I implies F;(D,F)F¢(D,F) = 1I.

(¢) If D*D =1 and ||F¢(D, F)| <1, then D21 has full column rank.
(d) Suppose D*D = I with Doy full row rank.

(i) |Fe(D, F)|| < 1if and only if [|F|| < 1.

(i) If |Fe(D,F)|| < 1 then ||F|| < 1 and Dsy is nonsingular; if Day is
nonsingular and ||F|| < 1, then ||F¢(D, F)|| < 1.

(iii) F*F = I if and only if F; (D, F)Fu(D,F) = 1.
() |F|| > 1 if and only if || Fe(D, F)| > 1.

Remark 4.3.1. Duals for the results in parts (b) and (c¢) may be found by noting
that

F/(D,F) = Dj +D5F*(I—-D5F*)"'Df,
= Fu(D*, F*),

and then applying Theorem 4.3.1 to D* and F*.

z D1 Do w
- , — Fy. 4.3.4
{y} [Dﬂ DQ?][“] ey (434
Note that D*D < I is equivalent to ||z + [|ly[|* < |lw||* + [Jul|? for all w and u,

and that F*F < [ is equivalent to |lu|? < |y||? for all y. Also, || F(D,F)| < 1is
equivalent to ||z]|? — ||wl|? < 0 for all w.

Proof. Let

(a) If [[D] < 1 and [|[F|| < 1, then 2] — [[w]* < [jul]® — [ly|* < 0 for all w.
Hence || Fe(D, F)|| < 1.

(b) Since D*D = I, we may use the partitions of

Dy, D3 D Dz | _
Dy, D3, D31 Do

to prove that

I_]:;(DaF)]:Z(DvF)
= D3 (I —F*D3y) (I — F*F)(I — DyoF) ' Dyy. (4.3.5)

The result is now immediate.

(¢) Immediate from (4.3.5).
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(d) We note that D*D = I yields ||z]|? + |[y]|* = |lw||® + |Ju||?>. Also, since
y = (I — DooF)"'Dojw and Doy has full row rank, it follows that y ranges
over the domain of F' as w ranges over the input space.

(i) («=) is just (a). If [ Fo(D, F)|| < 1, then [ul* — [ly[|* = [|2]|* — [w|* < 0
for all w and hence also for all y, since Do is full row rank. That is, || F|| < 1.
Alternatively, consider (4.3.5).

(ii) Since ||z|| < |lw]| for all w # 0, it follows that ||u|| < ||y|| for all y # 0 and
therefore that ||F'|| < 1. Dy; must be nonsingular by (c). Conversely, if Dg;
is nonsingular, ||F|| < 1 implies |jul| < |ly|| for all y # 0, giving ||z|| < ||w|| for
all w # 0, which is equivalent to || Fp(D, F)|| < 1.

(iii)(=-) This is just (b). («=) This follows from (4.3.5) and the fact that(l —
Doy F)~1 Dy has full row rank.

(iv) (=) Since u = Fy and since ||F|| > 1 there exists a & = Fy such
that |||l > ||7ll- Next, we observe that § may be generated by setting w =
DE (I — Dy F)y, in which (-)f denotes a right inverse. Since ||Z]|? — ||@]|*> =
|l@||* — ||7]|* > 0 we conclude that || F¢(D, F)|| > 1.

(<) Since there exists a @ such that ||Z]| > ||w]||, we conclude that there exists
a § such that ||| > ||7]]. The result now follows because u = Fly. [

4.3.2 Dynamic matrix case

The aim of this section is to generalize the results of Theorem 4.3.1 to the case of
LFTs that involve transfer function matrices. The dynamic case is complicated by
the possibility of cancellation phenomena, stability questions and minimality issues.
Our first result is a generalization of Theorem 4.3.1.

Theorem 4.3.2 Suppose det (I — P33(c0)K (00)) # 0.
(a) If |Plleo <1, then || K||oo <1 implies that || Fe(P, K)||eo < 1.

(b) If P"P =1, then K~ K = I implies that F; (P, K)F,(P,K) = 1.

(¢) If P"P =1 and |Fo(P,K)|c < 1, then P2 (jw) has full column rank for
all real values of w.

(d) Suppose P~ P = I with Poy(jw) full row rank for all real values of w.
(i) | Fe(P, K)|loo <1 if and only if | K||loo < 1.

(i) If || Fo(P, K)|loo < 1 then | K| < 1 and P21(jw) is nonsingular for all
real values of w. If Pay(jw) is nonsingular for all real values of w and
|1 K||oo < 1 then ||Fo(P, K)o < 1.

(iii)) K~ K =1I if and only if F;(P,K)F,(P,K) =1I.
(iv) | K|loo > 1 if and only if | Fe(P, K)o > 1.
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Proof.

(a) The condition det(I — P33 K (c0)) # 0 is required to ensure well-posedness.

If

z _ P11 P12 w

Yy Py Py u |’
then || Pl < 1 implies that ||2]|3 — ||w||3 < ||ull3 — ||y|3. Since u = Ky and
[ K|loo < 1, we have [|ul|3 < [|y]|3, which implies [[2]j3 < [|wl]3.

(b) Since P~ P = I, we may use essentially the same calculations as those used
in the constant case to establish that

I—]:?(P,K)fe(P7K)
= Py (I-K"Py) ‘(I - K K)(I - PyuK) Py,

which completes the proof.

(¢) Immediate from the above identity.

(d) Since P~ P = I, it follows that ||2]|3 — ||w||3 = ||u[|3 — ||y||3. Parts (i), (ii) and
(iii) follow in the same way as their constant counterparts.
(iv) (=) Since ||K||s > 1, there exists a frequency @ such that || K (j©)]|2 > 1
and a 7 such that ||@lly > ||g]l2. Setting @ = P& (I — PyoK(jw))y gives
llallz > ||7ll2 and ||Z]|2 > ||©|l2 and so ||Fe(P, K)|s > 1. (iv) (<) Since
there exists a @ such that ||Z]|2 > ||@||2, we conclude that there exists a ¥
such that ||@]|2 > ||7]|2 and therefore that || K| > 1. [

If PPP = I with P9 (jw) nonsingular for all real values of w, it follows from
Theorem 4.3.2 Part d(ii) that | K|l < 1 if and only if || Fo(P, K)|leo < 1. If we
suppose in addition that P is stable, then we would like to show that the stability
of K is equivalent to the internal stability of F;(P, K).

Theorem 4.3.3 Suppose P € RHo,, P”P = I and that P2_11 € RHoo. The
following are equivalent:

1. There exists a K such that Fo(P,K) is well-posed, internally stable and
[Fe(P, K)o < 1.

2. K € RHoo and || K||oo < 1.
Proof.

(2 = 1): Since ||K|loo <1 and ||Paz|loc <1 it is clear that ||P22K||cc < 1 and that
the closed loop is well-posed. It follows from K € R'H, and the small gain theorem
that the closed loop is internally stable. The fact that ||F¢(P, K)||sx < 1 follows
from Theorem 4.3.2 part (d)(ii).
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(1=2): [|[Fe(P,K)|sc <1= | K|[oc <1 by Theorem 4.3.2 part (d)(ii).

We now prove that K is stable using a Nyquist argument. Let K have ng poles
in the closed-right-half plane (CRHP) and note that none are on the imaginary
axis, since || K|jc < 1. We also note that || Paz]|ec < 1 and || K||cc < 1 implies that
det(I — eP33K) # 0 on the imaginary axis, for all € € [0,1]. The Nyquist contour
Dpr will consist of the imaginary axis from —jR to jR and a semicircular arc of
radius R in the right-half plane. The radius R is large enough to enclose all the
CRHP poles of K and all the CRHP zeros of det(I — eP22K), € € [0,1].

Because P € RHo, and P35, € R'Ho,, internal stability of the LFT is equivalent
to internal stability of the loop defined by

y = Posu + vy, u=Ky+vs.

By the Nyquist theorem (Theorem 2.4.2) and the assumed internal stability of the
LFT, det (I — P22K(S)) makes ng encirclements of the origin as s traverses Dg.
To conclude that ng = 0, we argue that the number of encirclements of the origin
made by det (I — P22 K (s)) must be zero.

Let K = ND ™! be a coprime factorization over RHoo. That is, N and D are in
RHo and [ " D ] has full rank in the closed-right-half plane (see Appendix A
for more details). The CRHP poles of K are the CRHP zeros of det(D). Since

det(I — ePoK(s)) = & (Déi)t(;i;;ms) ) (4.3.6)

and det(] — eP22K (s)) is nonzero s € Dg and € € [0,1], it follows that I'c(s) =
det(D(s) — P3N (s)) is never zero for s € D and € € [0,1]. Because I'c deforms
continuously from det(D(s)) to det(D(s) — P32 N(s)) as e moves from 0 to 1, the
number of encirclements of the origin made by det D(s) is the same as the number
of encirclements of the origin made by det(D(s) — P22N(s)). Since det(D) €
RHo has ng zeros within Dp, it follows that det D(s) and hence also det(D(s) —
Py, N(s)) makes ng encirclements of the origin. By (4.3.6), det(I — Py K(s))
makes no encirclements of the origin as s traverses Dgr. That is, nxg = 0 and we
conclude that K is stable. ]

It is possible to generalize this result to the case that P and K have a specific
number of left half-plane poles.

Lemma 4.3.4 Suppose P has state-space realization

Al B B
PZ| O] 0 Dp
CQ D21 0

Suppose also that:

1. The matriz A has exactly v eigenvalues in the open-left-half plane.
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2. The matriz A — BgDﬁlCl has no eigenvalues in the closed-left-half plane and
3. The matriz A — BlD;ng has no eigenvalues in the closed-left-half plane.

If K has minimal state-space realization

Al B
C|D
and | Po2 K |00 < 1, then Fo(P, K) has exactly r+1 poles in the open-left-half plane

if and only if K has exactly | poles there.

S
- )

Proof. Since the zeros of P15 and Ps; are all in the open-right-half plane, we con-
clude from Lemma 4.1.2 that the open-left-half plane (OLHP) poles of Fy(P, eK)
are the OLHP zeros of det(Ac;(e) — sI), in which

A + EBQDCQ EBQC’
AO=1""pe, 4

After a “Schur complement” calculation, we get:

= det
= det
= det
= det(A — sI)det(A — sI)det(I — ePy K). (4.3.7)

Let Dy be a contour consisting of the imaginary axis from —jwR to jwR and
a semicircular arc of radius R in the left-half plane, with R large enough for the
contour to enclose all the left-half-plane eigenvalues of A and A and all the left-half-
plane poles and zeros of det(I —eP22K), € € [0, 1]. Furthermore, since || P22 K ||oc <
1 and P and K have only a finite number of poles in the left-half plane, we can
choose R such that E(PQQK(S)) < 1 for all s € Dp.

With Dg as indicated above, we argue as follows. Since E(ngK(s)) < 1 for
all s € Dpg, det(I — eP22K) is never zero for s € Dy and € € [0,1]. From (4.3.7)
we see that det(Ay(e) — sI) deforms continuously as € moves from zero to one
without touching the origin. This means that det(Aq(0) —sI) and det(Ag (1) — sI)
make the same number of encirclements of the origin as s traverses Dg. Since
det(A¢(0) — sI) makes r+1 encirclements of the origin, det(Ag (1) — sI) also makes
r+1 encirclements. We conclude that F;(P, K) has r 41 poles in the open-left-half
plane if and only if K has [ poles there. [ |
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Main points of the section

1. If PYP < I, then | F¢(P, K)|loo <1 whenever | K| < 1.

2. If P € RHo, P3' € RHoo and P~P = I, then Fy(P,K) is
internally stable and satisfies || F¢(P, K)||c < 1if and only if K €
RHoo and || Koo < 1. This is sometimes known as “Redheffer’s
theorem”.

3. If |P22K|looc < 1 and there are no left-half-plane pole-zero can-
cellations when Fy(P, K) is formed, then the number of open-left-
half-plane poles in F;(P, K) is the sum of the number of open-left-
half-plane poles of P and K.

4.4 Minimizing the norm of constant LFTs

The task of our controller synthesis theory is to find necessary and sufficient condi-
tions for the existence of stabilizing controllers that satisfy a norm objective on a
linear fractional transformation. This section considers the constant matrix version
of the synthesis problem, which is the first step towards a general synthesis theory.
It is also of some pedagogical value, since the basic structure of the solution ap-
proach carries over to the dynamic case. The need to address stability phenomena
makes the dynamic case more complex.
Consider the constant matrix LFT

D D -
fz({DH D12 }7F>D11+D12F(1D22F) Doy,
21 Dao

in which F' and the D;;’s are complex constant matrices as in (4.3.3). Unless stated
otherwise, assume that (I — DooF') ™1 exists.
We pose the following problem:

D11 Dio
Do Do
value of || F;(D, F')|| and how do we select a constant matrix F' such that
|Fe(D, F)|| is minimized?

Given the matrix D = ] , what is the minimum achievable

The norm is the norm induced by the Euclidean vector norm, i.e., || X|| = 7(X).
If D5 and Dy; are nonsingular, the problem is easily solved by finding an F

such that Fy(D, F ) = 0. Carrying out the necessary rearrangement gives
F = —(D1s — D11 D3 Dao) "' D11 D3t

If D5y is nonsingular and Djs has full column rank, the problem is harder and
the lowest achievable norm may be greater than zero. We may set Q = F(I —
Doy F)~1Dyy and consider the problem of minimizing || D11 + D12Q)||, because there
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is an invertible transformation between @ and F. Once we have a solution @, say,
F may be found by back substitution via

~ 0 I ~
F=F _ _ , .
‘ ([ D211 _D211D22 } Q)
Lemma 4.4.1 Suppose Dis has full column rank and let R = D39 D12.

1. The following are equivalent:

(a) There exists a Q such that

|D11 + D12Q < 3 (4.4.1)
(b)
Di, (I — D1aR™*D3y)Dyy < 21,4 (4.4.2)
(c) )
D D11l <, (4.4.3)

in which 1312 s any matriz such that [ ﬁlg Dy, } is nonsingular and
DTQ{ﬁH D12}:[I 0].

2. If the conditions in Item 1 hold, then Q satisfies (4.4.1) if and only if
Q=011 +61U60q, |U]<7, (4.4.4)

in which
©11 = -R™'D;j,D1y
and ©12 and O21 are matrices which satisfy
0120, = R
05,021 = I—~7°D{,(I - DigR™'Dj,)Dny
I —~y72D% D1y D%, Dy;.

Proof. By completing the square we have

(D11 + D12©)*(D11 + D12©)
= D} (I - D12R™'D}y)D11 + (Q — ©11)*R(Q — ©11)
> D}, (I — DiaR™'D}y)D1;.
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Hence (4.4.2) is necessary and is seen to be sufficient by setting @ = 01;. To
show that (4.4.2) and (4.4.3) are equivalent, we observe that [ Dis D12O1y | is
a unitary matrix, which gives
~ D#
- 5 ][ 05,
= DisD}y + D12R7'Dj,.

To show that (4.4.4) generates all solutions, note that the completion of squares
identity results in

0 621921 - (Q @11) (912) 12 (Q O11) >

for any @ that satisfies (4.4.1). Consequently, there exists a matrix U with the
property U*U < I which satisfies O], (@—611) = ~vU®5; (note that if A*A = B*B
there exists a matrix U with the prol)erty U*U = I such that UA = B; see also
Problem 9.1). Hence y~!(D1; + D12Q) = Fo(X,y~1U), in which

Y H(D11 + D12011) D12012

X = Oy 0

Since X*X = I it follows from Theorem 4.3.1 that ||D11 + DlQC/Q\H < ~ for any
Ul < ~, which is equivalent to (4.4.4). [ |

If D15 is nonsingular and Da; has full row rank, we set Q = Do F (I — DogF') ™1
and apply Lemma 4.4.1 to the problem of minimizing |1 D7, + D3,Q" l. The lowest
achievable value of || F,(D, F)|| is given by || D1, D3, || where Da; is any matrix such

that [ D21 D}, } is nonsingular and

Dy ]a. [1
[Dm ]Dﬂ_{o '
In the case that D5 has full column rank and Ds; has full row rank, we are
faced with the problem of finding @ such that

D11 + D12QDar|| <7, (4.4.5)

in which
Q=F(I — DypF)!

By counsidering ||D11 + (D12Q) D21 || and || D11 + D12(QD21)|| separately, it is clear
that there exists a @ such that (4.4.5) holds only if

7 > max{]| Dy D3, . | D, D I} (4.4.6)
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Surprisingly, it may be proved that

i%f D11 + D12QDs: || = max{||D1; D3, |, | Di, Duill},

which is a special case of a more general result known as Parrott’s theorem. We
supply a proof of this and a formula for all solutions in Chapter 11.> For the
purposes of our work here, it is enough for us to know that there exists an F' such
that (4.4.5) is satisfied for any v > max{||D11 D3 ||, | DisD11]|}-

Main point of the section

We can solve the constant matrix optimization problem ming | Fp(D, F)|| and we
can find all F’s that satisfy || F¢(D, F')|| <. This solves the synthesis problem for
LFTs defined by constant matrices.

4.5 Simplifying constant LFT's

Consider the LFT

D D _
ff (|: D11 D12 :| ,F> = D11 —+ D12F(I — DQQF) 1D21, (451)
21 22

in which F' and the D;;’s are complex constant matrices as in (4.3.3). Unless stated
otherwise, we will assume that (I — DooF)~! exists.

The aim of this section is to show that the LFT may be reduced to a simpler
LFT. Firstly, we will show that D5 and Dy can be orthogonalized using a simple
scaling on F'. Secondly, we establish that Dss can be absorbed into F' using a simple
change of variable. This means that we will be able to assume Dy = 0 without
loss of generality. Finally, we will show that when considering the minimization of
|Fe(D, F)||, we may without loss of generality assume that D17 = 0.

Taken together, these steps may be used to show that

|Fe(D, F)|| < v & ||Fo(D, F)|| <,
in which

5 ﬁf2ﬁ12 =1 and B21ﬁ§1 = 1.

b K Dia
Doy 0

5The reader may like to pursue the following argument. From (4.4.4), it follows that
D11+ D12QDoar|| < v & (|67, (QD21 — ©11)05,' | < 7,

in which ©;; are as defined in Lemma 4.4.1. Applying Lemma 4.4.1 to ||511 + 512(@1_2162)*\\, in
which D11 = —(@;216116511)* and Dis = (D21®2711)"‘7 we may obtain necessary and sufficient
conditions for the existence of @ satisfying ||D11 + D12QD21|] < v and a characterization of all
such Q. It requires some considerable effort, however, to deduce that the condition obtained by
this route is just (4.4.6).
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The value of this observation lies in the fact that ]—'e(ﬁ, ﬁ) — DyyFDy and
|Fe(D, F)|| <~ if and only if || F|| < 7.
Scaling D15 and Dy

If D15 and D57 have full column and row rank respectively, then there exist invertible
scaling matrices S7 and S5 such that

Dig = D138y and Doy = SyDa

satisfy ﬁi‘Qﬁu = 1,, and 152113;1 = I,. These scaling matrices may be found from
singular value decompositions of D15 and Ds;. The scale factors may be absorbed
into the LFT by defining

Doy = S9D538, and F = S;7'FS;H,
since this results in
A(| oy 2 ]r)
= Dy + D1oF(I — DyoF) ™' Doy
Dyy + D1oSTYFS; (I — S2D908, ST FSy )" Dy
= Du+ D1oF(I — Dy F)™' Doy

Da1 Doy
This shows that given the LFT Fy Du Dy
D1 Doy
Fol| B Do
D1 Do

Setting Dyy =0

} , F) , there is an equivalent LF'T

,ﬁ) such that D%, D15 = I,,, and Dy D}, = I,

We will now show that the Dss term may always be set to zero by a change of
controller variable. Returning to (4.5.1), we observe that by setting

F = F(I — Dy F)™,

D11 Dlg Dll D12 n
f ’F = f ’F .
(Low ol == ([ 20 ] )
Since there is a one-to-one correspondence between F' and Fif (I — Dy F) is non-

D1 Dig
Dy Doy

study of Fy ([ g“ DOH ] F)
21

we have

singular, any study of Fy <[ } ,F) may be replaced by an equivalent
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Removing the D;; term

The aim of this section is to show how a LFT with D1; # 0 may be replaced with
an equivalent LFT with a zero Di; term. The equivalence is in terms of the two
LFTs satisfying certain norm requirements.

The procedure requires two steps. In the first, we introduce a loop shifting
transformation that minimizes the size of the Dq; entry. The second step replaces
the LF'T with the nonzero D;; entry with an equivalent LF'T in which this term is
Z€ro.

Consider Figure 4.9, in which F is a loop-shifting transformation and K is some
(possibly dynamic) controller. It follows by calculation that

z w
D
Y u @
F
\ F \
: K O—
K |

_____________________

Figure 4.9: Minimizing the norm of Dy;.

Fu(D,K)

= Dy +DpK(I — DyyK) 'Dyy
— Dy + Dyo(K + F)(I — Dyy(K + F)) "' Dy,

in which K=K —F
= Dy + DK + F)(I — (I — Doy F) ' Dy K) ™ (I — Dya F) ™' Dy
= (D11 +DpoF(I- D22F)71D21)

+ Dio(I — FDy) ' K(I — (I — DyoF) ' Dy K) 7!
X (I — DyoF) " Dy
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% ([ ( Fo(D, F) Dis(I — FDoy)~ ! }K>

[7D22F)71D21 (I*DQQF)ilDQQ
Dy Dy >
= F = ~ K | .
¢ ({ Dy Do } >
This shows that (D, K) can be replaced by Fi(D,K) because K and K are

interchangeable via K = K — F. -
Suppose that F' has been selected to minimize || D11 ||; as we have already shown,

ming || D1y = max(||D11ﬁ§1||, ||ﬁ}‘2D11||). The removal of D;; may now be accom-
plished by introducing the matrix
©11 O12
C’-‘) =
[ ©21 O2
—17 A 27 N* \1/2
-1 v Dn (I =v7*D11D7y)
— b Tu 4.5.2
[ (I =~ 2D11Dll)1/2 v~ 'Df ( )

in Figure 4.10, which has the property ©0* = y~2I for any v > ||D11]|.%

2 w
- e
)

w z
— > F———

Figure 4.10: The removal of Dq;.

2 8
—_

It follows from the composition formula (4.1.9) that the matrix mapping [

to [ ; ] is given by

B o 0 = 7(©,D11) ©12(I—D11©23) "' D1
D21(I—©22D11)"'©21  Daa+D21022(I—D11022) ' D12

which has the required property that ZA)H = 0.

6In order to establish this property, the square root of A must satisfy (.'41/2)*141/2 = I rather
than A/2A1/2 = J. By invoking the singular value decomposition (of A) it may be proved that
(I —AA*)Y/2A = A(] — A*A)1/2,



164 LINEAR FRACTIONAL TRANSFORMATIONS

Since ©0* = v~ 21, it follows from Theorem 4.3.1 that || F;(D, K)|| < v if and
only if || F,(D, K)| <~v~1, for any v > ||D11]]. Thus the two LFTs (D, K) and
Fi(D, K) are equivalent in terms of satisfying an upper bound on their respective
norms.

Main points of the section

We have discovered several properties of the constant LFT

D11 Dis
Fi JF .
¢ <{ D21 Do
1. There is no loss of generality in assuming that Dj3D12 = I,,, and

D21 D3, = I, in the case that D;p has full column rank and Ds;
has full row rank. This is proved by a simple scaling argument.

2. There is no loss of generality in assuming that Do = 0. This
property may be established by a simple loop shifting procedure.

3. When analyzing the problem |7y (D, F)|| < -, we may consider
an equivalent problem in which the Dj;i-term is zero, provided -~y
satisfies the necessary condition given in (4.4.6). The equivalence
is in terms of the satisfaction of a norm constraint. We warn the
reader that the transformations used to remove D11 do not preserve
traceF; (D, F)Fy(D, F)" and therefore cannot be used in the case of
2-norm optimization problems.

4.6 Simplifying the generalized plant

The aim of this section is to combine the results of Sections 4.5 into a loop shift-
ing and scaling procedure for generalized plant descriptions in controller synthesis
problems. As we have already mentioned, our future theoretical development is
simplified by the assumption that Di;; = 0 and Dy = 0. This assumption also
leads to a major reduction in the complexity of all the central formulas for H., and
LQG control. A further simplification is achieved by scaling the problem so that
D15 and D3, are parts of orthogonal matrices.
Suppose we are given a generalized plant described by

A| B B
PZ| C | Dy Dy (4.6.1)
CY2 D21 D22

and that the state-space data satisfies the following assumptions:
1. (A, Bg, C9) is stabilizable and detectable.
2. rank(D12) = m and rank(Da1) = q.
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3. rank { jchl_ A 5?22 ] =m + n for all real w.
4. rank [ ]WIC; 4 Bfll ] = g+ n for all real w.

The aim of the general scaling and loop shifting procedure is to replace (4.6.1)
with an equivalent problem of the form

A| Bl B
P=|C | 0 Dyl (4.6.2)
02 D21 0

in which the data satisfies the following similar assumptions:

1. (A, By, () is stabilizable and detectable.

2. DiyDig = I, and Dy D3, = I,

3. rank ]wIA— A _AB2 =m + n for all real w.
Ch D1

4. rank JWIA_ A _ABl = q + n for all real w.
Co Dy,

The scaling and loop shifting procedure may be broken down into four steps. In
the fifth step a controller is designed for the derived plant. The controller for the
original problem is then found by back substitution in the final step.

Step 1

The purpose of this step is to minimize || Dy ||. Suppose F is a constant gain matrix
to be found and that P is given by (4.6.1). Now consider Figure 4.9 and suppose
that the constant D matrix is replaced by the transfer function matrix P. The

resulting setup appears in Figure 4.11. If
uz | _ | P Py Y2
Y Py Py U

with

u=Fy+a, (4.6.3)
then
u P,y Py | Py y
[ ;] = F Py Py | Py | F { ;]
Py Py | Py
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Figure 4.11: The loop transformation procedure.

Eliminating u from

Az + Bly2 + BQU

Chix + D11y2 + Di2u

Cox + Da1ya + Dagu
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1:311 1:312 )
Py Py |

using (4.6.3) yields a realization of P = {

A+BoF(I—DyaF) ™10y \ Bi+BoF(I—D32F) " Dy; Bo(I—FDays)™

P = C1+D12F(I—D2F)"'Cy | D11+D12F(I—D22F) ' Doy D1p(I—FDag3) ™!
i (I-D3yF)~1Cy (I—D33F) "' Doy (I—D22F)"'Das
(4.6.4)
" A| B B
= C:H 1:711 1:712
L C2 | D21 Do

Observing that Dy = F¢(D, F), we select an F such that || Dy || = v where
Yo = max{|| D, D, [[D11 D[]}

(The construction of such an F is considered in detail in Chapter 11—such an F
can also be constructed using Lemma 4.4.1). From now on, we suppose that such
an F' has been found and implemented.

By considering the point s = oo, we see that v > 7y is necessary for the existence
of K such that || Fp(P, K)| s~ < . Also notice that || P11||2 is infinite unless vy = 0.
It follows that N N

max{||Diy D1, [D11D3; ||} = 0

is necessary for the existence of a time-invariant state-space system K such that
| Fe(P, K)||2 < co. Consequently, D1; = 0 whenever a finite 2-norm solution exists.
Since the transformation of Step 2 does not preserve the 2-norm, it must be omitted
in the case of 2-norm optimization.

Step 2

(Infinity norm optimization only) In this step, we select the orthogonal ©-matrix
in Figures 4.10 and 4.11 that enforces F;(©, D11) = 0. To do this, we define

{ ©11 O12 }
©21 O

—17 A2  D* \1/2
-1 v D (I =~v~*D11D7y)

- o e . (4.6.5

Y [ —(I—~ 2D11D11)1/2 N 1D11 ( )
which satisfies ©0* = 72T and ||©a|s < 7! for all ¥ > vo. Since ||y1]]3 —
2 Ju]l3 = Y72 |luzl|3 — ||ly2l|3 (see Figure 4.11 for a definition of the signals), we
conclude that || Fy(P, K)|s < 77! if and only if || Fo(P, K)|lso < 7. Since O is
a constant matrix with ||©a]l2 < 77!, the small gain theorem may be used to
show that F;(P, K) is internally stable if and only if 7,(P, K) is. From this we
conclude that P and P describe equivalent problems from an internal stability point
of view and from the perspective of satisfying an infinite norm condition. By direct
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computation, P= Ce(©, P) is given by the realization:

A+B1022(I-D11022) ' | B1(I-©22D11) 1021 B2+ B10©22(I—D11022) ' D12
©12(I-D11022) ' Cy 0 ©12(I—D11022) ' D12
Co+D21022(I—D11022) " 'C1 | Da1(I—©22D11) 'O21  D22+D21022(I—D11022) ' D12

il B B
= 61 0 D12 ; (4'6'6)
CQ -D21 D22

which has the desired property 1311 =0.

Step 3

In this step, we eliminate .522 by connecting *.522 in parallel with 1322 as illustrated
in Figure 4.11.

Step 4

Select scaling matrices S7 and S5 so that 1312 = D155 satisfies ﬁﬁﬁlg = 1I,,, and
Doy = S55Dg; satisfies Doy D3 = I,. The scaled generalized regulator problem data
becomes

Al B B
P=1 0| 0 Dyl (4.6.7)
CQ D21 0

in which Eg = ByS; and 6’2 = S5C5. This completes the replacement of (4.6.1)
with (4.6.2).

Step 5

Compute K for the scaled generalized regulator problem described by (4.6.7).
Chapters 5 to 8 will supply all the details about the construction of K.

Step 6

Reverse the loop shifting and scaling to obtain the controller K to be used with the
original problem characterized by P in (4.6.1). It follows from Figure 4.11 that

F 1 -
K_fg(|: I _ﬁ22:|,SQK51>.

This is the end of the generalized regulator problem replacement and solution pro-
cedure.

Before leaving this section, we have to ensure that we do not destroy the proper-
ties of the original data given in (4.6.1) while passing to the derived problem given in
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(4.6.2) and (4.6.7). We have to show that provided -~ is big enough, the realization
for P in (4.6.1) satisfies assumptions in Items 1 to 4 if and only if the realization
for P given in (4.6.2) satisfies the assumptions in Items 1 to 4. In our analysis we

treat the transformation between P and P first, and the transformation between
P and P second.

Lemma 4.6.1 The generalized requlator assumptions in Items 1 to 4 apply to re-
alization (4.6.1) if and only if they apply to realization (4.6.4).

Proof. The assumption in Item 1 follows from the fact that stabilizability and
detectability are invariant under output feedback. The assumption in Item 2 is
immediate from (4.6.4) since (I — FDa3)~! exists. The assumptions in Items 3 and
4 are preserved because

01 D12 o Ol D12 F(I — D22F)7102 (I — FD22)71

and

{sI—A —Bl}[I —BQF(I—DQQF)*HSI—A —Bl]

Cs Doy 0 (I — Dy F)~1 Cy Dy, u

Lemma 4.6.2 Suppose there exists an internally-stabilizing controller such that
| Fe(P, K)||oo <. Then:

1. (121\, B, 6'2) is stabilizable and detectable.

2. rank (Dy3) = m < rank (Dy3) = m, and rank (Day) = ¢ < rank (D) = q.

3.
rank { jwl = A =B, } = rank ijA_ A _ABQ
Cq Dqs Cy Dis
4. L
jw] —A —Bl o ]wI —A —Bl
rank { Oy Doy } = rank l 62 ﬁQl
Proof.

Item 1: Since ||O@a2]]2 < y71, it follows from the small gain theorem that ]—'Z(IB,K)

is internally stable. Since K is an internally-stabilizing controller for 13, it follows
that (A, Bs, Cs) is stabilizable and detectable.

Item 2: This follows from the invertibility of ©15 and O, equation (4.6.4) and
equation (4.6.6).

Items 3 and 4: These follow from Lemma 4.6.1 and the identities:

sl — A\ —B\g
Ch Dy,

N I —31922(1 - D11@22)_1 SI; A thSl
|0 O12(I — D11092)7* Ci D125
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and

sl — A\ _gl
Cs Doy

o S[ —_A —El _I B Q
N S2Cy  S2D9 O92(I — D11022)7'Cy (I —O92D11)7'0y; |~ B

Finally, we remark that the loop shifting and scaling transformations described
in this section may be extended to the case of time-varying systems. For details,
see [130].

Main points of the section

1. The theory and equations associated with controller synthesis are
greatly simplified when D17 = 0 and Doy = 0.
2. The condition v > max(|[D}yD11]|, || D11.D3, ||) is necessary for the

existence of K such that || F¢(P,K)|lec < 7. In this case, the
problem of finding K such that || F¢(P, K)||c < v may be replaced
by an equivalent problem of the form (4.6.2).

3. The condition max{|| D}, D11, || D11 D4 ||} = 0 is necessary for the
existence of K such that ||F¢(P,K)|2 < co. In this case, the
problem of finding K such that || F;(P, K)|2 < v may be replaced
by an equivalent problem of the form (4.6.2).

4. The problem replacement procedure involves several changes of
variable, but is otherwise straightforward.

5. If a solution to the problem described by (4.6.1) and assumptions
in Items 1 to 4 exists, then a solution to the problem described by

(4.6.2) exists also. Under these conditions, assumptions in Ttems 1

to 4 are satisfied.

4.7 Notes and References

Linear fractional or bilinear transformations have a long history in complex analysis.
Reviews of this material can be found in many books that deal with conformal
mapping theory. A particularly good treatment of the classical properties of simple
bilinear transformations of the form

as+b

g:cs—i—d’

in which (a, b, ¢,d) are numbers, can be found in Nevanlinna and Paatero [157].
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Our main references for operator valued linear fractional transformations are
the papers of Redheffer [171, 170]. Reference [171] contains a number of interesting
results pertaining to the transformation

f(z)=u+rz(l —wz)'s,

in which (u, 7, s, w, z) are operators defined on a Hilbert space and such that

el

This paper also deals with the properties of the so called “star product”, which is of
great importance to us here. (It is, in essence, identical to the composition operator
Ce(+,+).) In his earlier paper [170], Redheffer studies linear fractional transformations
of the form

E=U+SK(I-WK) 'R

in the context of Riccati equations. The objects (U, R, S, W, Z) are all nxn complex
matrices that are functions of the variables (z,y) with y real. Redheffer’s Theorem
IV is of some interest:

“Let U, R, S, W be complex n X n matrices such that S or R is non-
singular and such that the matrix

S U
W R
is dissipative (i.e., has norm < 1). Then the matrix

U+SK(I-WK) 'R

is dissipative whenever K is dissipative. If the first matrix is not only
dissipative but unitary, then the second is unitary for all unitary K.”

There is a nice treatment of this type of result (in the unitary case) in Young’s
book [222].

Linear fractional transformations have been used in circuits and systems theory
for many decades. Examples that are of direct relevance to us can be found in
Safonov [177] and Zames [225, 226] in the context of conic sector stability theory
and Doyle [52] who popularized their use in the Ho, control. Another source for the
use of linear fractional transformations in He, is Safonov et at [181]. This paper
also discusses the use of bilinear transformations in the design of controllers that
ensure that a certain closed-loop operator lies in a sector [a,b]. Zames [225, 226]
shows that the transformation

o= () (24,

is a bijective map between T in sector [a,b] and ||S|lec < 1. If it is possible to find
a controller K in the figure below
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f S }

1« - I wi
— = le——
wy? T L )
L I
P
— -
K

such that ||S]|ec <1, then T € sector [a,b]. The linear fractional transformation =
is given by
a/b+1 2/b
== | ()1 () 1],
I 0

A summary of some of the results in this chapter can be found in Glover [74],
who used linear fractional transformations in his work on model reduction. The
loop shifting trick used to remove D;; first appeared in Safonov, Limebeer and
Chiang [183, 184], although the most comprehensive treatment of this material is
contained in Glover et al [78]. Parrott’s theorem [160], which plays a key role in the
loop shifting argument, can be used to solve the generalized regulator problem (see
Chapter 11). The books of Power [168] and Young [222] contain a clear and highly
readable treatment of Parrott’s theorem. Lemma 4.1.2, which pins down the can-
cellation locations in linear fractional transformations, first appeared in Limebeer
and Hung[134].

4.8 Problems

Unless stated otherwise, the following assumptions may be made in connection with
each of the problems:

1. Every transfer function matrix is an element of RL.
2. Every indicated inverse exists.

3. Every indicated LFT is well-posed.
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Problem 4.1.

1. Determine linear fractional transformations w = %is that: (a) map the
imaginary axis in the s-plane to the circle [1/(1 —w)| =+ in the w-plane; (b)
map the imaginary axis in the s-plane to the circle |w/(1 — w)| = 7 in the
w-plane.

2. Withg = ﬁ, determine a stabilizing controller k such that ¢ = gk satisfies:
(a) 11/(1 - q(jw))| = 7 for all w; (b) [q(jw)/(1 — q(jw))| = 7 for all w. Tn
each case, determine the greatest lower bound on the values of « for which a
solution exists.

3. Repeat Exercise 2(a) for the plant g = ﬁ

encirclements of the +1 point are required for closed-loop stability.

Note that in this case two

Py Py
Py Py
column rank for almost all s and P has full row rank for almost all s, show that
Fo(P,K,) = Fo(P, K2) implies that K1 = K.

Problem 4.2. Consider the LFT F, ([ } 7K'). If P15 has full

Problem 4.3. If R = F;(P, K), show that K = F,(P~', R). The “upper” LFT
Fu(P, K) is defined by
Fu(P,K) = Py + Py K(I — P11 K) ' Py,
in which p P
pol wn)

Problem 4.4. Suppose Z = (I + S)(I — S)~ !, in which (I — S)~! is assumed to
exist for all R.(s) > 0. Show that

en((4 1]9)

Problem 4.5. Suppose P and © are related by

{ 01 O ]

{ P12—P11P2_11P22 P11P2_11 }
©; Oy

_P2_11P22 P2_11
[ Py Py o 1 1"
1. Verify that
Fi(P,K)= (011K + 013)(05 K + Oy)~ 1.

2. Show that P~ P = [ if and only if @~ JO = J, where J = [ é _OI ]
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3. If P has realization

A| B B
PZ | C | Dy Di |,
Cy | D1 Daa

show that ® has realization
A—BiD;'Cy | By—BiDy'Dyy  BiDy!

=] - D11D3'Cy | D1g — D11 D3' Doy Dyy Dyt
—D5'Cy —D5 ' Doy Dy}

Problem 4.6. Show that X satisfies the fixed point property
X =(-DX -C)BX +A)~!

if and only if it satisfies the Riccati equation
0=DX+ XA+ XBX+C.

Problem 4.7. Consider the interconnection

z w
I I
] ox
ro | ® 4_ v
in which
Py Py K1 Ko P11 x
P = K = P =
[Pgl 1:’22:|7 [K21 K22:|’ |: * *:l
Show that
2| _ [ Fo(P,Fo(K, ®11)) = w
ro| * * v
where “*” denotes an irrelevant entry.

Problem 4.8. This problem is intended to illustrate various properties of the
inverses of LFTs of the type illustrated below:
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2 w
-~ [fe——
P
Yy u
v K T
_— —————

1. Find general formula for the mapping { 1;} ] — [ i } (i.e., verify the com-

position formula in equation (4.1.8)).
2. If P15 and P are invertible, show that pP* given by

—~(Pya — P11 Py Pyy) ' Py Pyl (P1y — P11 P Poy) ™!
(P21 — Py Py Pyy) ™! —P5' Pyy(P1y — P11 Py Poy) ™!

inverts P in the sense that C,(P,P¥) = [ 0 1 } Compare P* with a

I 0

partitioned formula for P71,
3. If PP~ = I with P15 and P3; invertible, show that

P#:[PQNz P1~2]

P; Py
Problem 4.9.  Consider the set P of nonsingular 2 x 2 block transfer function
matrices Pu P , in which P15 and P5; are also nonsingular for almost all
Py Py

values of s. The composition operator Cy(-,-) is a binary operation on P defined as
the 2 x 2 block matrix mapping [ w’ v’ ]/ =2 ]/ in the figure below:

. w
-~ le————
P,
Y u
v P, r
R — >

1. If Py and Ps are elements of P, show that C¢(P1, Ps) is also an element of
P; this is the closure property of P with respect to Cy(,-).
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2. If Py, P> and P3 are elements of P, show that
Co(Ce(Py, P3), P3) = Cy(P1,Co(Pa, P3)),

which is the associativity property.
3. Show there exists an identity element Py € P such that P = C¢(P, Py) and
P =C(Cy(P,,P).
4. Show that for every element in P there exists an inverse P# € P such that
= Cy(P*,P) and P; = Cy(P, P%).
5. Conclude that P is a group with respect to Cy(-,-).
In the above calculations, assume that all the LFTs are well-posed. By including an
[ Py Py

additional condition like ] H < 1, well-posedness would be assured.
Py Py

Problem 4.10. Suppose G = D + C(sI — A)™'B and w = asi's, in which

ad — be # 0 and cA + dI is nonsingular. A
1. Show that G(s) = G(w), in which G has realization (A, B, C, D) given by

= (aA+bI)(cA+dl)™*
(cA+dl)~!

= (ad —bc)C(cA+dI)™*

= D—cC(cA+dI) 'B.

o O W

(Hint: write G = F¢(P,1/s) in which P = [ g i } and 1/s = Fo(R,1/w)

for some matrix R and use the composition formula for LFTs)
2. Show that (A, C) is observable if and only if (A, C) is observable and that
(4, B) is controllable if and only if (A, B) is controllable.

Problem 4.11. Suppose we seek a stabilizing controller that satisfies

Wi(I-GK)~ <1
WK (I — GK

1. Show that the generalized plant for this problem is

Wi | WG
P = 0 W,
I G
2. If N A A
5 B s 1 B s 2 By
a|op| wmela o] w=[@ n
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show that
A, 0 BC| By BiD
0 A, 0 0 Bs
p 0 O A 0 B
¢, 0 DC|Dy DD
0 Oy 0 0 Do
0 O C I D

Problem 4.12. Consider the block diagram given below:

d
F
Gq
r U Y
— R PO—— G,
K o—r
Show that
Gy 0 0| G
y -Gg I 0| -Gy
0 0 0 I
r—y | =F 7 ool o ,[F R K])
Y 0O I 0| 0
G, 0 I| G

177

Problem 4.13. If P € RHy and K € RHo such that |PoaK||o < 1, show

that F(P, K) € RHo.

Problem 4.14. Consider the LFT described by Fy(D, f), in which

1 0]0
D=]0 0]1
0 10

1. Show that D'D = 1.

2. Show that |f| < 1 does not imply that ||F¢(D, f)| < 1.
3. Show that |f| > 1 does imply that ||F¢(D, f)|| > 1.
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Problem 4.15. Suppose
I X
D=|0|1
I X

Show that there exists an F' such that || F¢(D, F)|| < yifand only if v > 1/4/a(I + X X*).
Determine an F' such that || F,(D, F)|| = 1/y/a(I + X X*).
Problem 4.16. Suppose G = D + C(s] — A)™'B and v > ||D||.
1. Show that ||G||o < 7 if and only if |G|« < 7, in which G = v (0,77 1Q)
and
o_ 7_1D (I—’}/_QDD/)I/Q
- 7([7,Y72D/D)1/2 ,Yle/ .

2. Find a realization of G and show that it has the form

A|B
clo |
3. Show that A is asymptotically stable and ||G||o < 7 if and only if A asymp-
totically stable and ||G|o < 7-

G

A
c

Problem 4.17. Suppose G = has all its poles in the open unit disc.

' H[ 5 4 ]H < 1, show that ||Gloc < 1; in this case || -[loc = supg 51 |G(re’)]|

Problem 4.18. Use the bilinear transformation z = (14 s)/(1 — s) to derive the
discrete bounded real equations. R R L

(Hint: show that if G(2) = D+C(2I — A)"'B, then G(s) = D+ C(s] — A)"'B
where

A = I+47Y(A-1)
B = V2(I+A)'B
C = V20(I+A)7!
D

= D-C(I+A)7'B
Then substitute into the continuous bounded real equations.)

Problem 4.19. Suppose G(z) has all its poles in the open unit disc. If ||G||oc =
D C | - 1
B A ||~

(Hint: use the discrete bounded real equations derived in the previous question.)

supy >, [|G(re’)|| < 1, show that it has a realization such that




5
LQG Control

5.1 Introduction

The aim of this chapter is to clarify the connections between H., optimal control
and its Linear Quadratic Gaussian (LQG) counterpart. Although there are many
excellent texts on LQG theory, we will re-examine this topic to emphasize points of
contact between the two theories and to make comparisons between the structure
of the two types of controller. It also allows us to develop some ideas, such as the
parametrization of all controllers achieving prescribed performance objectives, in a
familiar environment. Our solution of the LQG control problem follows standard
lines of argument, exploiting the famous separation principle.

In order to establish the structural aspects of the solution before tackling any
internal stability questions, we consider the finite-horizon optimization problem
first. The infinite-horizon case can then be considered as a limiting case of the
finite-horizon solution.

The finite-horizon problem

We consider the plant described by the time-varying state-space system

#(t) = A@®)z(t)+ Bi(Hw(t) + Ba(u(t),  z(0) =0, (5.1.1)
At) = Cy(t)z(t) + Dia(t)u(t) (5.1.2)
y(t) = Colya(t) + D (Hyw(?). (5.1.3)

The time dependence of the matrices and signals will not always be shown explicitly
in what follows. We assume that u is an m-vector of control inputs, w is an I-
vector of external disturbance inputs, z is a p-vector of objectives, y is a g-vector

179
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of controller inputs (measurements) and x is the n-dimensional state vector. It is
assumed that p > m, that [ > ¢ and also that D5 and Doy satisfy

D/12D12 = Im and D21D/21 = Iq (514)

for all times of interest. This simplified plant may be considered instead of (4.2.1) by
assuming that the loop shifting and scaling transformations described in Section 4.6
have been carried out.

We seek a causal, linear controller v = Ky such that the finite-horizon 2-norm
of the closed-loop system R,,, mapping w to z is minimized. Since

1T :
2,[0,T =& T/; Z'zdt y

we are seeking a controller that minimizes the average RMS power in z when the
input w is a unit intensity white noise.

We will also describe all controllers that satisfy ||R.wll2,0,77 < 7, when they
exist—i.e., when -y is not less than the minimum.

[ Rz

The infinite-horizon problem

In the infinite-horizon problem, we assume that the plant description (5.1.1) to
(5.1.3) is time-invariant and we seek an internally-stabilizing, causal, linear and
time-invariant controller v = Ky that minimizes

e :
S F - ’
HszHg—TlEI;OS T/o Zzdtp .

In order that an internally-stabilizing controller exists, it is necessary to assume
that (A, Bz) is stabilizable and that (A, Cy) is detectable (see Appendix A). We
also assume that (5.1.4) holds and that

rank [ 4 E,ZWI .DB]22 } = n+m for all real w (5.1.5)
A— ]wI Bl

rank = n+gq for all real w. (5.1.6)
Cs Doy

The reasons for these assumptions will become apparent during the solution process.
We will also describe all internally-stabilizing, causal, linear and time-invariant
controllers that satisfy ||R.,l|l2 < 7.

Measurement feedback and full information

The LQG control problem may be tackled in several separate steps, because any
measurement feedback controller is also a full-information controller:

u = Ky
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= [ KCy KDZl}[fZ]

Therefore, as a stepping stone to the solution of the measurement feedback problem,
we look for a control law based on full information that minimizes || R..||2,[0,7) or
[ Rzwll2-

The Kalman filter allows us to reconstruct usable state and disturbance esti-
mates from the measurements (5.1.3), enabling us to solve the measurement feed-
back synthesis problem, which is our main interest.

5.2 Full information

Consider the plant described by (5.1.1) and (5.1.2). In the finite-horizon case, we
seek a causal, linear, full-information controller

u=[ K: K> ] [ v } (5.2.1)

w

that minimizes ||R.y||2,j0,77- The system R, mapping w to z is shown in block
diagram form in Figure 5.1.

Figure 5.1: The full-information configuration.

In the infinite-horizon case, we seek an internally-stabilizing, causal, linear, time-
invariant controller of the form (5.2.1) that minimizes ||R.]|2.

If z is given by (5.1.2), then 2’z contains cross terms between u and z that
complicate the formulas. To avoid this, we consider the simplified system

& = Ax+ Byw+ Bau, z(0) =0 (5.2.2)

. [ gz } (5.2.3)
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in which D'D = I. This gives 2’2 = 2/C’Cx + v'u. Considering the simplified
objective (5.2.3) does not result in a loss of generality, because (5.1.2) can be reduced
to the form of (5.2.3) by a standard change of control variable (which is given by
@ = u+ D7,C1x). This extension is considered in Section 5.2.3.

5.2.1 The finite-horizon case

Consider the time-varying linear system described by (5.2.2) and (5.2.3). We seek

to minimize
2 L[
_ !
||sz||2,[07T] = ¢ T /0 et

1 T
£ —/ 2'C'Cx +v'udt
T Jo

over the class of causal, linear, full-information controllers.
From standard texts on LQG theory, the solution to this problem is the memo-
ryless, linear, state-feedback controller

u = —B}Pr, (5.2.4)
in which P is the solution to the Riccati equation
—P=PA+AP—-PBB,P+C'C,  P(T)=0. (5.2.5)

Before proving that this is indeed the solution, we consider a closely related
deterministic problem.

LQ optimal control

Consider the problem of minimizing the cost function
T
Ji(K, 2, T,A) = / 2'zdr + 2 (T)Ax(T), (5.2.6)
t

in which A > 0 and z is given by

& = Az + Bau, x(t) = xy,

[

with D’D = I for all times of interest. The minimization is over the class of causal,
linear, full-information controllers. If the Riccati equation

—P=PA+AP—-PBB,P+C'C,  P(T)=A, (5.2.7)
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has a solution on [¢,T], we obtain
Jt(Ka Lty Ta A) - I;P(t)xt

T
= / 22+ %(m’Pm) dr, since P(T) = A,
¢

T
/ 2'C'Cx + u'u+ (Ax + Byu)' Pz + ' P(Az + Bou) + o' Px dr
¢

T
= / uw'u+u'ByPx + 2 PBou + ' PBy By P dr, by (5.2.7),
¢

T
/ (u+ B4Pz) (u+ By Px)dr.
t
This calculation is known as “completing the square” and it shows that
T
Ji(K, 2, T, A) = 2, P(t)z; + / (u+ BYPz) (u+ ByPz)dr (5.2.8)
t

for any K. It is now immediate that the optimal controller K™ is

% x
ut = [ —BLP 0 } { w }
= -B}Px,
and the optimal cost is
Jt(K*7It,T7A) = x;P(t)xt (529)

Non-negativity of P: Since J;(K,x¢, T,A) > 0 for any K and any x;, we must
have x} P(t)x; > 0 for any x;. Hence P(t) > 0 for all ¢ < T for which a solution
exists.

Existence of P: We now show that a solution to the Riccati equation (5.2.7)
always exists by showing that P(t) is bounded above for any finite ¢ < T. This
shows that the Riccati equation has no finite escape time.!
Since K™ is minimizing, its associated cost must not exceed that of the zero
controller. That is,
‘T;P(t)xt Jt(K*aztaTa A)
>~ Jt(07xt7T7A)

= 21302 + 7 (T)AZ(T), (5.2.10)

A

LA differential equation is said to have a finite escape time if the solution is unbounded on a
finite time interval.
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in which

= A.f?, .i(t) = T,
= (2.

K

IS 3

By Theorem 3.1.1, the right-hand side of (5.2.10) is finite for any ¢ < T and any ;.
Indeed, it is equal to z}(Q(t) + ®'(T,t)A®(T,t))z, in which Q is the observability
gramian satisfying the linear differential equation

—Q=QA+AQ+C'C Q) =0,

and ®(-, ) is the transition matrix associated with A. The Riccati equation (5.2.7)
therefore has no finite escape time and we conclude that a solution exists for all
finite t < T'.

Solution of the full-information problem

We now verify that v* = —Bj Pz, with P satisfying (5.2.5), is indeed the optimal,
full-information controller.

Consider any full-information controller described by a time-varying state-space
system:

£ = Fé4 G+ Gow,  £(0) =0, (5.2.11)
Hf + Jiz + Jow. (5.2.12)

If this controller is combined with the system described by (5.2.2) and (5.2.3), we
see that the closed-loop system R,,, is given by

i = Ai+ Buw (5.2.13)
= C’a?—l—[)w,

in which 2 = [ 2/ ¢ ]I and

T A+ ByJ; BsH 5 By + BsJs
A_{ o o y B_{ . ], (5.2.14)
and
= C 0 ~ 0
C:|:DJ1 DH:|, D:|:DJ2:|. (5.2.15)

By Theorem 3.3.1, || R.y||2,j0,r] < oo if and only if D.J; = 0. Thus J; = 0 in any
controller that achieves a finite cost, since D’D = I. Theorem 3.3.1 then gives

1 /7 L x
I1R-wl3 1017 = T/o trace(B'QB) dt, (5.2.16)

in which

—Q=AQ+QA+C'C, Q(T)=0.
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Now consider the matrix

= [P o
r=lon)

in which P is the solution to (5.2.5) and P has the same dimensions as Q. A
straightforward calculation shows that

d - - SO
bGP = @-PATAG-P
/ !/

+ [ (1 +H]?2P) } [ L +BP H]. (5217
Since (Q — P)(T) = 0, Q — P is the observability gramian of (A, [ Ji1+ByP H )
and we conclude that Q(t) — P(t) > 0 for all t < T. As equality can be achieved by

setting J; = —B4P and H = 0, the minimum cost is
1
17 ’
H}én||sz||27[07T] = {T/o trace(B{PBl)dt} (5.2.18)

and the unique optimal controller K™ is
* x
u*=] -ByP 0] [ " ] (5.2.19)
(If H =0, the values of F', G; and G9 are irrelevant.)

Remark 5.2.1. We have only shown that (5.2.18) is the minimal cost for con-
trollers that can be described by state-space systems. That is, causal, linear sys-
tems that are finite dimensional. Since the minimizing controller (over this class)
has state dimension zero, it is unlikely that a lower cost could be achieved by an
infinite-dimensional controller.

All controllers with prescribed performance

We now obtain a parametrization of all controllers leading to
| Rowll2,j0,m) < (5.2.20)

for any ~ that is not less than the right-hand side of (5.2.18).
Our interest in this problem is motivated by the fact that when we re-impose
the restriction that the controller must be a measurement feedback controller, the

minimum cost that can be obtained may be larger than the right-hand side of
(5.2.18).
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Consider any controller described by (5.2.11) and (5.2.12), with J» = 0. By
Theorem 3.3.1 and (5.2.17),

1T 10 B
T/o trace(B'(Q — P)B) dt = HUH%,[O,T]’

in which U is the system with realization (A, B, [ Ji+ByP H |), which is the
system that maps w to v — u*. From (5.2.16) and the identity

BOB = B'(O— P)B + B.PB,
we see that

1 T
||sz||g,[0,T] = ||U||§,[O,T] + ?A trace(BiPBl) dt. (5221)

Because of (5.2.21), it is convenient to parametrize an arbitrary full-information
controller in terms of system U that maps w to u — u*. To do this, we write the
controller equations (5.2.11) and (5.2.12), with J =0, as

ale] - ale]emelae-n [@]-[0]

] (It BYP) (- 3),

u —ByPr+ [ Ji+ ByP H][

ENESH

This representation has the form

u = —ByPx+r (5.2.22)
r = Uw+V(r—72). (5.2.23)

Since T = z (see (5.2.13)), Z is a copy of the system state. Therefore, as V' is driven
by the zero signal, it has no effect on the control signal or the closed-loop system
R...

Since the controller was arbitrary, the systems U and V in the above may be
any causal, linear systems. Notice too, that for u written in the form (5.2.22), the

state x satisfies
T = (A — BQBéP).’E + Blw + BQ’I’.

We therefore generate all controllers from the LFT defined by the equations
A - BQBéP [ 0 B]_ :I BQ

g 2 8
s}
|
=
o
)
[en
=288

(5.2.24)

ro= [U V]{ “’A], (5.2.25)
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Figure 5.2: All full-information controllers.

which are shown in block diagram form in Figure 5.2. The fact that this LFT has
invertible (1,2)- and (2, 1)-blocks confirms that it captures all the full-information
controllers.
From (5.2.21), the controller has the prescribed performance (5.2.20) if and only
if
1%

1 T
201 T T /0 trace(B) PB1) dt < ~°. (5.2.26)

Remark 5.2.2. We conclude from (5.2.21) that the cost of any full-information
controller K is given by

1 T
1Rl o= U B o+ 7 | trace(BiPB) .

in which U is the system that maps w to the difference between the control signal
generated by K and the optimal control signal u*. This fact is crucial in the solution
of the measurement feedback problem.
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Remark 5.2.3. In our later work on the Kalman filter, which is a dual problem
to the optimal control problem, it is of interest to know which full-information
controllers do not use the state. Examining (5.2.22) and (5.2.23), we see that u
does not depend on z if and only if V' = B4 P. All full-information controllers that
do not make use of the state are therefore generated by

z A—ByBLP By By z
n = —BLP 0 I w (5.2.27)
w 0 I 0 r

r = Uw (5.2.28)

and the performance (5.2.20) is achieved if and only if U satisfies (5.2.26).

Main points of the section

1. The 2-norm of the closed-loop system | R..||20,7) is minimized
by the state-feedback control law u* = —BjPx, in which P is
the solution of the Riccati equation (5.2.5); the solution to this
equation always exists.

2. The 2-norm of the optimal closed loop is given by

1
2

1 (T
[Rzwll2,0,1) = {T/o trace(BiPBl)dt}

3. All controllers that satisfy ||R.wl2,0,77 < 7 are generated by the
formulas (5.2.24) and (5.2.25), in which

1 T
U113 0,7y + T/ trace(B| PB;) dt < ~°.
0

The system U maps w to u — u* and generates all closed loop sys-
tems. The system V', on the other hand, has no effect on the control
signal or the closed loop, but is required in order to parametrize
all controllers.

5.2.2 The infinite-horizon case

Most problems of practical interest require a closed-loop system that is internally
stable as well as optimal. In order to determine the optimal, stabilizing controller,
we consider the limit 7' — oo in the finite-horizon problem. In this work, we
assume that the plant is described by the time-invariant state-space system (5.2.2)
and (5.2.3).

In order that a stabilizing controller exists, it is necessary that (A, Bs) is stabi-
lizable (see Appendix A). We will therefore assume this from now on.
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We expect that the optimal controller will be the controller u* = —Bj Pz, in
which P is a solution to the algebraic Riccati equation

PA+ A'P— PByBLP +C'C = 0. (5.2.29)

This controller results in the closed-loop dynamics & = (A — B2 B, P)x + Biw, so we
must choose a solution such that A — By B4 P is asymptotically stable. In order that
such a solution exists, it is also necessary to assume that (A4, C') has no unobservable
modes on the imaginary axis. To see this, suppose that

Az = jwz, Cz=0.
Multiplying (5.2.29) on the left by 2* and on the right by x results in B}Px = 0,
giving (A — BaB,)P)x = jwa.
The standard assumptions:

The pair (A, Bz) is stabilizable and the pair (4, C) has no unobservable
mode on the imaginary axis.

The standard assumptions are necessary for the existence of a stabilizing controller
of the form v = —Bj Pz, with P a solution to (5.2.29). We show that they are
sufficient by considering the LQ optimization problem on the finite horizon [0, T
and letting 7' — oo.

LQ optimal control
Consider the problem of minimizing the cost function

T
J(K,z0) = lim { /O z’zdr—f—x’(T)Aa:(T)} (5.2.30)

T— o0

subject to

& = Az+ Bau, z(0) = xo,

_ Cx
== Du |’

in which D'D =T and (A, Bs, C) satisfy the standard assumptions. The minimiza-
tion is over all stabilizing, casual, linear, time-invariant full-information controllers
K. We will see that the standard assumptions are necessary and sufficient for a
minimum to exist.

Let P(t,T,A) denote the solution to Riccati differential equation

—P=PA+A'P—-PByB,P+C'C, P(T)=A. (5.2.31)
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(The notation P(¢,T,A) is used to flag the fact that P(t) satisfies the terminal
constraint P(7T") = A.)

In order that P(¢,T,A) converges to the stabilizing solution to the algebraic
Riccati equation, it is important to choose the terminal condition correctly. To
see this, we simply note that if C = 0 and A = 0, then the solution to the Ric-
cati equation is identically zero, which is a stabilizing solution if and only if A is
asymptotically stable.

Choice of A: Suppose we select any A > 0 such that

AA+ A'A—ABB,A+C'C <0 (5.2.32)
and
(A, { g }) is detectable. (5.2.33)

To see that such a choice is possible, let F' be any matrix such that A — BoF' is
asymptotically stable and let A > 0 be the unique solution to

A(A—ByF)+ (A— BsF)A+C'C+ F'F=0. (5.2.34)
We may rewrite this equation as
AA+ A'A — AByBY,A+ C'C = —(F — B,A)' (F — ByA),

which shows that A satisfies (5.2.32). Now suppose that Az = Az, Cx = 0 and
Az = 0. Multiplying (5.2.34) on the left by z* and on the right by = results in
Fz = 0. This means that Az = (A — BaF)z and we conclude that R.(\) < 0 or
x =0, since (A — BoF') is assumed to be asymptotically stable. That is, A satisfies
(5.2.33).

Monotonicity of P(t,T,A): The inequality (5.2.32) results in P(t,T, A) being
a monotonically nonincreasing function of T. To see this, differentiate (5.2.31) to

obtain ) ) _
—P = P(A— B3ByP)+ (A— ByB,yP)'P.

Hence

P(t) = 0(t, T)P(T)3(1,T),
in which ® is the transition matrix associated with —(A — By B4 P)’. Since
—P(t,T,A)|j—r = AA+ A’A — AB,B,A + C'C,

we conclude that P(t, T, A) > 0 whenever the terminal condition A satisfies (5.2.32).
This establishes that P(¢,T,A) is monotonically nondecreasing as a function of ¢.
But, by time-invariance, P(t,T+7,A) = P(t—7,T, A) and it follows that P(¢t,T, A)
is monotonically nonincreasing as a function of T'.
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Boundedness of P(¢,T,A): From the discussion of the finite-horizon LQ prob-
lem, P(t,T,A) > 0 for all t < T, since A > 0. Furthermore, by the monotonicity
property, P(t,T,A) < A for all t <T. That is, P(t,T, A) is uniformly bounded.

Existence of a steady-state solution: P(¢,7T,A) is a monotonic and uniformly
bounded function of T. Therefore, II(¢) = limy_,o, P(t,T,A) exists.
To see that TI(t) is constant, we observe that

H(tl) = Tlgnoo P(tla Ta A)

= lim P(t3,T +t2 —t1,A), by time-invariance,

T—o00

= TI(ty).

To see that II satisfies (5.2.29), we make use of the fact that a solution the
differential equation (5.2.31) depends continuously on the terminal condition A.
Therefore

I = lim P(t,T.A)
= lim P(t,Ty, P(Ty,T,A))

T—o0

= P(t,Tl, lim P(Tl,T,A)) by continuity
T—o0
—  P(t,T,10).

That is, IT is a solution to the Riccati equation (5.2.31) with terminal condition II.
Noting that II = 0, we see that II satisfies

IIA + ATl — 1By B4II + C'C = 0. (5.2.35)

Stability of A — BoBLP(0,T,A): Because of the choice of A, the control law
u(t) = —Frx(t), in which

Fr = B,P(0,T,A), (5.2.36)
is stabilizing, for any finite 7. This is seen by employing the “fake algebraic Riccati

technique” introduced by Poubelle et al [167].
Write the Riccati equation (5.2.31) as

Pr(A — ByFr) 4+ (A — ByFr) Pr + FpFp 4+ C'C + Pp =0, (5.2.37)

in which Pr = P(0,T,A) and Pr = £ P(t,T, A)|;—o. Since Pr > 0 and Pr > 0, we
conclude from Theorem 3.1.1 that any unstable mode of A — By Fr is unobservable
through [ Frn Pr ]/. To conclude that A — B Fp is asymptotically stable,
we must show that there can in fact be no such unstable, unobservable mode.
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Suppose that A and x satisfy

Fr
(A— BoFr)z =Xz, R.(\) >0, ¢ |z=0.
Pr
Multiplying (5.2.37) on the left by 2* and on the right by z gives (A +
ANz*Prax = 0, and we see that either A+ X = 0 or Prz = 0. In the case

that A = jw, we note that Fraz = 0 is equivalent to B)Prz = 0 and
multiplying (5.2.37) on the right by z results in

A Prx = —jwPrz.

Since (A, Bs) is stabilizable, Pra = 0. Hence P(t,T,A)x is a solution
to & =0, a(0) =0, giving P(t,T,A)x =0 for all t <T. Setting t =T,
we see that Az = 0, and combining this with Az = Az and Cz = 0 we
obtain
A— NI
C xz=0.
A

From (5.2.33), we have that z = 0, which shows that A — By Fr has no
unstable mode that is unobservable through [ F. Pr },.

We conclude that A — By Fr is asymptotically stable.

II is stabilizing: Now limy_,(A— B2 Fr) = A— By B4II. Since Fr is continuous
in T and the eigenvalues of a matrix are continuous functions of the entries, we
conclude that Re(A;(A — B2 B4II)) < 0 for all i. To see that equality cannot hold,
suppose (A — BaBiIl)x = jwz. Multiplying (5.2.35) on the left by 2* and on the
right by z results in || BoIlz||? + ||Cz||* = 0. Hence Cz = 0 and BjIlz = 0, giving
Az = jwz. We conclude that = 0 by invoking the assumption that (A, C) has no
unobservable modes on the imaginary axis.

Remark 5.2.4. In the above, the assumption that (A4,C) has no unobservable
modes on the imaginary axis was not invoked until the very last sentence. In
particular, the controller u = —Fpx, with Fr given by (5.2.36), is stabilizing for
any finite T > 0, irrespective of whether (A, C) has unobservable modes on the
imaginary axis or not. From Theorem 3.1.1, this controller has the cost

I2[15 = 2P (0, T, A)o. (5.2.38)
It follows from “completing the square” with IT = limr_,o, P(0,7, A) that

1213 = llu + Byl |3 + apTlao, (5.2.39)
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for any controller that stabilizes the system. Hence ||z||3 > z{Ilz, for any stabilizing
controller. Since P(0,7,A) — II, (5.2.38) implies that

inf Izll2 = v/ xpIlzo. (5.2.40)
K stabilizing
By (5.2.39), the only control that could achieve the infimal cost is u = —BjIlz,
which is a stabilizing controller if and only if (A4,C) has no unobservable mode
on the imaginary axis. We therefore conclude that the standard assumptions are
necessary and sufficient for the existence of a stabilizing controller that minimizes
[I21]2-

Solution of the full-information problem

The preceding discussion of the LQ optimal control problem shows that, under the
standard assumptions, a stabilizing solution P to the algebraic Riccati equation
(5.2.29) exists. It also shows that the controller u* = —B}Px is optimal with
respect to the performance index ||z||2. In this section, we show that the controller
u* = —B,Px is also the optimal stabilizing, full-information controller for the
performance index ||R.q |2

Consider any full-information controller described by a time-invariant, state-

space system:

£ = F&4 G+ Gow,  £(0) =0, (5.2.41)
u = H&+ iz + Jow. (5242)

Assume that (F,[ G1 Gy ]) is stabilizable and that (F, H) is detectable, which
does not restrict the class of controllers in any way.
As before, the closed loop is described by

i = Ai+ Buw
= Ci+ Dw,
in which z = [ 2/ ¢ ]I and A, B, C and D are given in (5.2.14) and (5.2.15).
The controller is internally stabilizing if and only if Ais asymptotically stable
(see Lemma A.4.1), and ||R.yl|l2 < oo if and only if, in addition, Jo = 0. Theo-

rem 3.3.1 then gives o
|R.||5 = trace(B'QB),

in which

Now consider the matrix
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in which P is the stabilizing solution to (5.2.29) and P has the same dimensions as

Q. As before,

A 5 (J1 + ByP)

(QP)A+A’(QP)+{ o }[Jl—&-BgP H]=0.

Thus Q — P is the observability gramian of (1:1, [ J1+B,P H }) and hence Q -
P > 0, since A is asymptotically stable. As equality can be achieved by setting

J1 = —B4P and H = 0, we conclude that the minimum cost is
nIlén |Rzwll2 = 4/trace(BiPB) (5.2.43)

and the unique controller that achieves this minimum cost is

w'=[ -ByP 0] [ Z} ] . (5.2.44)

Remark 5.2.5. As before, we have only shown that (5.2.43) is the minimal cost
for controllers that can be described by time-invariant state-space systems.
All full-information controllers with prescribed performance

By reviewing the arguments presented in the finite-horizon case, noting that A is
asymptotically stable for any internally-stabilizing controller, we conclude that all
full-information controllers are generated by the LFT

K=F/(K, | U V], (5.2.45)

in which

A-BByP|[ 0  Bi] B

K, = 0 [-BP O] I | (5.2.46)

Rninaiah

This LFT captures all the stabilizing full-information controllers as U and V range
over Hoo because its (1,2)- and (2,1)-blocks and their inverses are in Hyo, since
they all have A — Ba B, P as their A-matrix. Moreover, the LFT (5.2.45) generates
controllers that satisfy | R, |2 <~ if and only if

|U||3 + trace(ByPB;) < 2.

5.2.3 Inclusion of cross terms

In the introduction to the full information problem, we mentioned that the objective

zZ = leE + D12’LL
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could be replaced by one of the form (5.2.3) by the change of control variable
@ = u + D},C1x. This follows from the identity

Z/Z = (leﬂ + Dlgu)’(C’lx + Dlgu)
37/01 (I — D12D/12)01.T + (u + D’IQClx)’(u + D’IQClx).

Since ||D12|| = 1, we have that C(I — D12D5)C1 > 0. Setting

a = u+ DiyChz
A = A—-By,D},C,
C'C = Ci(I—-DyyD}y)C
results in
.’j? = A +B1’U}—|—Bgu
- [T
zZ = -
U

and we have 2'Z = 2/z.

It follows that the solution to a problem containing cross terms may be obtained
by considering this simplified structure. In particular, the optimal controller for the
finite horizon [0,7] is

u* = —Fu, F = D},Cy + By X,
in which X is the solution to the Riccati differential equation
~X=XA+AX-XBB,X +C'C,  X(T)=0.
In the infinite-horizon case, the optimal controller is
u* = —Fr, F = D},Cy + B4 X,
in which X is the stabilizing solution to the algebraic Riccati equation
XA+ A'X —XByByX+C'C =

Such a solution exists if and only if the standard assumptions hold; that is (fl, Bs)
must be stabilizable and (A, C') must have no unobservable modes on the imaginary
axis. Since stabilizability is invariant under state feedback, (/1 Bs) is stabilizable if
and only if (4, By) is stabilizable. The condition that (4, C) has no unobservable
mode on the imaginary axis is equivalent to the condition that

A— ]wI B2
Ch Dia

rank

=n+m (5.2.47)

(i.e., full column rank) for all real w.
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To see this equivalence, note that

A—jw[ B2 €T o
(At 2 ][] 29

only if u = —D{,C1z, since Dj;D12 = I. Now

A—jwl BZH I o]{ A—juI Bs
Cy Dy -D},Cy I (I — D12D}5)Cy Dig |°

Hence Az = jwz and Cz = 0 if and only if

x| I
satisfies (5.2.48).

The formulas for all the controllers that achieve prescribed objectives may be
obtained by replacing Bj P with F, giving

5 A-ByF [ 0 B ] B 5

U _ 0 [—F 0} 1 [i]

LD LT T S L
r= [U V}Lfiﬁ]

Main points of the section

1. A stabilizing solution to the algebraic Riccati equation (5.2.29) ex-
ists if and only if (A, Bs) is stabilizable and (C, A) has no unobserv-
able mode on the imaginary axis. This solution may be obtained as
the limit of a solution to a Riccati differential equation, provided
the terminal condition is chosen with care.?

2. The 2-norm of the closed-loop system ||R.||2 is minimized, over
the class of controllers that are internally stabilizing, by the state-
feedback control law u* = —BjPx. The matrix P is the stabilizing
solution of the algebraic Riccati equation (5.2.29).

3. The 2-norm of the optimal closed loop is given by

|R.wl2 = y/trace(B|PBy).

2An exercise at the end of the chapter shows that any nonnegative definite terminal condition
will do if (A, C) is detectable.
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4. All stabilizing, full-information controllers satisfying ||R.y|l2 < v
are generated by the LFT (5.2.45), in which U and V' € Ho, with

|U||2 + trace(B; PB;) < 2.

The system U maps w to u — u*. The system V has no effect on
the control signal or the closed loop; its only role is to parametrize
all stabilizing controllers.

5. The effect of cross terms is easily accounted for by a change of
control variable.

5.3 The Kalman filter

All the work we presented in Section 5.2 relies on the controller having perfect
knowledge of the disturbance input and the state. Since the problem we want to
solve has (5.1.3) as the only measurement, we need to find some way of estimating
the states and the disturbances from the measurements y. As is well known, the
Kalman filter is the optimal solution to this problem.

5.3.1 The finite-horizon case

Consider the time-varying signal generator

i) = A@t)z(t) + Blw(t),  x(0)=0, (5.3.1)
y(t) = C@®)a(t) + Dt)w(t), (5.3.2)

in which DD’ = T for all times of interest.

We seek a causal, linear filter F' such that z = Fy is an optimal estimate of
z = La, with L a continuous matrix valued function (which may be the identity).
We take optimality to mean that the 2-norm [|R||3 o7 is minimized, with R :

[w o ]/ — z — z. By the definition of the 2-norm of a system, this means that
we are minimizing

1
2

T
IRMMH:S{%A(E—my@—L@ﬁ} (5.3.3)

when [ w’ v/ ]/ is a unit intensity white noise. Note that (5.3.3) is just the average
RMS power of the estimation error.

It is well known that the estimate of Lz that is optimal in the above sense is
LZ, in which 7 is the optimal estimate of x; this fact will be proved, not assumed.
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The filtering problem in question may be considered as the LFT problem

i A [B 0] 0 v
zZ—z = -L [0 0] I {?j} , 2(0) =0, (5.3.4)

y ¢ [0 D] o 2
z = Fy. (5.3.5)

The optimal filter and optimal cost

Recall that the 2-norm of a system and the 2-norm of its adjoint are equal. Recall
also that the adjoint of F¢ (P, K) is F¢(P~, K™), in which (-)~ denotes the adjoint.
Therefore, minimizing ||R|2,[o,7] is equivalent to minimizing || R™ |2 [0,7], in which
R™ is generated by the LFT

Lp(r) 4 JEo ol ()
d’ff():-)) _ [ Bé ) } { § } [ D/ST) } %((;) (5.3.6)
i = F~u, (5.3.7)

in which 7 is the time-to-go variable 7 = T' — ¢t associated with the adjoint system
and p(7)|r=0 = 0. We note also that F is causal if and only if F™~ is causal in 7.

This is a control problem in which the controller F~ only has access to the
exogenous signal w, rather than to p and w. From our discussion of the full-
information problem in Section 4.2.2, we know that for the purpose of achieving
particular closed loops or control signals, knowledge of w is equivalent to knowledge
of p and w, since we can always replace p in any full-information controller for the
adjoint system with a copy generated from w by

4 5(r) = K@) - L()i() + Cilr), 5o =

With this comment in mind, it is immediate that the optimal controller for the

-~

adjoint problem is @*(7) = —C(7)Q(7)p(7), in which

Q1) = QA + ADQAT) ~ QI (NC(MQ(F) + BB (7).

with the terminal condition Q(7)|,=r = 0. The optimal cost is

1
2

IR~

T
|2,10,7] = {%/0 trace(L(7)Q(7)L' (1)) d’T}
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Substituting 4* into the equation defining the duplicate adjoint state, we see
that the adjoint of the optimal filter is given by

) = (- COQWR) - L), P =0,

w(r) = —C(M)Q(T)p(r).

Hence, the optimal filter is given by

() = (A-QC'O)HE(t)+QMC (My(t),  =(0) =0, (5.3.8)
= A@)z(t)+ QM) () (y(t) — C(t)z(1)) (5.3.9)
Z(t) = L(t)z(t), (5.3.10)

in which
Q) = QA (M) +AMQM) —Q()C ()C(HQ(H) +B()B'(t), Q(0) = 0. (5.3.11)

Since the Riccati equation (5.3.11) does not depend on L, the optimal estimate of
Lz is indeed Lz, with T being the optimal estimate of z. The matrix QC’ is known
as the Kalman filter gain and y — C7, which drives the filter, is the innovations
process. The optimal cost is given by

1
2

17 Ve
IR[2,0m7 = & {?/0 (z— Lx)'(Z — Lx) dt}
1 /T / 3
= {T/o trace(LQL )dt} . (5.3.12)

Optimal terminal state estimation

The Kalman filter is most widely known for its role as a terminal-state estimator.
That is, it is the filter that minimizes

&{(@(T) - 2(1)) (1) - 2(T))'},

rather than (5.3.3), given the observations y(7), 7 < T. A proof of this optimality
property is requested in Problem 5.13.

All filters with prescribed performance

The filtering problem does not have a degenerate information structure and its
adjoint is a full-information problem in which the controller (the adjoint of the
filter) does not have access to the state. All such controllers achieving a given
performance level were parametrized in Remark 5.2.3.
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Applying this parametrization to the adjoint problem associated with the Kal-
man filter, we obtain

z A—QC'C QC' 0 z

z = L 0 I y

n —C I 0 r
r = Un.

Again, the fact that the (1,2)- and (2, 1)-blocks of this LFT are invertible confirms
that this LFT captures all filters.

It is interesting to note that U has no effect on Z, which therefore remains the
optimal state estimate; it just degrades our estimate of Lz from LT to Lx + Un,
in which n = y — CZ is the innovations process. That is, we obtain all filters that
satisfy

2

T
5{%/0 (z—Lx)’(z—Lx)dt} <~

z=Lz+Upy,

by letting

in which ¥ is the optimal state estimate estimate, 1 is the innovations process and

1 /T
HU||§’[O’T]—|—?/ trace(LQL') dt < ~*. (5.3.13)
0
C
y — . ~
& n oc ~ f x I o z
A
U

Figure 5.3: All filters.



5.3 THE KALMAN FILTER 201

Filter with control signal
Suppose we have the signal generator

Tt = Ax+ Bw+ Byu
= Cr+w,

in which u is a known signal—we have in mind the situation in which » is a control
signal. Consider the filter

T =A%+ QC'(y — CT) + By, (5.3.14)
in which @ is the solution to (5.3.11). Then ¥ — z satisfies

%(55— )= A —x)+QC'(y — CT) — Bw,

which is independent of u, and we conclude that T generated by (5.3.14) is the
optimal estimate of x.

5.3.2 The infinite-horizon case

We are now in a position to extend the optimal state estimation results to the
infinite horizon case. As always, we limit our attention to the case when the signal
generator given by (5.3.1) and (5.3.2) is time-invariant. We seek to minimize

: 1 ) ’
IRz = Tlgnooé' {? /0 (z— La)'(z — Lx) dt}
Naturally, we expect that the optimal filter will be

AT 4+ QC'(y — C) (5.3.15)
= Lz, (5.3.16)

Yy 8)
|

in which @ is the stabilizing solution to the Riccati equation
AQ+ QA —QC'CQ+ BB' =0 (5.3.17)

the solution @ is stabilizing if \;(4A — QC’'C) < 0. We note that such a @Q exists
if and only if (A, C) is detectable and (A, B) has no uncontrollable modes on the
imaginary axis, which we now assume.

Because filtering is an open-loop problem, the LFT defining the filtering problem
in (5.3.4) and (5.3.5) is not stabilizable in the sense of the internal stability of
LFT’s defined in Section 4.2.1, except when A is asymptotically stable. However,
this definition is inappropriate to the filtering applications we are now considering.
We do not care what happens to the state, only that our estimate of it is good.
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Therefore, the notion of stability that is appropriate is that the filter should be
stable and that the system R that maps the driving noise(s) to the estimation error
should also be stable. This will ensure that the estimation error tends to zero for
any L]0, 00) driving noise(s). Since A—QC’C' is asymptotically stable, the Kalman
filter is stable. Subtracting (5.3.1) from (5.3.15) gives
d = !/ = !
E(x—x): (A—QC'C)(x —x) — Bw+ QC'Dv
and it follows that the system R: [ w' o }’ — (T — x) is also stable. Therefore,
the Kalman filter possesses the desired stability properties.

Since the adjoint problem defined by (5.3.6) and (5.3.7) satisfies the assump-
tions of the infinite-horizon, full-information control problem, we conclude that the
Kalman filter is indeed the optimal filter, and that the optimal cost is

IR|2 = v/trace(LQL'). (5.3.18)
All stable filters with prescribed performance
IRz < v
are generated by
z=Lz+U(y— C7),

in which 7 is the optimal state estimate, and U € H, with

U3 + trace(LQL') < 4*. (5.3.19)

Main points of the section

1. The adjoint of the filtering problem is a full-information control
problem in which the controller does not have access to the state.

2. The optimal estimate of Lz is LZ, in which Z is the optimal estimate
of x generated by the Kalman filter.

3. The Kalman filter is
T=A7+QC (y—Cz), #(0)=0,

in which @ is the solution to the Riccati equation (5.3.11). In
the case of an infinite horizon, @ is the stabilizing solution to the
algebraic Riccati equation (5.3.17).

4. All filters with prescribed performance ~ are obtained by setting
z = Lx + Upn, in which n = y — CZ is the innovations process, and
U satisfies (5.3.13) in the case of a finite horizon or (5.3.19) in the
case of an infinite horizon.
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5.4 Measurement feedback

We now consider the problem of real interest, in which the controller must generate
the control signal according to ©w = Ky. Again, we begin with the finite-horizon
problem.

5.4.1 The finite-horizon case

We consider the time-varying plant

& = Axz+ Biw+ Bau, z(0) =0, (5.4.1)
z = Ciz+ Disu (542)
y = Cx+ Daw, (5.4.3)

in which D]yD15 = I and Dy Dj; = I for all times of interest.
Our aim is to find a controller v = Ky that minimizes ||R,y|
R, is the closed-loop system mapping w to z.
The solution is based on the fact that any measurement feedback controller is
also a full-information controller, since

2,j0,7]- As usual,

Ky=[ KO, KDzl]Lﬂ.

It follows that the cost of any measurement feedback controller is

1 T
IR-wll3 0,0y = IUI3 10,y + 7 [ trace(BiPB)dt, (5.4.4)
T Jo
with U being the system that maps w to u — v* and u* = —Fz being the opti-

mal, full-information controller. (Equation (5.4.4) is a copy of equation (5.2.21).)
Therefore, the measurement feedback controller that minimizes ||R..||2,[0,7) is the
optimal estimator of u* = —Fx given the measurements y. This is known as the
separation principle. It is now immediate that the optimal controller is

I = AZ+ H(y— Coff) + Bou
= —F%,

in which F' = D{,C1 + B4X and H = B1D4; + Y (). The matrices X and Y are
the solutions to the Riccati differential equations

X = XA+AX-XBB,X+C'C, X(T)=0,
Y = AY+YA —-YC,CY +BB',  Y(0)=0,
in which
A = A—-ByD,,C,, C'C=C\(I-DyD},)C, (5.4.5)
A = A-B\D,Cy, BB =B(I-D)Dy)B,. (5.4.6)
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(These formulas result from including cross terms in 2’z and correlated process and
measurement noise—see Section 5.2.3.)
The optimal cost is

2

1 /7T
||sz||27[07T] = {T/ (trace(BiXBl) +trace(FYF’)) dt} ,
0

which is just the square root of the sum of the square of the optimal, full-information
cost and the square of the cost of optimally estimating the optimal, full-information
controller —F'z.

All full-information controllers that achieve the performance level

[ Rzwll2,fo,m) < (5.4.7)

are generated by using a suboptimal estimator of —Fz. From the parametrization
of all filters achieving specified performance and (5.4.4), it is evident that the control
is

u=—F7+Qy— Cs3),

in which
1 /7
||Q||§7[07T} + T / (trace(B} X By) + trace(FY F')) dt < 4> (5.4.8)
0

In LFT form, all measurement feedback controllers with performance level (5.4.7)
are generated by

z A—ByF—HCy, H B, z
u = -F 0 I Y (5.4.9)
n —CQ I 0 T

r = Qn, (5.4.10)

in which Q satisfies (5.4.8). The nonsingularity of the (1,2)- and (2, 1)-blocks of
this LFT confirms that we capture all measurement feedback controllers as Q varies
(without restriction on its norm). This parametrization of all controllers is shown
in block diagram form in Figure 5.4.

Remark 5.4.1. Notice that the cost of estimating u* = —Fx is zero if Y = 0.
This happens when BB’ = 0. Since BB’ = B (I — D), Dy;)Bj, we see that this
occurs when Do is an orthogonal matrix—the identity, for example. We conclude
that when y = Chyx 4+ w, the additional cost of measurement feedback over full
information is zero. This is essentially because the filter

= AT+ Bi®+ Bou,  #(0)=0,
= Y- 0255\

g 8)-

reconstructs w and x perfectly from the measurements y.
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By
y T u* u
Y H —~0O f —F —
r
[ ] n A le—|
Q
B Cy [+

Figure 5.4: All measurement feedback controllers.

5.4.2 The infinite-horizon case

In the infinite-horizon case, we assume that the plant is described by (5.4.1) to
(5.4.3) with all the matrices of the realization constant. We also assume that (A4, Bs)
is stabilizable and that (A, Cs) is detectable. These are necessary conditions for the
existence of a stabilizing controller (see Appendix A). Our last assumption is that
the full-rank-on-the-axis conditions (5.1.5) and (5.1.6) hold. These assumptions
are equivalent to (A7 C’) having no unobservable mode on the imaginary axis and
(A, B) having no uncontrollable mode on the imaginary axis (see Section 5.2.3).
The matrices A, C, A and B are defined by (5.4.5) and (5.4.6) as before. Under
these assumptions, the algebraic Riccati equations

XA+ AX -XByByX+C'C = 0 (5.4.11)
AY + A'Y —YCLC,Y + BB = 0 (5.4.12)

have stabilizing solutions.
As in the finite-horizon case, the identity

Ky=[ KC; KDQI]“”

means that any stabilizing measurement feedback controller is also a stabilizing
full-information controller. Hence

IR-l13 = |[U|3 + trace(B{ X By)
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for some U € H,. As before, U is the system mapping w to uw — u*. The signal
u* = —Fz, with F = D{,C1 + B4X, is the optimal, full-information controller.

The optimal, measurement feedback controller is therefore the best stable esti-
mator of u = —Fx. It is given by

T = AT+ H(y— Cs%) + Bou
= —F7%,

in which H = B1Dj; + Y Cs. The optimal cost is

|Rewllo 0.1 = \/trace(B; X By) + trace(FY FY).

All measurement feedback controllers that achieve the performance level

[Rewl2 < (5.4.13)
are generated by
z A—ByF—-—HC; H By x
u = -F 0 I Y
n —02 I 0 T

ro= Qn,
in which Q € H,, satisfies
Q|2 + trace(B} X By) + trace(FY F') < ~2.

Notice that the inverses of the (1,2)- and (2, 1)-blocks of this LFT are in H, since
their A-matrices are A— By F and A — HC respectively, confirming that we capture
all internally-stabilizing controllers as Q € H, is varied (without restriction on its
norm). See Appendix A for more details.

Main points of the section

1. Any measurement feedback controller is also a full-information con-
troller.

2. The optimal, measurement feedback controller is an optimal esti-
mator of the optimal, ful-information control.

3. The optimal 2-norm with measurement feedback is given by

1

17 :

[ R-wll2,0,1) = {T / (trace(B{ X By) + trace(FY F")) dt}
0

in the case of a finite horizon, or by

|Rewsllz = \/trace(B{ X By) + trace(FY F)
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9.9

in the case of an infinite horizon. In these expressions, F' is the
optimal state-feedback gain and X and Y are the stabilizing solu-
tions to the Riccati equations defining the optimal, full-information
controller and the Kalman filter respectively.

. In the infinite-horizon case, it is assumed that the plant is time-

invariant and satisfies:

(i) (A, By) stabilizable.

(i) rank [ A E,iwj DBfQ ] =n+ m for all real w.
(i) (A, Cy) is detectable.
(iv) rank { 4 —ngl DB211 ] =n + g for all real w.

. All measurement feedback controllers that achieve a given perfor-

mance level [|[R.yll20,77 < 7 or ||[R.ull2 < v are obtained by
adding Q7 to the optimal control. The signal 7 is the innovations
process and @ is a causal linear system that satisfies

1 T
QU3 or) + 7 / (trace(B{X By) + trace(FY F')) df < 2
0

in the case of a finite horizon, or Q € Ho, such that
QI3 + trace(B] X By) + trace(FY F') < 4

in the case of an infinite horizon.

. If Q € Hy is allowed to vary without restriction on its norm, we

capture all internally-stabilizing controllers.

Notes and References

207

This chapter considers only a fraction of what is known about LQ optimal control,
Kalman filtering and LQG control. Indeed, the volume of work on these subjects is
so vast that it would be a considerable task to provide a comprehensive guide to the
literature. A bibliography of LQG control compiled by Mendel and Gieseking [149]
in 1971 lists 73 books, 452 journal papers and numerous conference papers, reports
and theses.

Most of our knowledge of the subject originates from the texts by Anderson and
Moore [11, 12], Kwakernaak and Sivan [125], Brockett [33] and Davis [40]. These
texts contain extensive bibliographies.

The seminal papers on optimal estimation are Kalman [106] and Kalman and
Bucy [110]. Wonham [213] is regarded as having proved the LQG separation theo-

rem.
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The parametrization of all control signals and filters that achieve a prescribed
performance level is a relatively recent addition to LQG theory introduced by Doyle,
Glover, Khargonekar and Francis [54].

A special issue of the IFEE Transactions on Automatic Control was devoted
to LQG control in 1971 [17]. It contains expository articles by Athans [16] and
Luenberger [141]; the paper by Willems [211] on the connections between Riccati
equations, optimal control and factorization theory; and the paper by Rosenbrock
and Moran [173], which takes a critical view of optimal control.

We conclude with a quotation from Athans’ editorial in the special issue [15]:

“It appears that the most pressing issue is related to the modelling issue;
namely, how accurate should the plant model be? how accurate should
the model of uncertainties be? and how should the performance index
be defined to consolidate design specifications and model inaccuracy.
Furthermore, how can one guarantee the relative insensitivity of the
final control system right from the start?”

5.6 Problems

Problem 5.1. Suppose

#(t) = Az + Bu, z(0) = xo,
and

T
J(zo,u) = / 2'C'Cx + v'udt.
0

Show that J(xg,u) is convex in u.
Problem 5.2. Consider the system

& = Az+ Bu, 2(0) = wo,

- (&

with D'D = I and the cost functional

T
J(u,xo):/ 2 zdt.
0

1. Suppose an optimal control u* exists that minimizes J(u, z¢) and let z* be the
corresponding optimal state trajectory. If the optimal control is perturbed
to u = u* + ett, where @ is an arbitrary function of time and € is an arbitrary
number, show that the state trajectory is perturbed to x = x* 4 €Z, in which

() = /0 ®(t,7)Bii dr,



5.6 PROBLEMS 209

with ®(-,-) the transition matrix associated with A.
2. Show that

T
J(u,zg) = / (z¥ C'Ca* + (u*) u*)dt
0
T
+2e/ (Z'C'Cx™ + u'u*)dt
0
T
+¢ / (#'C'Cz + u'u)dt.
0
3. Use the fact that «* minimizes J(u, ), to show that
T
/ (#'C'Cx* + @'u*)dt = 0.
0

4. Using your answers to Parts (1), (2) and (3), show that

T
/ ' (B'A+u*)dt =0, (5.6.1)
0
with
T
A(t) :/ &' (1,¢)C'Cx*dr.
t
Conclude that u* = —BjX (almost everywhere) from the fact that (5.6.1)
must hold for any @ € £5[0,7].3
5. Show that

A=—-A'X-C'Cz* XNT)=0.
Hence show that z* and ) satisfy the two-point-boundary-value problem (TP-

BVP)
| A -BB’ x* z*(0) | | o
Al | -C'C A A7 XT) || 0|
6. If ®(¢,T) is the transition matrix associated with the TPBVP, show that

At) = o (t, T)O (1, T)z* (1)
= Pt)z*(t).

Show that the inverse always exists!
7. By differentiating P, show that

—-P=AP+PA-PBBP+CC

with terminal condition P(T") = 0. Conclude that the optimal control is given
by u = —B’'Pxz.

3This deduction is known as the Fundamental Lemma of the calculus of variations.
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Problem 5.3. Suppose that the standard assumptions on (A, By, C') are satisfied.
Let P be the stabilizing solution to (5.2.29) and let P be any other solution. Show
that

(P — P)(A— ByB4P) + (A — ByB4PY (P — P)+ (P — P)ByBY(P — P) =0

and conclude that P > P. Show that when (A,C) is detectable, P > 0 implies
P=pP*

Problem 5.4. Consider the loop-gain transfer function B4yP(sI — A)~!By, in
which P is the stabilizing solution to (5.2.29).
1. Show that

(I+ By(—sI — A"y~ PBy) (I + ByP(sI — A)™'By)
= I+ By(—sI — A)72C'C(s] — A)"'By.

This equation is known as the “return-difference equality”.
Let W = I + B,P(sI — A)"'By . Draw a block diagram that contains
three signal paths having transfer function matrix § = W~ or —8. (Hint:
Anderson and Moore [11], pages 66-71.) Give three reasons for calling S the
sensitivity operator associated with the controller v = —BjPz. Show that
[IS]|oo < 1 follows from the return-difference equality.

2. The return-difference equality can also be written as W™W = GG, in
which

C(SI — A)ilBQ

1

Show that GW ! € H,, and that GW ~! is allpass. Conclude that
(GW () (GW'(s)) <, for all R(s) > 0.

G:

3. Show that a state-feedback controller u = —Kx is optimal with respect to
some performance index of the form [j*(2/C'Cx + u'u) dt if and only if

(I+K(sI—A)"'By) " (I+K(sI —A)"'By) > I

and A — Bo K is asymptotically stable. (Hint: Use the bounded real lemma.)
This question, known as the inverse problem of optimal control, was consid-
ered in Kalman [109]. See also Anderson and Moore [11, 13].

4. Suppose that the input w is scalar, making By = by a vector. Show that

|1+ bhP(jwl — A) "'y > 1.

Conclude that the closed-loop system, with v = —b, Pz, has a guaranteed
phase margin of £60°, an arbitrarily large gain marin and a gain-reduction
tolerance of up to 50%.

4The literature often speaks of the unique positive solution to the LQ Riccati equation; it is
only unique when (A, C) is detectable, in which case it is the stabilizing solution.
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Problem 5.5. Consider the exponentially weighted performance index
o0
J= / 2 (2'C' O + u'u) dt,
0

in which # = Ax + Bou.
1. Show that the optimal (minimizing) controller is w = —Bj Py, in which P,
is the stabilizing solution to the Riccati equation

P,(al + A) + (ol + A)'P, — P,B,YB4P,, + C'C = 0.

Under what assumptions does P, exist?

2. Show that the closed-loop poles are all in the half-plane R.(s) < —a. This is
known as the regulator with prescribed degree of stability.

(Hint: Consider the change of variable Z(t) = e*z(t).)

Problem 5.6. Suppose

rt = Ax+ Biw -+ Bau
_ Cx
s = Du |’

with D'D = I and (A, Bs) stabilizable.
1. If u = —Kz and A — ByK is asymptotically stable, show that ||R..||3 =
trace(B{QB1), in which @ is the unique nonnegative definite solution to

(A- B:K)Q+Q(A—BK)+C'C+K'K=0. (5.6.2)
2. Show that
(A= ByK)(Q— P)+ (Q— PY(A— ByK) + (K — ByP) (K — BYP) =0,

in which P the stabilizing solution to (5.2.29) and conclude that (Q — P) > 0.
3. Prove that || R.,]||2 is minimized by setting K = B4 P, and that the norm of
the associated closed loop is || R, ||3 = trace(BPB).

Problem 5.7. If
AP+PA+S=0

and
AQ+ QA+ R =0,

verify that trace(QS) = trace(PR).

Problem 5.8. Show that Ay > Ag > 0 implies P(¢t,T,A1) > P(t, T, As) for all
t<T.
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Problem 5.9. Consider the Riccati equation (5.2.31) with terminal condition
A > 0. If (A, By) is stabilizable and A is such that

AA+ A'A — AByBLA +C'C (5.6.3)

is semidefinite, show that P(¢,T, A) is monotonic, IT = limy_,, P(¢,T, A) exists, is
constant and satisfies (5.2.29).

Problem 5.10. Suppose (A, Bs, C) is stabilizable and detectable.
1. Show that P(¢,T,0) converges to the stabilizing solution to (5.2.29).
2. Show that for any I" > 0, there exists a A > T" such that (5.6.3) is nonpositive
definite.
3. Conclude that II = limp_, P(t,T,T) is the stabilizing solution of the alge-
braic Riccati equation for any I" > 0.

Problem 5.11. (Receding horizon control) Suppose

t = Ax+ Bu
_ Cx
z = Du

with D’D = I. The receding horizon performance index is
t+T
J(u,t, t+ T, ae) = / Zzdr + 2’ (t+T)Ax(t +T)
t

and the optimal control is therefore u} = —Frz, in which Fr(t) = ByP(t,t +
T,A). Observe that the optimal receding horizon feedback gain Fr is constant if
the problem data are constant. We will now make this assumption and assume that
the standard assumptions hold. Consider the decomposition

[e%) t+T [e%)
/ Zzdr = / 2 zdr + / 2 zdr.
t ¢ T

If a controller is stabilizing, we must have

o0
/ Zzdr > 2 (t+T)Px(t+1T),
t+T
in which P is the stabilizing solution to (5.2.29). Therefore, in order that the con-
troller that minimizes J(u,t,t+T, A) is stabilizing, A must represent a conservative
estimate of LTT 2'zdr. That is, A > P.

Fallacious conjecture: Fr is stabilizing if and only if A > P, in which P is
the stabilizing solution to (5.2.29).

Give a counter-example that shows this conjecture is indeed fallacious. This
fallacy provides a warning against simply choosing a very large A.
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(The arguments in the text show that Fr is stabilizing if and only if A > P and
%P(t7 T, A)|t=o > 0 by exploiting the “fake algebraic Riccati technique” introduced
by Poubelle et al [167] , which is simply the identity

Pr(A— BQB;FT) +(A- BgBéFT)/PT + PTBQBQPT +C'C+ Ry = 0,

in which Pr = P(0,T,A) and Ry = P(t,T,A)|i=0.)
For more details on receding horizon LQ control and related matters see Bit-
mead, Gevers and Wertz [29)].

Problem 5.12. Consider the signal generator

¢ = Ax+ Buw, x(0) =0,
y = Cz+ D,

in which [ w’ o }/ is a unit intensity white noise. Show that the innovations

process = y — CZ in the Kalman filter is white and ha/s unit intensity.
(Hint: Show that the system A mapping [ w’ v’ | to 7 satisfies AA™ =I.)

Problem 5.13. Consider the signal generator

= Az + Buw, E{x(0)} =0, &{z(0)2'(0)} = Py
= Cz+ Dv,

in which [ w v ]' is a unit intensity white noise that is independent of z(0).

Show that the Kalman filter

with

Q=A4Q+ QA -QC'CQ+C'C,  Q0) = Py,
minimizes £ {(E(t) — (b)) (2(t) — x(t))/} given y(o), o € [0,t], over the class of
causal, linear (finite-dimensional) filters. Show that Q(t) is the optimal state error

variance at time t.
(Hint: Write an arbitrary filter as

(1) - [ L)

| H, Hz]{g}—i—Jy.

z

Work out £ { (T(t) — (1)) (Z(t) — x(t))/} in terms of a matrix P that is the solution

to a controllability type Lyapunov equation.)
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Problem 5.14. Consider the LQG problem defined by

=] = Loalfneela et ]
. - {ﬁ(wwxz)}

u

y = [1 0]{2]+[0 1] w.

1. Show that the optimal controller is given by

_ afB(l — 2s)
24 (a+B—-2)s+1+ap

with
a=24+\4+p ; f=24+Vid+o.

(This solution was quoted in Example 2.1.2.)
2. What is the optimal cost? How does it vary with ¢ and p?
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Full-Information Ho
Controller Synthesis

6.1 Introduction

We begin our attack on the problem of finding controllers that meet H., norm
objectives by analyzing the full-information problem described in Section 4.2.2. In
the full-information problem, the controller has access to both the state z and the
exogenous input w as shown in Figure 6.1.

Figure 6.1:  The full-information configuration.
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The controller K is required to be causal and linear!, and generates the control
signal u according to

u—K{i} (6.1.1)

The state x is the solution to the linear differential equation
& = Az + Byw + Bou, z(0) = 0. (6.1.2)
We consider the objective signal
z = Ciz + Diou, (6.1.3)

in which D},D12 = I for all times of interest. Recall that we may consider the ob-
jective (6.1.3) instead of z = Cyz+ D11w+ Diou by assuming that loop-shifting and
scaling transformations that remove D17 and scale D15 have already been carried
out. These transformations are described in Section 4.6. As noted in Chapter 5, a
standard change of control variable (& = u+ D},C1x) reduces (6.1.3) to an objective
of the form

z= { g‘z ] (6.1.4)

in which D'D = I. We develop our results for the objective (6.1.4) in preference
to (6.1.3) because the elimination of cross terms between v and x in 2’z simplifies
the resulting formulas. The manipulations required to extend the results to the
objective (6.1.3) are described in Section 5.2.3—Problem 6.1 requests the reader to
fill in the details.

In the first instance, we confine our attention to the finite time horizon prob-
lem, which allows us to establish the key structural features of the solution while
postponing the need to address internal stability issues. We show that the full-
information H., controller synthesis problem has a solution if and only if a certain
Riccati differential equation has a solution. Unlike the situation in LQ control, the
Hso Riccati equation does not have a solution if the performance level 7 is selected
too low.

By considering the limit as the horizon length passes to infinity, we show that
the infinite-horizon, full-information H,, controller synthesis problem has a solution
if and only if the corresponding algebraic Riccati equation has a stabilizing solution
that is nonnegative definite. This is markedly different from the situation in LQ
control, where, provided the standard assumptions hold, the Riccati equation always
has a nonnegative definite, stabilizing solution.

The finite-horizon problem

In the case of a finite time horizon, the plant (6.1.2) and (6.1.4) may be time-varying
and we seek a causal, linear, full-information controller such that the closed-loop

IWe will see that nonlinear controllers offer no advantage over linear ones when controlling
linear plants.
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system R, in Figure 6.1 satisfies
T
/ ('z = y*w'w) dt + 2/ (T)Az(T) < —el|wll3 o 7y (6.1.5)
0

for all w € L£2[0,T] and some € > 0. The matrix A is assumed to be nonnegative
definite and (6.1.5) ensures that

| Rzwlljo,r) < s (6.1.6)

in which || - [|o,r) is the £2[0,7] induced norm. Conversely, (6.1.6) implies that
(6.1.5) holds for some € > 0 and some A > 0.

When controllers satisfying the objective (6.1.5) exist, we would like a parame-
trization of them all.

The terminal state penalty term will be used to ensure that a stabilizing control
law is obtained when we consider the limit 7" — oo.

The infinite-horizon problem

In the infinite-horizon case, the plant described by (6.1.2) and (6.1.4) is assumed
to be time-invariant. In this case, we seek a causal, linear and stabilizing full-
information controller such that the closed-loop system R, satisfies

[Rwlloo <7 (6.1.7)
The objective (6.1.7) can be written in the equivalent form
1215 = v*llwl3 < —ellwl3 (6.1.8)

for all w € £5]0,00) and some € > 0. Again, we would like a parametrization of all
controllers that satisfy (6.1.7), when they exist.

In order that a stabilizing controller exists, it is necessary to assume that the
pair (A, Bs) is stabilizable (see Appendix A). We will also make the assumption
that the pair (A, C) has no unobservable mode on the imaginary axis. These are
the assumptions we made in the infinite-horizon, LQG full-information problem. As
we will see in Section 6.3.4, the assumption that (A, C) has no unobservable mode
on the imaginary axis involves no loss of generality.

6.2 The finite-horizon case

In this section, we consider the time-varying system (6.1.2) and (6.1.4), with D'D =
I for all times of interest. The control signal is generated by a full-information
controller (6.1.1), in which K is causal and linear. We denote this set of control
laws by K. Our objective is to determine when there is a K € K such that (6.1.5)
is satisfied for all w € £5]0,7] and to parametrize all such controllers when they
exist. We assume that A > 0 and that v > 0.
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6.2.1 Connection to differential games

The problem we are faced with is closely related to a linear quadratic differential

game. We may think of the designer and nature as playing a game in which the

designer’s goal is to choose a K € K such that (6.1.5) is satisfied, while nature’s

aim is to foil the designer’s strategy by choosing a maximally malevolent w.
Specifically, define the performance index

T
J(K,w,T,A) = / (22 — y*w'w) dt + 2(T) Az(T), (6.2.1)
0

in which K is a controller, w is a disturbance and A is an arbitrary nonnegative
definite matrix. If the designer chooses K € K and nature chooses w € £2[0,T], the
cost to the designer is J (K, w, T, A) while the payoff to nature is also J (K, w, T, A).
Thus the designer wishes to minimize J(K,w, T, A) and nature wishes to maximize
it.

The game has a saddle point if there exists a pair (K™, w*) such that for all
w € L2[0,T] and all K € K the inequalities

J(K* w,T,A) < J(K*,w*,T,A) < J(K,w*,T,A) (6.2.2)

hold. We may think of K™ as the “best” controller in K, while w* is the “worst”
exogenous input in Lo[0, 7.

The existence of a saddle point is a necessary condition for the existence of a
controller that satisfies (6.1.5). To see this, suppose K € K satisfies (6.1.5). Then
J(ﬁﬂU,T,A) < 0 for all w € L5[0,T]. Also, J(K,0,T,A) = 0 for any K € K,

0

since z(0) = 0 and K { 0 } = 0. Thus

J(K,w,T,A) < J(K,0,T,A) < J(K,0,T,A)

for all w € £5]0,T] and all K € K. It is clear from the second inequality that
w* = 0 is the worst disturbance. We therefore conclude that the pair (k\, 0) is a
saddle point whenever K satisfies (6.1.5).

We may therefore determine a candidate controller by examining the first-order
necessary conditions for the existence of a saddle point. Since this analysis is only
provided for motivational purposes, we will only consider the case of open-loop
controls. Nevertheless, a feedback controller with the correct properties will be
given once the central Riccati equation of H, control has been found.

6.2.2 First-order necessary conditions

Suppose there exists a control signal v* and a disturbance w* satisfying the saddle
point inequalities in (6.2.2). Let z* denote the state trajectory associated with u*
and w*, which satisfies

" = Az* + Biw* + Bau®, x*(0) =0. (6.2.3)
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We consider the optimization problems associated with the two inequalities in
(6.2.2) in turn by invoking standard procedures from the calculus of variations.

The minimization problem

Suppose that w = w* is fixed and that u* is perturbed to u = u* + nu, in which n
is some number. This produces a corresponding perturbation in the state described
by

& = Az + Biw™ + Bau, z(0) = 0.

Subtracting (6.2.3), we see that
r=x" 4+ nI, 0<t<T,

in which 7 satisfies

Thus :
i"(t):/ ®(t, 7)Bat dr, (6.2.4)
0

in which ®(-,-) is the transition matrix corresponding to A. Direct substitution into
the value function J in (6.2.1) gives

J(u7 w*ﬂ T? A)

T
= / (z¥C'Cx* 4+ u*'u* — 2w w*) dt + ¥ (T)Az*(T)
0
T
+2n {/ (@'C'Cx* + a'u*)dt + 7' (T)Az* (T)}
0
T
+n? { / (@'C'Cx + ') dt + a”:’(T)Afc(T)} .
0

Since u* is minimizing, changing the control cannot decrease the value function
J(u,w*, T, A). Therefore, as a function of n, J(u,w*, T, A) must take on its mini-
mum value at 7 = 0. Since the cost function is quadratic in 7, with a minimum at
1n = 0, the coefficient of the linear term must be zero. That is,

T
/ (Z'C'Cx* + @'u*)dt + 7' (T)Az*(T) = 0. (6.2.5)
0
Substituting (6.2.4) into (6.2.5) and interchanging the order of integration gives

T
/ @' (B45A 4+ u*) dt = 0, (6.2.6)
0
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in which A is the adjoint variable defined by
T
At) = / &' (1,1)C'Cx*dr + @' (T, t)Azx*(T). (6.2.7)
t

Since u is arbitrary, we conclude that
u* = =B\, 0<t<T, (6.2.8)

by invoking the Fundamental Lemma of the calculus of variations.

The maximization problem
Suppose now that u = u* is fixed and that w* is perturbed to
w=w* + N 0<t<T. (6.2.9)

The signal w is an arbitrary £2[0, 7] function and 7 is an arbitrary constant. The
perturbation in w produces a perturbation in x:

x=x"+nT 0<t<T.

Here, Z is a function that is determined by w, u* and the system dynamics. Sub-
tracting (6.2.3) from (6.1.2), we obtain

I = Ai + By, #(0) =0,
giving
t
i(t) = / ®(t, 7)Bywdr, (6.2.10)
0

in which ®(-, ) is the transition matrix corresponding to A. Substitution into (6.2.1)
gives

Ju* w, T, A)

T
= / (z*C'Cx* + uu* — y2w*w*) dt + =¥ (T)Az*(T)
0
T
+2n { / (#'C'Ca* — y*0'w*) dt + i’(T)Aw*(T)}
0

T
+n? { / (#'C'C% — y*'w) dt + JE’(T)Aj(T)} .
0
Since w* is maximizing, changing the input to that given in (6.2.9) cannot increase
J(u*,w, T, A). Therefore, as before, the coefficient of the term linear in 1 must be

zero. That is,

T
/ (#'C'Cx* — y*'w*) dt + 3 (T)Az*(T) = 0. (6.2.11)
0
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Substituting (6.2.10) into (6.2.11) and interchanging the order of integration gives
T
/ @' (BIA — y*w*) dt = 0, (6.2.12)
0

in which X is the adjoint variable defined by (6.2.7). Since (6.2.12) must be true for
all @, we conclude that
w* =y 2B (6.2.13)

The two-point-boundary-value problem

We may summarize our findings so far by assembling the dynamics of the saddle-
point state trajectory and the dynamics associated with the adjoint variable into a
two-point-boundary-value problem (TPBVP) that represents both optimal control
problems.

Differentiating (6.2.7) with respect to ¢ gives

MNt)=—A'X—C'Cz*,  MNT) = Az*(T), (6.2.14)

and combining this with (6.2.3), (6.2.8) and (6.2.13) yields

[ zA ] - { —él'c ~ (B :,Z/QBIBD } { xA } : (6.2.15)

with boundary condition

[ f((Tg)) ] - { Axg(T) } : (6.2.16)

What has been shown is that control signal u* and the exogenous input w* associ-
ated with any saddle-point strategy must be given by

u* = —Bj\
w* = 2B,

in which A is a solution to the TPBVP. Note, however, that these are necessary
conditions—we have not shown that a saddle-point strategy exists.

The TPBVP always has a solution, namely the trivial solution 2* = 0 and A = 0.
Whether or not there are also other solutions in addition to the trivial one turns
out to be a crucial question to which we shall return.

6.2.3 The Riccati equation

Although we have obtained formulas for v* and w*, we have not exhibited a full-
information control law K*. To do this, we show that * and A may be related by
the solution of a Riccati equation.
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Let ®(¢,T) be the transition matrix corresponding to (6.2.15):

%@(t,T) =H®(t,T), o(T,T)=1, (6.2.17)
in which
H— A —(BgBé — ’y_zBlBi)
| =C'C —A ’
Then

[ gik((tt)) } B [ iﬁg% iligig } [ qi\*((TT)) ] : (6.2.18)

By eliminating z*(T") and A(T') in (6.2.18) using the boundary condition A\(T) =
Azx*(T), one obtains

with
P(t) = (@91 (t, T) + Boa(t, T)A) (D1 (t, T) + B1a(t, T)A) ",

provided the indicated inverse exists for all times in [¢t,T]. We now have that

u* = —ByP(t)z"
= [ -ByP(t) 0] [ i }
and therefore that
K*=[ -ByP(t) 0] (6.2.19)

is a candidate control law.
Using the result of Problem 3.22, it is easily verified that P is the solution to
the Riccati differential equation

—P=A'P+PA—P(ByB,—~"2B\B))P+C'C, P(T)=A. (6.2.20)

Notice that we can only write the control law as u* = —BjPx* if the Riccati
equation has a solution, which is equivalent to the nonsingularity of ®1(¢,7) +
®15(t, T)A on the time interval [0,T]. If we set v~2 = 0, (6.2.20) reduces to the
LQ Riccati equation (5.2.31), which always has a solution. Hence we expect that
the Riccati equation (6.2.20) will have a solution for ~ sufficiently large. Indeed, if
we reconsider the cost function given in (6.2.1) for a minute, we see that increasing
~ has the effect of paralyzing nature—any activity by the w-player will reduce the
payoff function. In the limit as v — oo, the w-player is completely removed from
the game and the optimization criterion reduces to one of minimizing

T
Jz/ 2 zdt + 2’ (T)Az(T),
0

which is the cost function associated with LQ control.

Our aim in the remainder of this section is to show that the Riccati equation
(6.2.20) has a solution on [0, T if and only if there exists a full-information control
law satisfying the objective (6.1.5).
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6.2.4 Sufficiency: completing the square

Assuming the Riccati equation (6.2.20) has a solution on the time interval [0, 77,
we show that the full-information control law (6.2.19) satisfies the objective (6.1.5).

Theorem 6.2.1 Suppose the Riccati differential equation (6.2.20) has a solution
on [0,T]. Then

u* = —BjPx (6.2.21)
w* = 4 ?BjPz (6.2.22)

results in
J(K,w,T,A) = [lu— U*Hg,[o,T] —?|lw — U’*”g,[o,T] (6.2.23)

for any controller K and any input w. If u = u*, then the objective (6.1.5) is
satisfied for some € > 0. We also have |R.y||jo,1) < 7, which means that the full-
information control law (6.2.21) is a solution to the full-information Heo controller
synthesis problem on the time horizon [0,T].

Proof. Since P(T) = A and z(0) = 0, we have for any v and w that
T
/ 2,/ d /
J(K,w,T,A) :/ (z z— v ww+ E(I Pa:)) dt.
0

Since J
%( 'Px) = i’ Px + o' Px + o' P,

we may substitute for # and P from the state dynamics and the Riccati differential
equation to obtain

J(K,w,T,A)
T
= / (2/C'Cx + v'u — v*w'w + (2’ A’ + w' B} + u'B}) P
0

+2' Pz + 2’ P(Ax + Byw + Bou)) dt

T
/ (z/(C"C + AP + PA+ P)z + u'u — y*w'w
0

+ (w'By + u'B}) Pz + o' P(Byw + Byu)) dt

T
/ (2/P(ByBy — v *B1By) Px + v'u — y*w'w
0

+ (w'By + u'B}) Pz + o' P(Byw + Byu)) dt

T
/ (u + ByPz) (u+ ByPx)dt
0

T
— 2 / (w —~y"2ByPz) (w — v 2B} Px)dt
0

llu =113 10,7y = Vllw — w13 0,775
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with «* and w* as in (6.2.21) and (6.2.22), which establishes (6.2.23).

To prove that this implies the objective (6.1.5) is satisfied, let L be the system
that maps w — (w — w*) when uw = u*. Direct substitution shows that L has
realization

i = (A— BoBLP)x+ Biw (6.2.24)
w—w* = -y ?B{Pr+w. (6.2.25)
Setting K = K™ (i.e., u = u*) in (6.2.23), we have
J(K*,U},T7A) = _72||w_w*||§,[0,T]

= —VILwl3 o

< _6Hw||§,[0,T]

for some positive constant € (e = 72/HL71||[20 T]). The fact that e > 0 is a conse-

quence of the fact that L™! is given by a state-space system, so its induced norm
is finite. We conclude also that || R, ||jo,7] < 7, since A > 0. [

P is nonnegative definite

Suppose (6.2.20) has a solution on the interval [0,T]. Define
T
Ji(K,w,T,A) = / (22 — Y*w'w) dr + 2/ (T) Az (T),
¢

and complete the square to obtain
Je(K,w, T, A) = 2’ () P(O)x(t) + lu— w3 7y — ¥ [lw — w13 0 2y-
Consequently
2 (t)P(t)a(t) = J.(K*,0,T,A) +v°|[w* |3 1, 7p- (6.2.26)
Since J;(K*,0,T,A) > 0 for all ¢, and since (6.2.26) is true for every z(¢), it follows

that P(t) > 0 for all t € [0, 7.2

6.2.5 Necessity

Our discussion of the connection between H, control and differential games showed
that any controller that satisfies the objective (6.1.5) must be a saddle point for
a differential game. By analyzing the first-order necessary conditions for a saddle
point, we obtained a two-point-boundary-value problem; any saddle-point strategy
is given by u* = —Bj\, w* = y~2B{\, in which the adjoint variable \ is a solution

2 Just think of z(t) as an arbitrary initial condition for the optimization interval [t, T].
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to the TPBVP. We then showed that A could be related to x provided the Riccati
differential equation (6.2.20) has a solution on [0, T]. By completing the square, we
then showed that the existence of a solution to the Riccati differential equation did
indeed provide a sufficient condition for the existence of the full-information H.,
control problem. It remains for us to show that the existence of a solution to the
Riccati differential equation (6.2.20) is also necessary for the the existence of the
full-information H, control problem.

To see that Riccati differential equations of this type do not always have a
solution, consider the following example:

Example 6.2.1. Suppose

r = w—Hu

The associated Riccati equation is
—p=1-p*(1-77%), p(T)=34. (6.2.27)
In the case that v > 1, the solution to (6.2.27) is given by

§ — =L tanh(87)
1 — §Btanh(BT)
= p! tanh(tanh_l((Sﬂ) — B7),

p(T)

in which = \/1—~72 and 7 =t — T. Since tanh(-) lies between —1 and 0 for
all negative arguments, p(7) is bounded for all ¢t < T and § > 0. When vy = 1,
p(7) = § — 7, which is finite for finite ¢ and T

In the case that v < 1, the solution to (6.2.27) is

0 ¢~ Ltan(¢r)
p(r) = 1+ 0¢ tan(¢r)

= ¢ 'tan(tan"'(0¢) — ¢1),
in which ¢ = /7~2 — 1. In this case, there will be a finite escape time when
g = tan"(6¢) — T¢

for the first time. That is, when

2¢

g—g ifd=0.

« M 1f6>0
7(7,5)={
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A small calculation shows that the escape time will occur in the interval [0, T (i.e.,

7> —=T) when v < ﬁ This shows that a controller exists for any
3T
> (1) .
1> = -
ESE

In the limit as T — oo, ¥v*(T) — 1. This is the least value of v for which the
infinite-horizon problem has a solution. \V4

We shall prove that the Riccati differential equation (6.2.20) has a solution when-
ever the full-information H., control problem has a solution. Our proof requires us
to return to the question of whether the two-point-boundary-value problem (6.2.15)
has any nontrivial solutions. This question can be rephrased in terms of the ex-
istence conjugate points, which are used in the classical theory of the calculus of
variations.

Conjugate points:

Two times to, ty with ¢ty < ty are conjugate points of the TPBVP
(6.2.15) if there is a nontrivial solution to (6.2.15) such that z(tg) =0
and A(ty) = Az(ty) for a given fixed A.

This is slightly more general than the usual requirement that A(t¢) = 0, which is
only of interest when A = 0. The next example illustrates the conjugate point
properties of the TPBVP.

Example 6.2.2. The TPBVP associated with (6.2.27) is given by

] [ 0 ~4%-1 x
A -1 0 AT
In the case that v < 1 and § = 0, the TPBVP has a general solution of the form
_ —Asin(¢7)
¢ )
in which 7=t —T and ¢ = /vy 2 — 1. If 7* = —7/2¢, we have

A7) = Ag~!, x(r*) =0,
A(0) = 0, 2(0) = A.

A(T) x(1) = Acos(¢T)

This shows that to =T — m/2¢ and ty = T are conjugate points. \V4

Lemma 6.2.2 Let ®(t,7) be the transition matriz associated with the TPBVP
(6.2.15). The matriz ®11(to,ts) + P12(to,tr)A is singular if and only if to and
ty are conjugate points.
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The Riccati equation (6.2.20) has a solution on [0, T'] provided ®11 (¢, T)+®12(¢, T)A
is nonsingular for all ¢ € [0, 7], since

P(t) = (®o1(t,T) + Poa(t, T)A) (P11 (¢, T) + ®1o(t, T)A) L.

We conclude from this lemma that the Riccati equation (6.2.20) has a solution on
[0, 7] if there is no ¢ € [0, T] for which ¢t and T conjugate points.

Proof. Suppose to and ¢y are conjugate points. Then there exists a nontrivial
solution to (6.2.15) such that x(tg) = 0 and A(¢t;) = Az(ts). Hence

0] [ w5 e wa

and we note that x(t;) must be nonzero, because x and A are not identically zero
and ®(¢,ty) is nonsingular for all ¢, ¢;. Since z(¢y) = 0, we have

0= (@11 (to, ty) + Pra(to, ty)A)a(ty),

which means that ®11(to,tf) + P12(to, t¢)A is singular.
Now suppose that ®i11(to,tf) + P12(to, tf)A is singular. Then there exists a
g # 0 such that
0 = (P11(to, ty) + P12(to, tr)A)g.
By considering the solution to the final value problem (6.2.28) with z(ty) = g, we

see that z(tp) = 0 and A(ty) = Az(ty) and also that x(t) is not identically zero.
Hence tg and ¢y are conjugate points. |

From time to time, we will need the fact that the TPBVP

HEEA N N

which arises in standard LQ optimal control enjoys a “no conjugate point” prop-
erty. By setting v=2 = 0 in (6.2.15), we see from Lemma 6.2.2 that this is just a
restatement of the fact that the Riccati equation (5.2.31) associated with the LQ
optimal control problem always has a solution.

Lemma 6.2.3 Let tg < ty be any two time points and let A > 0. The unique
solution to the TPBVP (6.2.29) is the trivial solution x(t) =0, A(t) = 0.

Proof. Let x and A be any solution to (6.2.29). Then

d .
%()\/az) No+ N

= —XNBB')X—2'C'Cxz.
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Integrating from ¢y to ¢; gives
tr
' (tp)Ax(ty) = —/ (NBB'X\ + 2'C'Cx)dr.
to

Since z'(ty)Axz(ty) > 0, we must have
B'XA =0, Cz =0, Az(ty) =0.

Consequently & = Az with z(tg) = 0 and A = —A’\ with A(t;) = 0 and we conclude
that the trivial solution is the only solution to (6.2.29). [ |

We are now ready to prove the main result of this section.

Theorem 6.2.4 Consider the linear system (6.1.2) with output (6.1.4) and cost
(6.2.1) with A > 0. If there exists a controller K € K such that

J(K,w,T,A) < —e|lw|3 57 (6.2.30)

for allw € L£2[0,T] and some € > 0, thent € [0,T] and T are not conjugate points.
Consequently, the matriz ®11(t,T) + P12(¢t, T)A is nonsingular for all t € [0,T)
and the Riccati differential equation (6.2.20) has a solution on [0,T].

Proof. Choose an arbitrary t* € [0,T]. To show that t* and T cannot be conjugate
points, we must show that the trivial solution is the only solution to (6.2.15) that

has the property .
{ i((tTg ] _ [ MO(T) ] . (6.2.31)

Let z*, A be any solution to (6.2.15) satisfying (6.2.31). Define the truncated
cost function

T
Jo (K, w, T, A) = / (22 — Y*w'w) dt + o' (T)Ax(T).
-
For any input w such that w(t) = 0 for ¢t < ¢*, we obtain u(t) = 0 and z(t) = 0
for t < ¢*. This is because z(0) = 0 and K { 8 } =0 for K € K. Consequently,

w(t) =0 for ¢ <t* implies that
J(K,w,T,A) = Je(K,w,T,A).

We now show that u* = —Bj A\ solves the open-loop minimization problem

T
min/ (#'C'CE 4 u'v — y*w* w*) dt + 2/ (T)Ax(T), (6.2.32)
¢

u *
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subject to _
T = A% + Byw* + Bau, zZ(t*) =0, (6.2.33)
in which w* = y72B}\. The tilde is used to distinguish between the state trajectory

in (6.2.15), the state trajectory resulting from K and the state trajectory associated
with the minimization problem in (6.2.32), which may be analyzed in exactly the
same manner as the analysis associated with minimizing the right-hand inequality
in (6.2.2). The solution may be summarized as

Uopt = —Bop, (6.2.34)
with
—p=Ap+C'Cz, p(T) = AZ(T). (6.2.35)
The details are requested as an exercise. Combining this with (6.2.33) gives the
following TPBVP

] A BBy [ % Byw*
= [ee TG
Z(t*) B 0
] - e ]
Using w* = v~2B{\ and subtracting (6.2.15) gives
[%—5&] B { A BgBé:||:i'$:|
p—A| | -C'Cc A p—A |’

(838 - (oo
=T | | A@E-=a)(T) |7
which has the unique solution & — x = 0, p — A = 0 by Lemma 6.2.3. Thus
Uopt = u* = —Bj\ is the solution of the minimization problem (6.2.32).

The cost of the minimizing control u* = — B} is zero, since

T
/ (2¥'C'Ca* +u*'u* — Y w*'w*) dt + 2 (T)Az* (T)
¢

*

T

d

/ (z*'C"Ca* + N By BYA — v 2N B1BiA + %(x*/)\)) dt
"

T _ d
_ /f (=2 (+ AN) = X — Az) + Z (') dt

= 0.
Furthermore, since u* is the solution to the minimization problem (6.2.32), we have

T
Jp (K, w*, T,A) > min/ (#'C'CE 4 u'u — ?w* w*) dt + ' (T)Az(T)
t

u .

T
/ (z*'C'Cx* +u*'u* — 2w w*) dt + 2*(T) Az*(T)
t

*

= 0.
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But
Jp- (Kaw*vTvA) = J(K,’LU,T,A) < _EHU)H%,[O,T]

for all w € L£2[0,T] that satisfy w(t) = 0 for ¢ < ¢*. Since this holds for the

particular input
w*(t) t>t*
w =
0 0<t<tr,

we must have w*(¢) = 0 for all ¢ € [t*,T]. This reduces the TPBVP (6.2.15) to the
TPBVP

] _ A —ByB} z* () ] 0
A | —Cc'c A A XT) | | Az (T) |-
We now conclude that A and z* are identically zero from Lemma 6.2.3.
Since we have shown that any solution to (6.2.15) that satisfies (6.2.31) must
be trivial, we conclude that ¢* and T are not conjugate points. Since ¢t* was chosen

arbitrarily, we conclude that ¢* and T cannot be conjugate points for any t* € [0, T
when there exists a controller K satisfying (6.2.30). [ |

Theorems 6.2.1 and 6.2.4 combined state that there exists a causal, linear, full-
information controller satisfying the objective (6.1.5) if and only if the Riccati dif-
ferential equation (6.2.20) has a solution on [0, T]. In this case, one controller that
achieves the objective is the memoryless, state-feedback control law v = —Bj Pz, in
which P is the solution to the Riccati differential equation (6.2.20). We also remark
that the only facts concerning the controller that were used in the necessity proof
were: (a) causality and (b) homogeneity, meaning that the

k]3]0

Thus, existence of a solution to the Riccati equation (6.2.20) is also necessary for
the existence of causal, homogeneous, but possibly nonlinear, controllers that satisfy
(6.1.5).

6.2.6 All closed-loop systems

In the last section, we observed that the “central controller” is only a function of x
although measurement access to w is allowed. We will now show how to construct
all control signals resulting from full-information controllers K that satisfy

J(K,w,T,A) < —e|lwll3 .0 (6.2.36)

for all w € L5[0,T] and some € > 0. Equivalently, we construct all closed-loop
operators generated by full-information controllers that satisfy (6.2.36).

Because of the redundant information inherent in the full-information config-
uration (see Section 4.2.2), this does not generate all full-information controllers
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that lead to (6.2.36). The characterization of all controllers, rather than all control
signals, is dealt with in the next section.

We know that there exists a full-information controller with the property (6.2.36)
if and only if the Riccati equation (6.2.20) has a solution on [0, 7]. In addition,

u* = —BiPx (6.2.37)
w* = ~%B|Px (6.2.38)
results in
J(K,w,T,A) = [lu—u” |§,[O,T] — 7w —w* %,[O,T]' (6.2.39)
Consider the class of controllers obtained by setting
u—u=U(w—w"), (6.2.40)

in which U is causal and linear. This is a full-information controller, since it is just
u=—(ByP +~*UB{P)z + Uuw.
We claim that a controller generated by (6.2.40) satisfies (6.2.36) if and only if
1Uljo,7) < - (6.2.41)
To see this, rewrite (6.2.39) as
J(K w0, T,8) = [U(w — w302 = 721w — "3 0.1 (6.2.42)

and let L be the system that maps w to w — w*, which was given in equations
(6.2.24) and (6.2.25). If [|[U]||jo,7) < v, we have

J(K,w,T,.A) < ([Ulf1 —+)w—w*

3[0 T
= (||U||[20,T] - WQ)HLU’H%,[O,T]

< —€||w||§,[o,T]

for some ¢ > 0 and we conclude that (6.2.36) holds. Conversely, if (6.2.36) is
satisfied, then

U (w — w*)H%,[O,T] - 72”“’ - W*”g,[o,T] < —ellw 3,[0,T]

= =L (w—w")|3 01

€ 2
< —mﬂw - w*H2,[O,T]

for all w and hence also for all w—w*, since the system L : w — w—w* is invertible.
Thus U satisfies (6.2.41).

To conclude that (6.2.40) generates all closed loops that satisfy (6.2.36), we need
to show that any control signal (and hence any closed loop) that can be generated
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with a full-information control law can also be generated by a suitable U in (6.2.40).
Substituting
u=Lix + Law (6.2.43)

and (6.2.38) into the dynamics (6.1.2) gives
i = (A+~y?BiB{P+ By(Li + v 2LyBP))x + (B1 + BaLo)(w — w*).
Therefore
x = Ly(w — w"),

in which L3 is a causal, linear system. Substituting (6.2.37) and (6.2.38) into
(6.2.43) gives

u—u* = (Li+ ByP+~y 2LyB,P)x + Ly(w — w*)
= ((Ly + BYP +~2LyBP)L3 + Lo)(w — w*)
= U(w—w")

for some causal U. This establishes the existence of the causal system in (6.2.40),
which may also be written in the LFT form

B -ByP  0]I x
wer ([ o) [ 1] 6240

We therefore conclude that all control signals and closed loops that satisfy (6.2.36)
are generated by letting U in (6.2.40), or equivalently (6.2.44), range over the space
of causal linear systems that satisfy ||[U||o,7] < 7-

Figure 6.2 shows the closed loops generated by (6.2.40) and hence all closed
loops generated by full-information controllers. If w = w*, there is no signal into
the U parameter and the corresponding control is given by u* (irrespective of U).
If w # w*, we do not have to use the control u* as a “downgraded” control may
still be adequate—the controller only has to “play well enough” to ensure that
J(K,w,T,A) < —e||w|\§,[07T]. By choosing U = 0, we may insist that the controller
always “plays” u = u*.

6.2.7 All controllers

Because of redundancy in the full-information configuration, equation (6.2.40) does
not capture all the controllers, even though it does capture all the possible control
signals. In order to capture all the controllers, we use the “duplicate state” technique
described in Section 4.2.2 to augment the LFT in (6.2.44).

Equation (6.2.40), or (equivalently) (6.2.44), gives u = u* + r, in which r =
U(w — w*). To obtain all controllers, we augment r with the signal V(x — ), in
which T is a copy of the state and V' is any causal, linear system. This gives

= (A—BgBéP)&,‘\—FBlw—f—BQT
= u+r
= U(w—w*)+V(z—17I).

3 & ')
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!

Bl UH D
z
—~O—e B, J -+ ¢
A [
u*
. —B,P |+
2B P
* iw*
u—u -
® U A4 9 v

Figure 6.2:  All closed-loops derived from full-information control laws.

These equations, together with the equations (6.2.37) and (6.2.38) describing w*
and u*, give

u _ 0 [ -By P 0] I [ x ]
[w—lf‘} 0 —BIP T 0 w
T—T —I I 0 0 r
w— w*
r= (U V] { i ]
Setting
A= BByP | | 0 By | B

(6.2.45)
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e K=F/(K, | U V). (6.2.46)

Since the (1,2)- and (2,1)-blocks of K, have causal inverses, this LFT, which is
illustrated in Figure 6.3, generates all full-information controllers. As before, the
closed-loop satisfies (6.2.36) if and only if ||U [|j0,7) < -

!

By
—O By O f
[ I
A
—BLP
1% &
r 9 w N
w
U ‘—é)‘_—H W_QBQP e—|
U u*
o . —BLP |

Figure 6.3: All full-information controllers.

Main points of the section

1. There is a full-information controller satisfying the objective (6.1.5)
if and only if the Riccati equation (6.2.20) has a solution for all
t € [0,7]. A controller which achieves the objective is the linear,
memoryless, state-feedback control u = — B} Pz.

2. P(t) > 0 for all times ¢ < T for which a solution exists.
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3. Reviewing the proof of the necessary conditions in Theorem 6.2.4,
the only properties required of the controller were: (a) causality and
8 = 0). It follows that (6.2.20) has a
solution on [0,T7] if and only if there exists a causal, homogeneous
controller satisfying (6.1.5). Therefore, if a causal, homogeneous
but possibly nonlinear controller satisfying the objective (6.1.5)
exists, there are also linear controllers satisfying this objective.

(b) homogeneity (i.e., K {

4. All full-information controllers that satisfy (6.1.5) are a generated
by
K=F/(K,|[U V],

in which U and V' are causal, linear systems with ||U||jp. 1) < 7. A
state-space realization for K, is given in (6.2.45). The parameter
V has no effect on the control signal or the closed loop.

6.3 The infinite-horizon case

We now focus our attention on the problem of obtaining necessary and sufficient
conditions for the existence of a stabilizing, full-information controller that satisfies

HszHoo <7.

Our approach is to extend the finite-horizon results to the infinite-horizon case
by taking limits as the horizon length T tends to infinity. The technical difficulties
associated with this approach are concerned with establishing the existence of the
limit P = limy_, o P(¢,T,A) and in guaranteeing that the control law u* = — B} Pz
has certain stabilization properties. The notation P(¢, T, A) is used to flag the fact
that P(t) satisfies the terminal condition P(T) = A.

In this section, we restrict our attention to the time-invariant plant

& = Axz+ Byw+ Bau, z(0) = xo, (6.3.1)
_ Cz '
L = [ o } . DD=1I, (6.3.2)

in which each of the five matrices is constant. We allow the possibility of nonzero
initial conditions in order to address stability issues.

6.3.1 Preliminary observations

In an attempt to gain some insight into potential difficulties, we begin by deriving
a closed formula for P(t,T,A). Since

A —(BaBy —y72B1BY)

H=1 _oe A

(6.3.3)
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has the Hamiltonian property SH = (SH)', where
0 -1,
=[]
there exists an eigenvector matrix Z satisfying

H[Zn Zm}[zn Z12]{A 0}
Zor  Zaa Zor  Za 0 —-A )

where A is n x n such that ReA;(A) < 0. A routine calculation, which is left as an
exercise (Problem 6.5), demonstrates that

P(t,T,A) = Uy (t, T, A) U (¢, T, A), (6.3.4)
in which
Uy (t, T,A) = (Z11+ leeA(T*t)XeA(T—t))
Uo(t, T, A) = (Zgg + ZaoeMT =D X AT 1)
X = _(ZQQ_AZ12>_1(Z21 _AZ]_I).

If A is asymptotically stable and nothing “goes wrong”, P(t,T, A) will converge to
the constant matrix II = Z5; Zﬂl at an exponential rate equal to twice the largest
real part of any eigenvalue of A. Since P(¢,T,A) > 0 for allt < T, II > 0. In
addition, P = 1II is a solution of the algebraic Riccati equation

PA+ A'P— P(ByByY —y?BB))P+C'C =0 (6.3.5)

such that A — (ByBb — v~ 2B B})P is asymptotically stable (since it has the same
eigenvalues as A). This solution will be referred to as the stabilizing solution to the
algebraic Riccati equation.

Notice that the matrix A — (BeB) — vy~ 2B B})P is the closed-loop matrix cor-
responding to the implementation of the control laws

u* = —-BjPx (6.3.6)
w* = ~ % B|Px 6.3.7
in (6.3.1). If we use the control law u* = —B) Px and any open loop w, one obtains

T = (A - BQBéP)J) + BlU}7

which we will also require to be stable. It turns out that this stability property is
assured by the nonnegative definiteness of P.

Unfortunately, there is a lot that can go wrong with the solution given in (6.3.4).
In particular:
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e The matrix X may not exist due to the singularity of (Zoo — AZj2). This
focuses attention on the need to select a suitable terminal condition A.

e It is possible that A may have imaginary axis eigenvalues. In these cases,
P(t,T,A) may not converge to a finite limit. This situation may occur in the
optimal case, which we do not consider in this chapter.

e The matrix (Z11 + ZlgeA(T_t)XeA(T_t)) may be singular for some ¢ = t*; this
gives rise to a finite escape time at t*.

e The limit limy o (Z11 + Z12e*T =9 XeAT=8)) may be singular leading to an
unbounded P. This situation is also associated with the optimal case.

Example 6.3.1. To illustrate these ideas, we re-examine Example 6.2.1, in which
the system is described by

& = w+u, z(0) =0,

- M

This problem has a = 0, by = 1, b = 1 and ¢ = 1, and the associated Riccati
equation is
—p=1-p"1-77%), pT)=0
When v > 1,
p(t,T,8) = B~ tanh(tanh ™' (38) — B(t — 7)),

in which 8 = /1 —~~2. The limit 7 = limr_ p(¢,T, ) exists and is given by
7w = 37!, It is easy to see that this is the positive solution of the algebraic Riccati
equation

0=1-p*(1—~72). (6.3.8)

Notice also that a — b3m = —3~! and a — (b3 — v~ 2b3)7 = —[3, which are both
asymptotically stable. In this case, therefore, the solution of the Riccati differential
equation approaches a solution of the corresponding algebraic equation with the
correct stability properties.

When ~ < 1, the solution to the Riccati equation is

p(t,T,8) = ot tan(tan_l((5¢) — ot — T)),

with ¢ = y/7~2 — 1. In this case, p(t,T, ) does not converge as T'— oo and indeed
there is no stabilizing solution to the algebraic Riccati equation (6.3.8). \V4

It is relatively straightforward to show that if (6.3.5) has a stabilizing solu-
tion which is nonnegative definite, the full-information controller (6.3.6) satisfies
[R.wlloo < 7. We verify this in the next section. Subsequent sections establish
that the existence of a stabilizing solution to (6.3.5) which is nonnegative is also
necessary for the existence of a full-information controller such that |R.y|lc < 7,
provided certain conditions on (A4, By, C) are satisfied.
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6.3.2 Sufficiency

Theorem 6.3.1 Suppose the algebraic Riccati equation (6.3.5) has a solution P >
0 such that A — (BeBb — yv~2B1B})P is asymptotically stable. Then the control
law w = —B4 Pz is stabilizing and satisfies || Rywl|loo < 7. (Raw is the closed-loop
mapping from w to z.)

Proof. Applying the control law (6.3.6) leads to the closed-loop system R.,, with
realization

& = (A— ByBLP)z+ Biw (6.3.9)
C
z = { _DByP ]:c (6.3.10)

To see that this system is stable, re-write (6.3.5) as
P(A — ByB4P) + (A — BaByP)' P+~ ?PBB{P + PByByP + C'C = 0.

Since P > 0, it follows from Theorem 3.1.1 that every unstable mode of A —
By B, P is unobservable through [ —~"'PB, PB, (' }/. However, since A —
(ByBy — y~2B1B})P is asymptotically stable, we conclude A — By B, P can have
no unstable mode that is unobservable through [ —-~v~'PB, PB, (' ]/ from the
Popov-Belevitch-Hautus test and the identity

-~ iIB/ P
A—(ByBy —y ?BiB))P = (A—B;B,P)— [ v'B; 0 0] BLP
C
Hence A — By B4 P is asymptotically stable.
Since A — By B} P is asymptotically stable, the bounded real lemma implies that
[|R.wllco < v if and only if there exists an X such that
X(A — ByByP) + (A~ ByBLP) X + v 2X BB, X + PByB,4P + C'C = 0,

with (A — BaB4P) + v~2B1 B} X asymptotically stable. Since X = P is such a
solution, we conclude that || R,y |leo < 7. [

6.3.3 A monotonicity property

During the development of the necessary conditions for the existence of H,, con-
trollers in the infinite-horizon case, we use the fact that P(¢,T, A) is monotonic for
certain A’s when the plant is time-invariant.

Lemma 6.3.2 For time-invariant plant matrices, P(t,T,0) and P(t,T,Py) are
monotonically nonincreasing as functions of t. The matriz Py is any solution to
the algebraic Riccati equation

A'Py+ PyA— PyByByP, +C'C =0,

associated with LQ optimal control.
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Since the plant is time-invariant, P(¢, T, A) is a function of T' — ¢ only:
P, T,A)=P(r,T —t+1,A).

It follows that P(¢,T,0) and P(t,T, P;) are monotonically nondecreasing as a func-
tions of T

Proof. Differentiating (6.2.20) with respect to ¢ gives

/

—P =P(A— (ByBy —v ?B1B})P(t)) + (A — (B:By — v >B1B})P) P.
Hence P is given by ) .
P(t) =@, T)P(T)®'(t,T),
in which ®(-, -) is the transition matrix associated with —(A— (B2 B,—y 2B, Bi)P)/.
Now note that P(T) is obtained from P(T) = A:

—P(T) = AA+A'A—A(ByBy—~72BB))A+C'C
7 c'coif A=0
o ’Y_ZPgBlBiPQ if A=P. u

6.3.4 Assumptions

The aim of this section is to find a minimal set of hypotheses on which to base
the necessity theory. If a stabilizing controller exists, it is necessarily the case that
(A, Bs) is stabilizable (see Appendix A). The question of assumptions pertaining
to the pair (A, C) is more subtle. We will attempt to uncover the essential issues
by studying an example.

Example 6.3.2. Consider the system

T = ar+w-+u, z(0) =0,
cr
u b

in which x, w and w are scalar. Since by = 1 and by = 1, the algebraic Riccati
equation is

z

2ap — p*(1=77%) +* =0,

which has solutions

a+ \/a2 +c2(1—~72)
1—~—2

)

provided 7 # 1. Note also that

a—3—7)p = a—(1—-77%)p
Fva? +c2(1—~2).
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If v = 1, the only solution is p = —c?/2a. In this case, a — (b3 — v~ 2b?)p = a, which
is stable if and only if @ < 0, which is equivalent to p > 0. This corresponds to the
optimal case, which will be considered in Chapter 11.

1. Suppose a and c are not both zero and v # 1. Then there exists a real solution
if and only if

2

a?+c?’

If v = Ymin, the conditions of Theorem 6.3.1 are never satisfied, because
a — (b3 — v~2b3)p = 0 is not asymptotically stable. If ¥ > 7,,in, the solution
with the + sign is the stabilizing solution and it is nonnegative if and only if
~ > 1. Therefore, by Theorem 6.3.1, there is a controller such that || R |/c <
~ for any v > 1.

2 2

2. Suppose a and ¢ are both zero and v # 1. Then p = 0 is the only solution to the
Riccati equation and this solution is never stabilizing, since a— (b3 —v~2b3)p =
0. If v = 1, any p will satisfy the Riccati equation but there is no stabilizing
solution because a — (b3 — v~ 2b3)p is still zero. That is, there is no solution
to the Riccati equation that satisfies the conditions of Theorem 6.3.1 when
a and c are both zero. This is a problem, because the controller ©v = —kx,
k > 0, results in the stable closed-loop system

sz = - |: (13 :l
s+k

and ||R.y|lcc = 1. Thus there is a full-information controller (v = —z for
instance) that stabilizes the system and satisfies || Ry |00 < 7 for any v > 1.

We conclude that Theorem 6.3.1 is not necessary for the existence of full-
information controllers that satisfy | R.,||cc < v when a and ¢ are both zero. v/

The reader may begin to wonder why we bother with the Riccati equation at
all, since it is does not provide a necessary condition for the existence of an H.o
controller under all circumstances. The answer contains two parts:

1. The existence of a stabilizing nonnegative solution to the Riccati equation is
necessary when (A, C') has no unobservable modes on the imaginary axis. This
is what we will prove in the section dealing with necessity. We note that this
condition corresponds to assuming a and c are not both zero in Example 6.3.2.

2. We may augment the objective by making the substitution
L Cr | - Cux
" | Du “7 | Du
in such a way that K satisfies |[R.u|« < 7 if and only if K satisfies

IR, wlleo < v for some C, such that (A,C,) has no unobservable modes
on the imaginary axis.
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We now verify that a C, of the form

o-|¢]

with the desired properties can always be chosen.

(a) Suppose a controller K is internally stabilizing and satisfies | R |0 <
v, in which
Cz
2o = | Lx
Du

and (4,[ C" L ]/) has no unobservable mode on the imaginary axis.
Then K also satisfies |R.w|lco < 7. This follows from the identity
Izall3 = ll2113 + I L]3.

(b) If K stabilizes the system, the closed-loop system W : w +— x is stable
and hence p = [|[W||o < oo. If K also satisfies |R.,w|lco < 7, We can
choose € > 0 such that |R,y||cc < ¥ — €. Now choose L such that (i)
|L|| < €/p and (i) (4,[ C" L' }/) has no unobservable modes on the
imaginary axis. For example, choose L = ¢/ul. Then

[Rzpuwlloe < [[Rzwlloo + [[ LW |o
€
< vY—€+—p
I
= ")/.
We conclude that solving the original problem is equivalent to solving an
augmented problem for some L. Put another way, if (A, C) has unobservable

modes on the axis, the designer should include some additional objective. We
illustrate this procedure with another example.

Example 6.3.3. Consider the system in Example 6.3.2 with ¢ = 0 and ¢ = 0,
and recall that w = —kx, k > 0, is stabilizing and satisfies ||R.y|lcc = 1. Hence
|R.wllco < 7y can be achieved for any v > 1. We now show that all such controllers
can be generated by considering the augmented objective

0
Za= | fx |,
U

in which £ > 0. The Riccati equation for the modified problem || R, |lcc < 7 is

P17+ =0,
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which has a stabilizing nonnegative solution
l

P=—F—

1—772

if 4 > 1. The corresponding controller is w = —pz. Thus, for any ¢ # 0, the
conditions of Theorem 6.3.1 can be satisfied if and only if ¥ > 1.

Since ¥ > 1 if and only if v =4 — € > 1 for some € > 0, we conclude that the
original problem (with ¢ = 0) has a solution for any v > 1. Furthermore, u = —px
generates all controllers of the form v = —kx as £ is varied—selecting an £ in the
augmented problem is equivalent to selecting a particular k£ that solves the original
problem. \V4

The standard assumptions

1. The pair (A, Bs) is stabilizable.

2. The pair (C, A) has no unobservable modes on the imaginary axis.

Note that these assumptions are both necessary and sufficient for the existence
of a stabilizing solution to the algebraic Riccati equation

A'Py+ PyA— PyByBYP, +C'C =0 (6.3.11)

associated with LQ optimal control.

6.3.5 Necessity

We now want to show that the existence of a full-information H., controller implies
that the algebraic Riccati equation (6.3.5) has a nonnegative stabilizing solution.
We assume from now on that the standard assumptions hold. Our proof takes the
following form:

1. We show that if the infinite-horizon problem has a solution, then so does the
finite-horizon problem for any horizon length. It then follows from our finite-
horizon results that the Riccati differential equation (6.2.20) has a solution
over any finite interval.

2. We show that the solution to the Riccati differential equation is bounded.
Since it is also monotonic, the solution tends to a finite limit as the horizon
length tends to infinity. Since this limiting solution must be constant, it
satisfies the algebraic Riccati equation (6.3.5).

3. We show that the solution to the algebraic Riccati equation obtained by letting
the horizon length tend to infinity has the required stability properties.

Before developing these ideas, we mention that the above statements are only
true if the terminal condition P(T') = A is selected correctly. To illustrate this we
consider another example.
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Example 6.3.4. Consider the system

T = z+w+tu

)
z = ,
u
its associated Riccati differential equation
—p=2p—p*(1 -~y +c*  p(T)=54, (6.3.12)
and its algebraic counterpart
0=2p—p*(1—~72)+

As noted in Example 6.3.2, there is no solution that satisfies the conditions of the
Theorem 6.3.1 unless v > 1. In this case, the required solution is

149
pil_’y_Q’

with ¢ = /1 +c2(1 —~v72).
Now note that the solution to the differential equation is

@6 — (6 + ¢) tanh(p(t — T))

p(t,T,0) = ¢+ (1—6(1—~2))tanh(p(t — 1))
If § = 0, then
2
Jim p(t,T,0) = ]
Ao +1)
= o1
o Pe+1)
G
= %, provided ¢ # 0.

Hence, provided ¢ # 0, we obtain the correct solution to the algebraic Riccati
equation. (We invite the reader to show that this holds for all 6 > 0.)
When ¢ = 0, we have ¢ = 1 and

26

1—(1=6(1—772)

= %, provided 9 # 0.
1—~—

Jim p(t,T.8) =

Thus, by selecting § # 0, we can always get the differential equation to converge to
the appropriate solution to the algebraic equation (when one exists). \V4
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If (A, C) is detectable, the terminal condition A = 0 will suffice. If (A4, C) is not
detectable, we can ensure that the correct solution to the algebraic Riccati equation
(6.3.5) is obtained by selecting A > 0. One cannot use any A > 0, but as we will
show, A = P, always works—P is the stabilizing solution to (6.3.11).

A solution to the algebraic Riccati equation exists

Lemma 6.3.3 Suppose the standard assumptions hold and Py is the stabilizing
solution to the L@ Riccati equation (6.3.11). Suppose also that there is a full-

information controller K such that the closed-loop system R, defined by

& = Azxz+ Biw+ Bau, z(0) =0,
_ Cz
== Du
« - R[5
w

is internally stable and satisfies | Ryyl|co < v. Then:
1. The Riccati differential equation
—~P=PA+A'P—P(ByBy—~y2B,B))P+C'C, P(T)=P,, (6.3.13)
has a solution P(t,T, Ps) for all finite t, T witht <T.

2. P(t,T, Py) is nonnegative definite and uniformly bounded above. That is, there
is a real number B such that for allt <T

0< P(t,T,Py) < pI.
3. The limit I1 = limy_, o P(t,T, P2) exists, is independent of t, is nonnegative

and satisfies the algebraic Riccati equation (6.3.5). We note, in addition, that
II1> P

Proof. Because of the need to address stability issues, it is necessary to consider
nonzero initial conditions:

T = Az + Biw + Bou, x(0) = xo.
Note also that for any 0 < T < oo and any w € £5]0, 00) such that

w(t) =0 for all t > T, (6.3.14)
we have
213 = 2 wl3 = / (+'2 — y2u'w) dt
0
T o0
= / (z'z — y*w'w) dt +/ 2z dt
0 T

Y

T [eS)
/ (22 — y*w'w) dt + min/ Z'zdt.  (6.3.15)
0 K Jr
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The notation Z is used to distinguish an arbitrary output trajectory from that
obtained with the controller K. As is well known from classical LQ theory, the cost
function

/ Fzdt = / (#C'CF + @) dt,

T T
subject to
Tz = Az + Bsu, z(T) = z=(T),
i = K { N }
W
is minimized by @ = —B4 P2 and
min Z'zdt = 2/ (T)Pox(T).
K Jr

Hence, substituting into (6.3.15), we have
1215 = 21wl > J(K,w, T, Py), (6.3.16)

in which

T
J(K,w,T, P) = / (22 — Y*w'w) dt + o' (T) Pox(T),
0

for any w € £3]0, 00) that satisfies (6.3.14). With this background, we now establish
each of the claims of the lemma:

1. Let 29 = 0. Then || R0 <7 is equivalent to ||z]|3 — v?||w||3 < —e|lw]|3 for
all w € £5[0,00) and some € > 0. Using (6.3.16), for any w € £3]0,c0) that
satisfies (6.3.14), we have have

IR, w,T, Py) < —clwll} = —cllwll3 1. (6.3.17)

We conclude that (6.3.17) holds for all w € £2[0,T] and hence that P(¢,T, P»)
exists on [0,7] by Theorem 6.2.4. As T was arbitrary and P(¢t,T, Ps) =
P(r,T —t+ 1, Py) for any 7, we conclude that P(¢t,T, P) exists for all finite
¢ T with t < T.

2. Let w be an arbitrary signal in £5]0,00) and z( an arbitrary initial condition.
The response z of the closed-loop system depends on zy and w and by linearity
may be decomposed as

Z = Zgo t+ 2w
with z,, and z,, denoting the contributions to the response due to xg and w
respectively. Since || R,y |00 < 7, we have ||2,[|3 —72||w||3 < —¢||w]|3 for some
¢ > 0. Also, as the controller K stabilizes the system, |220 |2 and ||z |2 are
finite,
12113 < Nzwo 13 + l2wll3 + 21220 121120 12
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and [|zg, ||l2 < aflzo]|| for some number «. Using these properties we have

1203 = 2 llwllz < llzwll3 =7 lwl3 + llzsoll + 202, [l2]1 2012

< —elwll3 + a®[lzoll* + 2yallzo| [wll2

2va
= ol ~ el - 22 o | w]2)
2.2
Yo o
(02 + 22 lolP = elholl = 22 anl)?
2a2
< (a2 + %) lzol2 = Bllaol|? (6.3.18)

for all zg and all w € £L5[0, 00).

Now choose T finite and let w?. be the particular £5[0, c0) signal

w (t) _ 7—2B{P(t,T7 Pg)x(t) if t<T
! 0 it t>T.

Since wi. satisfies (6.3.14), it satisfies (6.3.16). By completing the square using
P(t,T, P;) we obtain

J(K,wy, T, Py) = ayP(0,T, Py)wo+ |lu—will3 0.1
.’176P(07T, PQ)Q?(),

%

in which w’(t) = =By P(t,T, P;)x(t). Hence

J(/IE’UGVTa P2)
Izll2 = ¥?(lwyll3 by (6.3.16)
Bllzol? by (6.3.18).

JJSP(O, T7 PQ).TO

IAINCIA

Since x( was arbitrary, we conclude that P(0,T, Py) < I. The result follows
for all t < T because P(t,T, P,) = P(0,T —t, P3).

As a final remark, we note that P(t, T, P») > 0 because the terminal condition
is nonnegative definite.

3. Since P(t,T,P;) is monotonic (by Lemma 6.3.2) and uniformly bounded
(when a controller exists such that |R.w|eo < 7), it converges to a finite
limit IT as T" — oo. The matrix II is independent of ¢ because P(t,T, Py) =
P(0,T—t, Py), so that IT = limr_, o P(0,T, Py). We must have IT > 0 because
P(t,T,Py) > 0 for all t < T. The monotonicity property also ensures that
I > Ps.

Since the solution to a Riccati equation depends continuously on the terminal
condition, we have

I = lim P(t,T,P,)

T—o00
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= lim P(t,ThP(TlaT»P?))

T—o0

= P(t,Tl, lim P(Tl,T,PQ))
T—o0
P(t,T,1I).

That is, IT satisfies the Riccati differential equation with the terminal condition
P(Ty) =1I, for any T7. Consequently, since IT is constant, it must be a solution
to the algebraic Riccati equation

A+ AT —TI(ByBy — v 2By Bl + C'C = 0, (6.3.19)

and the lemma is proved. |

Parametrization of the closed-loop system

In the finite-horizon case, we showed that all closed-loop systems that could be
generated by full-information controllers could also be generated by controllers of
the form v = v* + U(w — w*). We will use this parametrization to show that
IT = limy_, P(0,T, P») has the required stability properties whenever a stabilizing
controller exists such that | Ry |eo < . Our first result shows that the asymptotic
stability of A — By BSII follows from the fact that 11 > Ps.

Lemma 6.3.4 Suppose the standard assumptions hold and that P is any solution
to the algebraic Riccati equation (6.3.5) such that P > Py. Then A — ByB4P is
asymptotically stable.

Proof. Subtracting (6.3.11) from (6.3.5) gives
(P — P))A+ A'(P — Py) — P(ByB, — v 2B B})P + P,ByBYPy = 0,
which we re-write as

(P — P2)(A— BaByP) + (A — B2 By P) (P — Py)

+(P — Py)ByBY(P — Py) + v 2PB,B}P = 0. (6.3.20)
Next, we observe that
BL(P — P

is detectable, since A — By B} P, is asymptotically stable and

By(P — P)

A—ByBIP)+ | By 0 [
( 22) [ 2 ] Bip

}:m—&&&)

From (6.3.20) and Theorem 3.1.1, we conclude that A — By B5 P is asymptotically
stable. |
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The next result reminds us that closed-loop systems and control signals gener-
ated by full-information controllers may be parametrized in terms of a U-parameter.

Lemma 6.3.5 Suppose P is a solution to (6.3.5) such that A — Bo B, P is asymp-
totically stable. Then the control signal generated by the full-information controller

u=| K, K | { . } (6.3.21)

is also generated by a full-information controller of the form
u= —ByPx+U(w—~y 2B|Px). (6.3.22)
Furthermore, (6.8.21) is stabilizing if and only if (6.3.22) is stabilizing.

Proof.  That (6.3.21) and (6.3.22) generate the same control signal and closed-
loop system follows from calculations which mimic those given in Section 6.2.6.
Furthermore, controller (6.3.22) is stabilizing if and only if (6.3.21) is, because
u = —B4P is a stabilizing controller. ]

A stabilizing nonnegative solution exists

We are now in a position to show that II = limy_, P(0,T, P3) is the stabilizing
solution to (6.3.5).

Theorem 6.3.6 Suppose the standard assumptions hold and Py is the stabilizing

solution to (6.3.11). If there is full-information controller K such that the closed-
loop system R, defined by

z = Ax+ Biw+ Bou, x(0) =0,
_ Czx
== Du
v = ’Iz[]
w

is internally stable and satisfies | Ryw|loo < 7, then II = limp_,oo P(0,T, P) is the
stabilizing solution to (6.3.5) and II > Py > 0.
In addition,
u=—Byllz +U(w — v 2B|Ix),

in which U € Ho and |U||eo < 7y, generates all the closed-loop systems satisfying
|R.wllco < 7y that can be generated by stabilizing, full-information controllers.

Proof. By Lemmas 6.3.3 and 6.3.4, IT = limp_,o, P(0,T, P») exists, II > P, > 0
and A — By BSII is asymptotically stable. By Lemma 6.3.5, there exist a stabilizing
controller of the form

u= —Bllz + U(w — vy 2B}1lz)
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such that ||R.w|eo < 7. For such a controller, R.,, is given by the LF'T

R, = 7‘7:@(-&@’ U/,Y)’

in which
A—BgBéH | ’y_lBl B
R, 2 C 0 O, (6.3.23)
—DBLII 0 D
1B 0

Notice that ﬁ:ﬁa = I. This fact comes from the “completion of squares” identity
1213 = 7 llwl3 = lu = u*[3 = 7*[lw — w3
It may also be verified using Theorem 3.2.1 by writing (6.3.19) as
II(A — BoBYTI) + (A — BoB4II)'IL + C'C + LBy BYIL + 4 *TI By BYI1 = 0.
Since || Fo(Ra, U)||so < 1 where U = U/, the (2,1)-block of R,, which is

R s A— BgBéH | 771B1
a2l — _’Y_lBiH | [ )

(6.3.24)

has no zeros on the imaginary axis. This follows since I — F}” (R,. IA]).H(IA%Q, [A]) >0
and

I_f;(flaaﬁ)fé(&aaﬁ)
= Ry (I-U R '(I-U U)(I — Ru2U) 'Ryo1.

(See Theorem 4.3.2.) Because A — By B4II is asymptotically stable, the realization
(6.3.24) has no uncontrollable or unobservable modes on the imaginary axis, so that
any eigenvalue of A — (ByB) —~v~2B; B})II on the imaginary axis is a zero of Roon.
We conclude that A— (BB —~~2B; B})II has no eigenvalue on the imaginary axis.

It remains to show that II is actually the stabilizing solution. We do this using
the technique employed for this purpose in the optimal control proof of the bounded
real lemma.

Subtract (6.3.13) from (6.3.19) to obtain

X = XA+ AX+X(ByBy—~2BB))X,

in which X () = — P(t) and A = A — (ByBly — v 2B, B))IL

We now assume that X (¢) is nonsingular for all ¢ < T'; the extension to the
general case is requested as an exercise. Define V(¢) = (X (T — t))_l. Then V =
V(4 X(T —1t))V, giving

V=-AV VA — (BB, —~v2BB}), V(0)=(II—Py)".
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Let y # 0 be such that A’y = Ay. Since 7(X(t)) »0ast — —oo, o(V(t)) — oo as
t — oo. Consequently, ¢’V (t)y — oo as t — oo. Since
d * Y * * —
WV @) ==+ N (' V®y) -y (B2By =y *BiBY)y,
we must have —(A+X) > 0. Since (A+X) # 0, we conclude that A is asymptotically
stable and that IT = limy_,o, P(0,T, P2) is the stabilizing solution to (6.3.5).
By Theorem 4.3.3, Fy(R,,U) is internally stable with || F¢(Rg4, U)o < 1 if and
only if U € Hoo and ||U||oo < 1.
It follows from an elementary scaling by ~ that R.,, is internally stable with
IR.wllco < v if and only if

sz:fg(Ra,U), UEHOOv HU“oo <7

in which
A — ByBiI | By By

me| [ ] 0] [5]

—y72Bil

w

6.3.6 All controllers

In Section 4.2.2, we showed that a representation formula for all controllers requires
the introduction of a second free parameter, V', driven by the error between the
state z and a duplicate state . This leads to a stabilizing control law if and only
if V' is stable.

This idea was used to generate all solution to the full-information problem on a
finite horizon in Section 6.2.7. The LFT parametrization of all controllers is given
in (6.2.46) and (6.2.45).

By replacing P(t) in (6.2.45) with the stabilizing nonnegative solution to the
algebraic Riccati equation (6.3.5), we see that all stabilizing, full-information con-
trollers that satisfy | R.w|ec < are given by

K=F/(K,|[U V], [U V] €Ho and |U||o < 7 (6.3.25)
The generator of all controllers, K, is given by
A — ByBLP ‘ I 0 By ] By
K, 0 [ —ByP I (6.3.26)

o e ] )

and the controller u* = — B/ Px corresponds to setting U = 0 and V = 0.
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Main points of the section

1. Suppose (A, Bs) is stabilizable and that (A, C') has no unobservable
modes on the imaginary axis. Then there exists a full-information
control law such that the closed-loop system R.,, is internally sta-
ble and satisfies | R,w|lcoc < v if and only if the algebraic Riccati
equation

PA+ A'P— P(ByBy —~y 2B B))P+C'C =0

has a solution P > 0 such that A — (ByBy —~72B;B})P is asymp-
totically stable.

2. The controller u* = — B4 Pz is stabilizing and leads to || R,y ||oo <
.

3. For any (A, C), a stabilizing, full-information controller K satisfies
| Rzwlloo < 7 if and only if it satisfies ||R., /e < 7, in which

Cux
o= { Dau ] ’
for some C, such that (A,C,) has no unobservable modes on the
imaginary axis.
4. Every full-information controller that satisfies | R w00 < 7y is given

by Fo(K., [ U V ]) for some U € Ho with |[Ulls < v and
some V € Hyo.

6.4 Notes and References

The theory of H, controller synthesis has been developed using a variety of different
techniques. In most approaches, however, the decomposition of the general output
feedback problem into a full-information problem and an estimation problem is only
implicit. In order to confine our bibliographical notes to a reasonable length, we will
only review that literature that is directly related to the development and techniques
used in this chapter. Even with this restriction, reviewing all the literature that
could be regarded as relevant to this chapter is a formidable task.

The theory of zero-sum differential games goes back to the work of Isaacs [101,
102]. Another early reference is Berkovitz [27], who gives a rigorous treatment of
two-player, zero-sum games. He obtains necessary conditions that must hold along
an optimal path, and shows that the corresponding value function must satisfy
a Hamilton-Jacobi type partial differential equation. The books by Bryson and
Ho [34] and Bagar and Olsder [22] are good sources for the early literature and
standard results on zero-sum games. Bagar and Olsder’s text gives a treatment of
zero-sum games which is more general than we require here, but the linear quadratic
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case is included in their book. The stability issues associated with linear quadratic
differential games on an infinite horizon are considered in Mageirou [145], which
contains results similar to those in Section 6.3—his assumptions are stronger, and
he does not make the connection to Ho, optimization. Bagar and Bernhard [20]
is a more recent book on games that deals explicitly with the connections between
games and H, control.

The paper by Mageirou and Ho [146] considers the design of decentralized con-
trollers using game theoretic methods. The design of a controller u; = —F;x; for
the i*" subsystem is accomplished by assuming “the interactions between subsys-
tems enter only as perturbation terms”. Therefore, “so long as the total system is
dissipative, stability will result”. Frequency response conditions for dissipativeness
are given and it is shown that appropriate controllers result from the solution of
algebraic Riccati equations with indefinite quadratic terms.

H o optimization for disturbance attenuation was investigated by Petersen [163],
who proved that state-feedback controllers satisfying an H., norm objective could
be found using a Riccati equation with an indefinite quadratic term. The stabi-
lization of an uncertain linear system by state-feedback controllers was also accom-
plished using a Riccati equation with an indefinite quadratic term in Petersen and
Hollot [164]. The state-feedback Ho, control problem was further developed by
Khargonekar, Petersen and Rotea [116].

The full-information Hs, control problem per se was first posed and solved by
Doyle, Glover, Khargonekar and Francis [54] in the infinite-horizon case, and a
parametrization of all the closed-loop transfer function matrices was given. Their
approach, which uses mixed Hankel-plus-Toeplitz operators, is very different from
the game theoretic methods used in this chapter. This paper also showed that the
complete generalized regulator problem could be solved in a series of steps, with
the full-information problem playing a key role.

Many papers have appeared since [54]. Some deal with extensions of the basic
theory, such as the treatment of problems involving zeros on the imaginary axis
by Scherer [192] and singular problems by Stoorvogel and Trentleman [202], and
Scherer [193]. These extensions all follow easily from the discussion of the assump-
tions in Section 6.3.4 and the details are requested in Problems 6.17, 6.18 and 6.19.

The parametrization of all controllers, as opposed to all closed-loop systems,
is relatively recent. Mita, Liu and Ohuchi [150], and Zhou [229], give treatments
which are based on the Youla parametrization. Our “duplicate state” arguments
are new and more direct.

The treatment of the finite-horizon theory is based on Limebeer, Anderson,
Khargonekar and Green [130]. The limiting arguments that lead to the infinite-
horizon results are essentially our own, although we do not claim to be the first
authors to have pursued this approach—see Mageirou [145] and Ravi, Nagpal and
Khargonekar [169]. Tadmor [204] also considered an approach to the infinite-horizon
problem based on optimal control, although under very restrictive assumptions.

There are many topics related to the use of game theory in the solution of H.o
control problems which are of peripheral interest. Banker [26] was probably the first
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to study the relationship between differential games and J-spectral factorization
(see Problem 6.12), which has also been used in the context of Ho, control for
many years (see [65]). The connections between games, Ho, control and indefinite
factorization are more fully developed in the papers of Ball and Cohen [23]; Foias and
Tannenbaum [63]; Glover and Doyle [76]; Green, Glover, Limebeer and Doyle [85]
and Green [84].

There are interesting relationships between linear exponential Gaussian control,
risk-sensitive optimal control, entropy minimization and game theory. These topics
are investigated in Jacobson [103], Speyer, Deyst and Jacobson [196], Whittle [209],
Limebeer and Hung [134], Glover and Mustafa [80] and Mustafa, Glover and Lime-
beer [154]. The titles of these papers will give an idea as to their exact contents.

There are obviously discrete-time counterparts to the results given in this chap-
ter. These are considered in Appendix B and we postpone a review of the discrete-
time literature until then.

6.5 Problems

Note: In the first four problems, the systems are not assumed to be time-invariant,
except where this assumption is explicitly stated.

Problem 6.1. (Inclusion of cross terms). Suppose that a system is described
by
& = Axz+ Byw+ Bau, x(0) =0,
= Chiz + Diou

with D{5D12 = I. Suppose also that the cost function associated with the plant is

T
J(K,w,T,A) = / (22 — Y*w'w) dt + 2/ (T)Ax(T).
0

1. Show that if @ = u 4+ D{,C1z, then

T = (A - BQD/1201)£C + Blw + BQ’[L
= (I — DlgD/lQ)CL]? + Dlgﬂ,.

Conclude that L
J(K,w,T,A)=J(K,w,T,A),

in which K = K + [ D{,C; 0 | and

T
J(K,w,T,A) = / (77 — y*w'w) dt,
0
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with
- él‘ A v U
z= ||, 0C0=0C- DDy,
w

2. Show that there is a full-information controller such that J(K,w,T,A) <
—el|w]|2 o,7] for all w and some € > 0 if and only if the Riccati equation

—P=A'P+PA—P(ByBy -~y ?B\B))P+C'C, P(T)=A,

in which A = A — ByD},C1, has a solution on [0, T].
3. Give a parametrization of all full-information controllers satisfying

J(K,w,T,A) < —e||w||§’[O,T] for all w and some € > 0.

4. Assume now that the system matrices are constant (i.e., the system is time-
invariant). Show that sg is a unobservable mode of (A4, C) if and only if

l:AS()I BQ :|

6.5.1
Ch Dyy ( )

does not have full column rank.

5. Assume that the system matrices are constant, that (A, Bs) is stabilizable and
the matrix in (6.5.1) has full column rank on the imaginary axis. Determine
necessary and sufficient conditions for the existence of a stabilizing, full-
information controller that satisfies | R,uyllcc < 7-

Problem 6.2. Show that the solution of the differential equation
“At) = A (ONE) + B(t)u(t),  NT) = Arp,
is
T
) = / (0, ) B(o)u(o) do + ' (T, H)Ar,
t
in which £ (®(t,0)) = A(t)®(t,0). Use this to show that (6.2.7) satisfies (6.2.14).
Problem 6.3. Suppose

T Az + Byw + Byu x(0) =0,
_ Cx
Z = Du |’
in which D'D = 1.

1. Show that J(u,w) = fOT(z’z — y2w'w) dt is a convex function of u.
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2. If Riccati equation (6.2.20) with P(T") = 0 has a solution for all ¢t € [0,T],
show that there exists a full-information controller that makes J(K,w) =
fOT(z’z — y2w'w) dt concave in w.

3. If there exists a linear, full-information controller that makes J(K, w) strictly
concave in w, show that (6.2.20) with P(T") = 0 has a solution for all ¢ € [0, T'.

Problem 6.4. Consider the system
z = Ax+ Biw+ Bou, x(0) =0,

- (5]

with D'D = I. Give a necessary and sufficient condition for the existence of a
full-information controller K € K such that v(R.,) < v. Here, v(:) denotes the
incremental gain of the closed-loop system R, ,,.

Note: From now on all systems are assumed to be time invariant.

Problem 6.5.

1. Verify that P(¢,T, A) given by (6.3.4) solves (6.2.20). (You may assume that
A has been chosen so that (Zas — AZ15) ™! exists!)

2. Show that Zss is nonsingular if (A, C) is detectable. In fact, if (A, C) has no
unobservable modes on the imaginary axis, the rank defect of Zss is equal to
the number of undetectable modes in (A, C')—try to show this.

3. Show that II = Zlefll results in

A— (ByBy — 2B B))1 = Z AZ
Problem 6.6. Suppose P solves the algebraic Riccati equation
PA+AP—PSP+C'C=0, (6.5.2)
in which S = 5.
1. Show that (A, C') observable implies P is nonsingular.
2. Assume a stabilizing (A — SP asymptotically stable) solution exists. Show
that this solution is nonsingular if and only if every unobservable mode of

(A, C) is unstable.
3. Suppose (4, C) is of the form

A:{A“ 0 ] c=[c 0],

Ay Ago
with Ao stable. Show that the stabilizing solution P has the form
| PO
P[0 0]

in which P, is the stabilizing solution to

PiA + A/11P1 — PSP+ C{Cl =0.
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Problem 6.7. Suppose that (A, C) is observable, that X > 0 and Y > 0 satisfy
(6.5.2), with A — SX asymptotically stable. Show that Y > X.

Problem 6.8. Consider the loop-gain transfer function B,P(sI — A)~!Bs, in
which P > 0 is the stabilizing solution to (6.3.5).
1. Show that

(I + By(—sI — A')"'PBy)(I + B4P(sI — A) "' By)
= I+ By(—sI —A)"YC'C+~2PB,B,P)(sI — A)"'B,.

This equation is known as the “return-difference equality”.
2. If By = by is a vector, show that

|1+ 0y P(jwl — A)"thy| > 1.

3. Show that the closed-loop system has a guaranteed phase margin of +60°, a
gain reduction tolerance of up to 50% and an arbitrarily large gain increase
tolerance. These are well known properties of LQ optimal regulators (see [11]
for example).

Problem 6.9. Consider the system
T = z+w+tu
cx
u
introduced in Example 6.3.4. We showed that for v > 1 the nonnegative stabilizing
solution to 2p — p?(1 —v~2) + ¢ = 0 is given by

14+ /14+2(1—~72)

1—~—2

z

p:

If we set u = —pz, show that

me=| 5, |
lim z = .
y—1 —w

(Hint: Introduce the change of state variable z = (1 — v~2)q before taking
limits.)

Problem 6.10. Suppose the Riccati equation (6.3.13) has a uniformly bounded
solution P(t,T, P;) and let II = limp_,o P(t,T, P;). Show that II is the stabiliz-
ing solution to the algebraic Riccati equation (6.3.5). The aim is to remove the
nonsingularity assumption on IT — P(¢) that is made in the text.

(Hint: See Problem 3.24.)
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Problem 6.11. Suppose P; is the stabilizing solution to (6.3.11) and that P, is
nonsingular.
1. Show that —(A 4+ P, *C'C) is asymptotically stable.
2. Show that there exists a stabilizing, nonnegative definite solution P to (6.3.5)
if and only if there exists a stabilizing solution to the Riccati equation

—(A+P;C'C)Y —Y(A+ Py 1C'C) +472YC'CY + ByBy =0

such that v2 > p(P,Y). (p(-) denotes the spectral radius)
(Hint: Y =~%(Py ' — P71).)

3. Show that if C' = 0 and —A is stable, then there exists a control such that
the closed loop R.,, is stable and satisfies | R..|c < 7 if and only if 42 >
Y3t = p(P2Y'), in which Y is the controllability gramian of (—A, By).

Problem 6.12. (J-spectral factorization). Suppose P is the stabilizing solution
to (6.3.5). Consider G given by

in which D’D = I. Thus

is the solution to (6.1.2) and (6.1.4).
1. Show that

1 & " w
1=l =5 [ (v weue| Y | an

— 00

in which J is the signature matrix:

I 0 0
J=10 T 0
0 0 —2I
2. Let
A | Bi B»
w = BLP 0o I |,

—y2B{P| I 0

in which J is another signature matrix and P is (any) solution to (6.3.5).
Show that G~ JG = W~ JW.
3. Show that W' and GW ™" € Hc..
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4. Show that P > 0 implies
(GW ) J(GW N <J foralls+35>0.

(That is, GW ~! is J-lossless.) Show also that
Lo =]
w—w u

and conclude that u* = —W ' W w.

Problem 6.13. Consider the system

& = Az + Byw+ Bsu, z(0) =0,
. Cx '
;= {Du], D'D=1.

1. Show that there exists a measurement feedback control law v = Ky, with the
special measurement y = Cyx + w, such that

J(K7w7T7 A) S _EHw”g,[O,T]

for all w € £5[0,T] and some ¢ > 0 if and only if the Riccati differential
equation (6.2.20) has a solution on [0,7]. Show that all controllers that
achieve the objective are generated by the LFT K = Fy(K,,U), in which
U is causal, [|U||[o,r] < v and

A—BCy — ByByP | B By
K,= —BLP 0 I
—(Co+y72B1P) [ I 0

(Hint: Use u, (0) and y to generate a copy of z.)

2. Now consider the infinite-horizon case and suppose the algebraic Riccati
equation (6.3.5) has a stabilizing, nonnegative definite solution. Show that
all stabilizing controllers such that ||F,(P,K)| < < are generated by
K = Fy(K,,U) if and only if A — B;C5 is asymptotically stable, U € RH
and ||U||eo < 7-

Problem 6.14. (Nevanlinna-Pick interpolation). Suppose s;, 7 = 1...n, are given
distinct complex numbers with R.(s;) > 0, and that g; and h; are given complex
vectors. We seek a transfer function matrix R € H, such that

g;R(si) = N (6.5.3
[Rllo < -

=
S—
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1. Show that R € H, satisfies (6.5.3) if and only if R is a closed-loop system
that can be generated by a stabilizing, full-information controller for the
system defined by

st 0 0 hi 9i
r = 0 .0 T — : w + : u
0 0 sp h g
zZ = u
U = K[I}
w

2. Show that the interpolation problem described by (6.5.3) and (6.5.4) has a
solution if and only if the Pick matrix defined by

My, = 9195 =0 kb
S; + 85
is positive definite.
(Hint: M~! is the solution to a Riccati equation. You will need to con-
vince yourself that complex systems make only a trivial difference—replace
transposes with complex conjugate transposes.)
Find a parametrization of all solutions to (6.5.3) and (6.5.4).
4. Find a spectral radius formula for vy,p¢, the greatest lower bound on the values
of v for which the interpolation problem in (6.5.3) and (6.5.4) has a solution.

@

Problem 6.15. (Decentralized control, Mageirou and Ho [146]) Consider the
interconnected subsystems in Figure 6.4.
Suppose that G is given by

Zbl = A12E1 +B122 +B2U1
. _ Cl.’El
b Dyuy
and that G, is given by
3.3‘2 = AQIQ + Elzl + EQUQ

22

CQiEQ
D2u2 ’
in which D/D; = I.

1. If there exist decentralized, state-feedback controllers u; = —F;x; that stabi-
lize their respective subsystems (with respect to loop-break points at z; and
z9) and satisfy ||F¢(Ga, —F2)|leoc < 1 and || Fu(G1, —F1)|lec < 1, show that
the overall closed-loop is stable.

3Fu(+,-) denotes the upper LFT; F¢(Ga, —Fs) and F,(G1,—F1) are the closed-loop transfer
functions of the lower and upper subsystems defined by loop break-points z; and z2.
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-F
Ui 1
G,

22 21
G
T2 U2
—F

Figure 6.4: Decentralized control scheme.

2. Conclude that if the Riccati equations
PiA + A/1P1 — Pl(BQBé — BlBi)Pl + C{Cl
P2A2 + A/2P2 — Pl(EQEé — ElEi)PQ + CéCQ =

have stabilizing solutions P; > 0 and P > 0, then Fy = B} P and F; = E} P,
are suitable controllers.

Problem 6.16. Consider system

& = Axz+ Byw+ Baou, z(0) = zp,

;= [gﬂ.

Assume that a stabilizing, nonnegative definite solution P to the Riccati equation
(6.3.5) exists and that the control law u = — B} Pz is implemented.
1. If w = 0, show that

/ 2 zdt < xyPxo.
0
2. If zg = 0, show that
|R..||% < trace(B|PBy).

In the above, || -||2 denotes the 2-norm of a system, which is the average RMS
power of z when w is a unit variance white noise process.
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Problem 6.17. Suppose (A, Bg) is stabilizable and that
r = Ax+ Biyw -+ Bau

- Cx
2= Du |’

with D’D = I. No assumptions are made on the pair (A, C'). Show that there exists
a stabilizing, full-information controller that satisfies ||R,y|lcc < 7 if and only if
there exists a matrix P such that

PA+ A'P — P(ByBy — v 2B, B})P + C'C <0, (6.5.5)

with A — (BB — v~2B1 B} )P asymptotically stable and P > 0.
(Hint: See Section 6.3.4.)

Problem 6.18. (Singular problems) In Problem 6.17 we showed how to eliminate
the assumption that (A4, C) has no unobservable modes on the imaginary axis. The
main idea behind the removal of this assumption is contained in the discussion in
Section 6.3.4. We now show that a similar line of argument can be used to eliminate
the assumption that D has full column rank.

Suppose

r = Ax+ Biyw—+ Bau

P Cx
o Du |’
in which D is arbitrary.
1. Show that a stabilizing, full-information controller satisfies ||R.yllco < 7 if
and only if it also stabilizing for the objective

Cx
Za = Du s e>0
€U

and satisfies || R, ||co < 7 for some € > 0.

2. Suppose that (A, Bs) is stabilizable and that (A,C) has no unobservable
modes on the imaginary axis. Show that there exists a stabilizing, full-
information controller such that |R.u|lcc < 7 if and only if there exists
an € > 0 such that R, = D’D + €°I is nonsingular and a matrix P. such that

P.A+ A'P. — P(ByR;'B) —y?B,B})P. +C'C =0
with A — (BeR:-'B) — v~2B; B} ) P. asymptotically stable and P, > 0.
Problem 6.19. Suppose

’i;‘ = AJ’J+B1’UJ Jngu

- Cx
2= Du |’
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in which (A, Bs) is stabilizable—no other assumptions are imposed. Show that there
exists a stabilizing, full-information controller such that the closed-loop system R.,,
satisfies | R,y ||oo < 7 if and only if there exists an € > 0 such that R, = D'D + €21
is nonsingular and a matrix P, such that

P.A+ AP, — P.(ByR.'B, —y 2B, B})P. + C'C <0
with A — (BoR_ !B} — v~2B; B}) P. asymptotically stable and P, > 0.

The technique of Section 6.3.4 and the results of Problems 6.17, 6.18 and 6.19
make use of the fact that a stabilizing controller must make the infinity norm of
closed-loop transfer function matrices mapping w to x and u finite, even if there is
no explicit norm objective on some components of z or u. By including an explicit,
but arbitrary, norm constraint on these states and control signals, one obtains a
problem that satisfies the standard assumptions.



7
The Hy Filter

7.1 Introduction

It is well known that the LQG control problem decomposes, or separates, into an
optimal state-feedback control problem and an optimal state estimation problem.
There is a well known duality between the optimal control and filtering problems and
the optimal state estimator is the celebrated Kalman filter. These facts are touched
on in Chapter 5. The aim of this chapter is to find an estimation dual to the full-
information H,, control problem, thereby laying the foundations of a separation
theory for Ho, control with measurement feedback, which will be developed in
Chapter 8.

In the Kalman filter problem description, the signal generating system is as-
sumed to be a state-space system driven by a white-noise process with known sta-
tistical properties. The observed output is also corrupted by a white noise process
with known statistical properties. The aim of the filter is to minimize either the
average RMS power of the estimation error or the variance of the terminal state
estimation error. Both these optimal estimation problems yield the Kalamn filter
as the optimal filter.

The H, filtering problem differs from the Kalman filtering problem in two
respects:

e unknown deterministic disturbances of finite energy replace the white-noise
processes that drive the signal generating system and corrupt the observations;

e the aim of the filter is to ensure that the energy gain from the disturbances
to the estimation error is less than a prespecified level v2.

If this estimation problem is to be dual to the full-information H., control problem,
the Kalman filter should emerge from the H filter theory in the limit as v — oco. In

263
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addition, the H, filter should have predictable terminal state estimation properties
as well as predictable performance in the face of unknown disturbance inputs. Since
there are many solutions to the H, control problem with full information, we expect
the H, estimation problem to have several solutions also. We will find a formula
for all solutions; this allows one to solve secondary optimization problems such as
entropy minimization.

The finite-horizon problem

Suppose the signal is generated by the time-varying state-space system
& = Ax+ Bw, z(0) =0, (7.1.1)
y = Cxz+ Dv, (7.1.2)

in which DD’ = I. The process disturbance w and the measurement disturbance
v are £2[0,T] signals. It is notationally convenient to define the combined process
and measurement disturbance as

w
i-[*] 12
The aim is to find an estimate of z = Lz of the form

z=Fy, (7.1.4)

such that the ratio of the estimation error energy to the disturbance energy is less
than 2, a prespecified performance level. This objective can be expressed as the
requirement that

12— L$||§,[O,T] - 72Hd||§,[o,T] < _€||d||§,[o,T] (7.1.5)

for all d € £2[0,T]. The filter F is required to be causal and linear. If R denotes
the system mapping d to Z — La, the objective (7.1.5) can be written as

I1R[l0,7] < s (7.1.6)

in which || - ||jo,7] denotes the £5[0,7] induced norm.

The infinite-horizon problem

In the infinite-horizon case, the signal generator (7.1.1) and (7.1.2) is time-invariant,
and d given by (7.1.3) is an unknown £5[0,00) driving input. We seek a causal,
linear and time-invariant filter (7.1.4) such that

1. The system F' is stable.
2. The system R :d— (z — Lz) is stable and satisfies
| Rllse < . (7.1.7)

We shall assume that (A, C) is detectable, and that (A, B) has no uncontrollable
mode on the imaginary axis.
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7.2 Finite-horizon results

We solve the H filtering problem by transforming it into an equivalent H, control
problem with full disturbance information. We are then able to invoke the full-
information results of Chapter 6 to effect a solution.

7.2.1 Necessary and sufficient conditions

The filtering problem may be expressed as the LFT problem

% A [ B 0 ] 0 x
Tz | = | =L [0 0] I {f} ,2(0)=0, (7.2.1)

Y C [ 0 D ] 0 2
z = Fy. (7.2.2)

Recall that the induced norm of a system and its adjoint are equal, and that the
adjoint of (P, F') is F¢(P~, F"). Therefore, the estimation objective || R|[(o,7] <
7 on the map R :d~— Z — z is equivalent to the objective |[R™||jo,7) < 7, in which
R™ is the adjoint system generated by the LFT

Ay -L(r) O
1100 1) ) |[8] e
0 I 0

@ = F~u. (7.2.4)

The initial condition is p(7)|;=¢ = 0, in which 7 = T — t is the time-to-go variable
associated with the adjoint system. We also note that F' is causal in real time if
and only if F'™ is causal in 7.

The LFT (7.2.3) and (7.2.4) describes a control problem in which the controller
F™ only has access to the exogenous signal w, rather than to p and @, which would
be the full-information configuration of Section 4.2.2. From our discussion of the
full-information problem in Section 4.2.2, we know that for the purpose of achieving
particular closed loops or control signals, knowledge of w is equivalent to knowledge
of p and w. This is because we can always replace p in any full-information controller
for the adjoint system with a copy generated from w by

d

Ep(T) = A'(1)p(r) — L' (t)w(r) + C'a(r), P(7)|r=0 = 0. (7.2.5)

It is now immediate from our full-information control results that a suitable con-
troller for the adjoint problem exists if and only if the Riccati differential equation

~2Qr) = QWA+ ADQ(T) + B(r)B(7)
Q) (C(NCE) =7 L ELT)RE),  Qle=r =0,
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has a solution on [0, T]. In this case, the controller @*(7) = —C(7)Q(7)p(7) satisfies
the objective for the adjoint system.

Substituting @* into equation (7.2.5) defining the duplicate adjoint state, we see
that the adjoint of a suitable filter is given by

%ﬁ(ﬂ = (A =C'CQ)r)plr) - L'(r)i(r),  P(7)lr=0 =0,

u(r) = —C(r)Q(r)p(r).
Hence, taking adjoints to return to the original problem defined by (7.2.1) and

(7.2.2), we see that a suitable filter exists if and only if the Riccati differential
equation

Q) = AMQE) +QMA'(t) + B(t)B'(1)

—QW)(C'C([t) =Lt L(1)Q(H),  Q(0)=0, (7.2.6)
has a solution on [0,7], and that one filter that satisfies the objective (7.1.6) is
given by

Bt) = (A-QCO)ME) +QMC (y(t),  #(0)=0,  (7.2.7)

= A@B)z(t) + Q()C (1) (y(t) — C(1)Z(1)) (7.2.8)

zZ(t) = Lzt (7.2.9)

This filter has an observer structure like the Kalman filter and is illustrated in
Figure 7.1. The estimate of Lx is LZ, in which Z can be considered a state estimate.?
Notice, however, that Z depends on L, since the Riccati equation defining the filter
gain matrix QC’ depends on L. The state estimate one uses in the H, filter depends

on the linear combination of the states that one is seeking to estimate, which is a
significant difference between Kalman filtering and H., filtering.

7.2.2 All solutions

All control signals that can be generated by full-information controllers for the
adjoint problem introduced in the previous section are generated by
t=u"4+U" (0w —w"),

in which @* = —CQp, @* = —y 2LQp and U" is linear, causal in the adjoint
time variable 7 and such that |[U™||j0,7] < 7. Combining this with the dynamical
equation (7.2.5) for p, we obtain the LF'T

“Lp (A'=C'CQ)(r) —L'(r) C'(r) p
i = —CQ(r) 0 I oo,
W — W Y 2LQ(7) I 0 i — i
i—u* = U™(w—u").

LA sense in which = may be considered a state estimate is offered in Section 7.2.3.
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A
C

Figure 7.1: An H filter.

Taking adjoints, we see that all filters are generated by

F = F(F,,U), (7.2.10)
in which
A-QC'C|QC" —y72QL
F, = L 0 I (7.2.11)
-C I 0

and U is a casual, linear system such that
1Ulljo,1) < - (7.2.12)

This parametrization is illustrated in Figure 7.2. It captures all causal, linear filters
(as U varies without restriction on its norm), since the (1,2)- and (2, 1)-blocks of
F', have causal inverses.

In parametrizing all suboptimal solutions to the Kalman filter problem, we ob-
served that all solutions were obtained by simply adding U7 to the optimal estimate.
The signal n = y— C7% is the innovations process and Z is the optimal state estimate,
which is independent of U. The structure in the H, filter case is more complex,
since although we add U to z, we also change the signal driving the integrator,
which means that the choice of U affects the state estimate Z.

We may summarize our results in a theorem:

Theorem 7.2.1 Suppose the observation y is generated by (7.1.1) and (7.1.2) and
d is defined by (7.1.3). Then there exists a causal, linear filter Z = Fy such that
the system R : d — (Z — Lx) satisfies the norm bound | R||jo,r) < 7 if and only if
the Riccati differential equation

Q=AQ+ QA —Q(C'C —~"2L'L)Q + BB/, Q(0) =0. (7.2.13)
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Figure 7.2: A parametrization of all filters.

has a solution on [0,T). In this case, F is a causal, linear filter that achieves the
objective | Rl|jo,r) < 7 if and only if it is given by (7.2.10) for some causal, linear
system U that satisfies (7.2.12).

7.2.3 Terminal state estimation properties

To show that the central H filter shown in Figure 7.1 has terminal state estimation
properties in the Kalman filtering sense, we assume that the driving signal d is a
zero mean white noise process of unit intensity.? We also assume that z(0) is a
random variable with the properties

m (7.2.14)
Qo, (7.2.15)

E{x(0)}
& {(x(O) —m)(z(0) — m)/}

with z(0) independent of d(t). If z(0) is known, we set Qo = 0.

To ensure that our estimate is unbiased, we set Z(0) = m in (7.2.7) and use the
terminal condition Q(0) = Qo in the Riccati differential equation (7.2.13). Assuming
a solution to this equation exists on the time-interval of interest, we subtract (7.2.8)

2This is known as the central filter because it is obtain by setting U = 0 in the parametrization
of all filters; U = 0 is the center of the “ball” [|U]ljo,7) < -



7.2 FINITE-HORIZON RESULTS 269
from (7.1.1) and use (7.1.2) to obtain the error system

b= (A—QC'C)r.+ [ -B QC'D ] [ “’]

v

in which z. = 7 — z. Since £{z.} = 0, the state error variance matrix Q(t) =
E{x.(t)z,(t)} propagates in time according to the linear equation

Q=(A-QC'C)Q+Q(A-QC'CY + BB +QC'CQ, (7.2.16)
with initial condition Q(0) = Q. Subtracting (7.2.16) from (7.2.13) gives
(Q-Q)=(A-QUC)Q-Q)+(Q-Q)NA-QC'CY +7°QL'LQ,

and since (Q — Q)(0) = 0, this shows that Q(t) — Q(¢) > 0 for all t € [0,T]. We
conclude that the terminal state estimation error variance satisfies

E{ze(t)r, (1)} < Q).

The Riccati equation that defines the Kalman filter for the signal generator
(7.1.1) and (7.1.2) is

O=A40+0A —0C'CO+BB,  0®0) = Q. (7.2.17)

Since @(t) is the optimal terminal state error covariance, which is the error covari-
ance obtained by the Kalman filter, we must have Q(t) > @(t) This may also be
verified by subtracting the Riccati equations (7.2.17) and (7.2.16).

Note also that the 2-norm of the system R :d +— (Z — Lx) satisfies

1 [t _
IRl2,01 = {T/o trace(LQL’)dt}

{ % /OT trace(LQL') dt}

This may be seen by using (7.2.16) and Theorem 3.3.1.

These observations establish that the central H, filter has predictable two-norm
properties and terminal state estimation properties when driven by white noise, but
that it is suboptimal with respect to these performance criteria.

2

2

IN

Main points of the section

1. The H estimation problem is the dual of a control problem in
which the controller has access to the exogenous input.
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2. A solution to the Ho, estimation problem exists if and only if the
Riccati differential equation (7.2.13) has a solution.

3. The central H, filter has an observer structure identical to that
of the Kalman filter, and the estimate of Lz is LZ in which Z is a
state estimate that depends on L. In contrast to the Kalman filter,
the H, filter gain is a function of L.

4. There is a LFT parametrizing all solutions to the H., estimation
problem.

5. The central H filter obtained by setting U = 0 has predictable
two-norm and terminal state estimation properties. In particular,
E{(Z —x)(T —x)'} <Q, in which Q is the solution to the Riccati
equation (7.2.13).

7.3 Infinite-horizon results

In the infinite-horizon case, the signal generator (7.1.1) and (7.1.2) is assumed to
be time-invariant. We also assume that (A, C) is detectable and that (A, B) has no
uncontrollable modes on the imaginary axis. Our aim is to determine conditions
for the existence of a causal, linear, time-invariant and stable filter F' such that the
system R :d+— (Z — Lz) is stable and satisfies

[Roo < - (7.3.1)

As before, we may express the relationship between the disturbance d and the
estimation error z — Lz as the LFT

i A [B 0] 0 €
-z | = | -L [0 0] I [w] :
v
y ¢ [0 D] o 2
z = Fy.

Notice that this LF'T is not stablizable in the sense defined in Section 4.2.1, unless
A is asymptotically stable, because the output of the filter does not affect the signal
generator. We emphasize that we do not demand that the filter F is internally
stabilizing. Rather, we demand that F and R are stable.?

Taking the adjoint, we obtain

. A -
21 B’ 0 0 y
i 0 0 D’ ¢
v 0 I 0 b
i = F~a.

3We do not care what happens to the state x, and indeed can do nothing about it. Our aim is
to ensure that our estimate of Lz is a good one.
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(All time arguments and derivatives are taken with respect to the adjoint time
variable 7 = —t.) The adjoint filter F~ must be 7-stable (i.e., stable in the adjoint
time variable 7), and must lead to a 7-stable closed-loop system R™ that satisfies
[R™ oo <7

Now consider the full-information controller

u=—H'p+G~w, (7.3.2)
in which G™ : @ — @ is given by
= Ap+ (C'F~ - Lw
= H'p+ F™ .

) I3y

If F is a filter that satisfies our requirements and we choose H such that A —
HC is asymptotically stable, then the full-information controller (7.3.2) internally
stabilizes the full-information configuration

T e
Bigln

and the infinity norm of the closed-loop system is less than . Consequently, there
exists a stabilizing, nonnegative definite solution @) to the algebraic Riccati equation

SIS ]

| —— |

S s
| I
\

AQ + QA —Q(C'C —~2L'L)Q + BB’ = 0.

All the control signals that result from 7-internally-stabilizing controllers for the
adjoint problem are generated by

a=at+ U™ (0 —a"),

in which U™ is 7-stable, |[U™ |« < v and @* = —CQp with @* = —y~2LQp. Hence
F™ is generated by the LFT

Fo(F7,U™),
in which
(A-Qc'c)|-L' '
F = -0Q 0 I

v 2LQ I 0

Taking the adjoint, we see that all stable filters such that R : d — (Z— Lz) is stable
and satisfies ||R||o < 7y are generated by

F=F(F.,U), Ué€Hx[Uls <7, (7.3.3)
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in which
A-QC'C|QC’ —y2QLU
F,= L 0 I : (7.3.4)
e I 0

Theorem 7.3.1 Suppose the observation y is generated by (7.1.1) and (7.1.2) and
that d is defined by (7.1.3). Suppose also that (A, C) is detectable and that (A, B)
has no uncontrollable mode on the imaginary axis.

There exists a stable filter F' such that the system R : d — (2 — Lx) is stable and
satisfies the norm bound ||R||e < 7 if and only if the algebraic Riccati equation

AQ+ QA —Q(C'C —~y2L'L)YQ+ BB =0 (7.3.5)

has a solution such that A — Q(C'C —~~2L'L) is asymptotically stable and Q > 0.
In this case, F is a stable filter such that R is stable and |R||~ < v if and only if
it is given by (7.3.3).

7.3.1 The H,, Wiener filtering problem

z
Fr

Figure 7.3: The Wiener problem.

As an illustration of the H, filter, we consider the Wiener filter configuration
given in Figure 7.3. The observation y is the sum of a signal z plus a noise v, and we
wish to extract the signal z from y. In Wiener’s formulation the system G is stable,
strictly proper and driven by white noise. In the H,, formulation, the signals w
and v are deterministic, but unknown.

It is immediate from Figure 7.3 that

z = Guw
z = Fw+ Gu)
-z = [(F-I)G F][f]

Ultimately we want a stable filter F', but initially we ignore this restriction and
consider a smoothing problem in which the aim is to choose F' such that

[ (F-DG F ]l <n (7.3.6)
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The objective (7.3.6) is equivalent to
(F-1)GG™(F~ —I)+ FF~ <+°I. (7.3.7)
Since
(F-GI+G Q@) 'G")I+GG™)(F"-GUI+G~G)'G")
= FF"+(F-1)GG™(F~"-1)-GI+G~G)"'G~,
the inequality (7.3.7) may be written as
GI+G G)'G™ +(F—F")(I+GG™)(F - F*)~ <+°I, (7.3.8)
in which
F*=GUI+G"G)'G™.
The inequality (7.3.8) can be satisfied if and only if
G(I+G~G)'G™ <+%I, (7.3.9)

in which case the filter F = F™* satisfies (7.3.8) and hence achieves the objec-
tive (7.3.6). The condition (7.3.9) may be manipulated (Problem 7.5) to yield the
equivalent condition

1
T e = Yont (7.3.10)

in which § = ||G||s. Thus the minimum ~ that can be achieved with any filter,
stable or otherwise, is determined by ||G||. Surprisingly, if v > v, we can also
satisfy (7.3.6) with a stable filter. That is,

Yo = inf [ (F-DG F ]|l

EHoo

where 7, is given in (7.3.10), although the infimum is not achievable with a stable
filter due to the appearance of filter poles on the imaginary axis.
In order to prove this, suppose G has realization (A, B, C') with A asymptotically
stable. Then
& = Azr+ Bw
= Cx+vw

and we seek a stable estimator F' such that the error system
R=[ (F-1)G F |

is stable and satisfies |R||o < 7. Note that the stability of R follows from the
stability of F' and G in this case. Using Theorem 7.3.1, we see that such a filter F’
exists if and only if the Riccati equation

AQ+ QA — (1 -~72)QC'CQ + BB =0 (7.3.11)
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has a solution such that A — (1 —y~2)QC’C is asymptotically stable and @ > 0.
If v > 1, such a solution always exists, because we may write (7.3.11) as

AQ + QA —QC'CQ+ BB' =0,

in which C = C/1 — ~~2. This is the algebraic Riccati equation associated with
the Kalman filter problem of estimating x given the measurement y = Cx+v, which
always has a stabilizing, nonnegative definite solution.*

If v < 1, we conclude from the bounded real lemma (Theorem 3.7.1) that @
exists if and only if

Gl <

which is equivalent to v > vopt.

7.4 Example: Inertial navigation system

This example illustrates the properties of an H filter designed for a simple inertial
navigation system (INS). The archetypal INS deduces velocity and position from
acceleration measurements—velocity is found by integrating the acceleration once,
while position is deduced via a double integration. Unfortunately, accelerometer
biases, variations in the earth’s gravitational field, noise and gyro platform mis-
alignment cause the position estimate from the INS to drift away from the true
position. One way to compensate for this effect is to use external position data
such as a radio beacon or satellite. The INS and external device could then be
combined as shown in Figure 7.4 to produce a compensated position estimate. The
aim is to use the INS to track the high-frequency maneuvering of the vehicle, while
the external position data should be favored in the long term.

For the purpose of illustration, we consider navigation in one dimension. The
INS is modelled as a double integrator fed by a corrupted acceleration signal. The
external radio navigation aid is represented by a true position together with an
additive disturbance signal that represents radio transmission noise. This model is
illustrated in Figure 7.5.

The state variables we have selected are the errors in the INS’s position and
speed:

0p = pi — pt
0s = s; — Sy,

in which p; and s; represent the true position and speed. The input to the filter is
given by
Ap = pi — pr,

4The stability of A ensures (A, () is stabilizable and that (A, B) has no uncontrollable mode
on the imaginary axis.
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position from

INS compensated
INS position
- estimate
Filter
external
position
data

Figure 7.4: INS compensated by external position data.

which is the difference between the INS’s position estimate and the radio navigation
aid’s estimate of the current position. From Figure 7.5 we obtain
Ap = pi—pr
= (pe+0p) = (pr —v)
= dp+w.

We also see from this diagram that the speed and position estimates produced by
the inertial navigator are given by

B0 o] [n ] e

The true speed and position are given by

HEEIHRERE

Consequently
op - 0 1 op 0
) = Lo [R ][]
= Az + Bw
and
1)
Ap = [1 0][5ﬂ+u
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model of INS

w
S; inertial
true a¢ f L f Di position

acceleration
Ap
true . O Pr
position T— radio position
v

model of radio
navigation aid

Figure 7.5: Model of INS with external position data.

Since we want the Ho, filter to minimize the effects of w and v on the difference
between dp and its estimate 6p, we set

L=[10].

To complete the design data, we suppose that the energy in the acceleration error
w and navigation aid error v are bounded:

lwlle < ¢ and |||z <7
The filter gain is given by
k
[ b } e
in which @ is the stabilizing solution of the algebraic Riccati equation
AQ+ QA — (1 — (r/7)Hr2QC'CQ + ¢*BB’ = 0.

If v > r, this is the Riccati equation associated with the Kalman filter problem
with measurement § = r~11/1 — (r/7)2Cx+v, so a stabilizing, nonnegative definite
solution exists. We leave it as an exercise for the reader to show that no stabilizing,
nonnegative definite solution exists for v < r. Figure 7.6 provides a block diagram
representation of the central H, filter for this problem.

We now obtain explicit formulas for the solution to the Riccati equation and
hence the filter gain. Writing

_ | 91 QG2
Q{Qz %}
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C
Ap B kl ~ f (S]/)\
ko 05
A
Figure 7.6: The INS H, filter.
and substituting the data gives the Riccati equation
{ 202 - 6% a3~ B qige ] _0
43— B g ¢*— 57 ’
in which
2
F =
1—(r/y)?
Elementary algebra now reveals that
Q= { BV24B 4B ]
b av2q0 |’
and the filter gain is therefore
[ k1 ] — 2 [ BvV2q0 ]
ko qp )
If the exogenous input [ 15 } is a white noise such that
w(t) ’ ’ _ q2 0 _
[ u | 1wm v} =4 5 |oe-n.

the variance of the position estimate error satisfies

E{(6p - 6D)* (1)} < a1 = BV/245.

The bound on the variance of the estimation error decreases as y increases—in the

case that v72 = 0, we get £{(6p — dp)%(t)} = r/2qr, which is the error variance
Figure 7.7 gives a plot of the position error

associated with the Kalman filter.
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q1

Figure 7.7: Upper bound on the error variance.

variance bound ¢; as a function of v when r = ¢ = 1. The interesting feature of
this diagram is the fact that the upper bound on the error variance is almost as low
as that obtained for the Kalman filter right down to 7 values of the order of 2.

We conclude the example by examining the properties of the transfer functions
linking w, v and the estimated position p. One implementation of the filter is given

in Figure 7.8. It is immediate from this diagram that
_ 1

T 824 sky + ko
_ ski + ko

B 52 + Skl + kz ’

g, =

< 1) & |

9 =
The natural frequency of these transfer functions is
Wn = Vk2:r_1 qﬂ7

while 2¢w,, = k1 gives
p

CTE
as the damping ratio. These formulas show that both these quantities increase as ~y
decreases. Bode plots of g; and g, are shown in Figures 7.9 and 7.10 respectively
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INS model
N
ap — f ] f O p
b
~ p: Ap kistko
Dt T_ hd _ s24+kis+ko
v
position data model
Figure 7.8: Open-loop implementation of compensated INS.
for r = ¢ = 1 and various values of 7. These diagrams show that g, and g,

act as low-pass filters of the INS disturbances and radio noise, and that the INS
disturbance rejection improves as v decreases, while p becomes more susceptible to
wide bandwidth radio beacon noise as « decreases.

7.5 Notes and References

Minimax and game theoretic ideas have been employed in robust filtering for at
least two decades. The general approach to these problems is to minimize the worst
case error (in some sense) as one ranges over all admissible signal and noise models.
Kassan and Poor [114] give a review of many of the established ideas in robust
filtering. Basar and Mintz [21] and Hexner and Mintz [92] study an estimation
problem that is motivated by tracking problems involving uncooperative targets
under the control of intelligent adversaries.

Some of the early work on robust estimation in an H., framework is due to
Grimble, Ho and Elsayed [87, 88], who analyze the problem using polynomial meth-
ods. Bernstein and Haddad [28] study similar problems in a state-space setting
using projection methods, which are particularly well suited to reduced order filter
synthesis problems. They also study problems requiring the minimization of an
upper bound on the Hs norm under and H., norm constraint. Their problem turns
out to be the same as entropy minimization.

For filtering work which emphasizes the connection with game theory, we re-
fer the reader to Shaked and Yaesh [195, 215]; Khargonekar and Nagpal [115];
and Limebeer and Shaked [137]. Shaked and Yaesh also study frequency domain
connections with J-spectral factorization. Basar [19] analyzes a wide variety of
filtering, smoothing and prediction problems using game theoretic methods. Fer-
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Figure 7.9: Bode magnitude plot of g;.

nandes, de Souza and Goodwin [61] study L1, L3 and L robust estimation via a
parametrization of all estimators that is an affine function of an H,, transfer matrix
function, which is the estimation dual of the well known Q-parameterization of all
stabilizing controllers.

The inertial navigation example comes from Maybeck [147].

7.6 Problems

Problem 7.1. Suppose Q(t) is the solution of (7.2.16) and that Q(t) is the solution
of (7.2.17). If the initial conditions for these equations are Q(0) = Q(0) = Qo, show
that Q(t) > Q(t). If Q(0) = Qo, conclude that Q(t) > Q(t) > Q(t) for all times for
which a solution to (7.2.13) exists.

Problem 7.2. Suppose the noise descriptions in the problem statement satisfy
w=Q%w, with |[@]s <1

and )
v=R20, with 7] <1,
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Figure 7.10: Bode magnitude plot of g,.

and that the observations are given by
y=Cx+w.

Show that there exists a causal filter F' such that z = Fy satisfies |2 — Lzl|j2 < vy
for all ¥ and @ if and only if the filtering Riccati differential equation

Q=AQ+QA —Q(C'RT'C—~L'L)Q+BRB"  Q(0)=0
has a solution on [0,7]. Show that the filter gain is given by H = QC'R™*.

Problem 7.3. Suppose A, B, L and C have been transformed to the form

A A B
A:{Oll A;z],B:[Ol}7L:|:L1 L2]7C:[Cl 02]7

in which Ass is asymptotically stable. Suppose also that @ > 0 is the stabilizing
solution to the algebraic Riccati equation

Alc/j + @\A/l — Q\(O{Cl - ’)/72L/1L1)@ + BlBi =0.

_[@ o
=3 7]

Show that
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is the stabilizing solution to
AQ + QA —Q(C'C —~y2L'L)Q + BB’ = 0.
Problem 7.4. Suppose that the signal generator is
& = Ax+ Bw, x(0) =0,
y = Cz+ Dw,

in which DD’ = I. Show that the estimator gain for this problem is H = QC’'+BD’,
where () satisfies the Riccati equation

Q=AQ+ QA —Q(C'C —~y"2L'L)Q + BB’
with initial condition Q(0) = 0. The matrices A and B are given by

A=A-BD'C and BB =B(I-DD)B.
Write down the generator of all filters that satisfy || R||jo,7) < 7.

Problem 7.5. Verify that the inequality (7.3.9) is equivalent to the inequality
(7.3.10).

Problem 7.6. Suppose the measurement noise v(t) is frequency weighted by the
causal and causally invertible system

i = A@)z(t)+ B(t)o(t)
v(t) = C(t)z(t) + D(t)o(t).
Show how one may reduce this frequency weighted estimation problem into a stan-

dard problem of the form given in Problem 7.4.
How would you deal with problems in which w(t) is frequency weighted?

Problem 7.7.
In certain applications one may wish to frequency weight the estimation error
as shown in Figure 7.11, with W, W~! € RH..

If
|:G1:| S A B
e | =10,
2 Lo

carefully derive a formula for all filters with the property ||R||o < v which is free of

state inflation; R maps the disturbance to ¢. Note that deg(F') < deg([ gl ]) +
2
deg(W); deg(-) denotes the McMillan degree. .
(Hint: Redraw Figure 7.11 as Figure 7.12 and solve for F' using the augmented
function Gy. The filter we seek may then be recovered by setting FF = W 1F.

Mind the extra states now!)
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Figure 7.11: A configuration for frequency weighted estimation errors.

Problem 7.8. Consider the signal generator

= Az + Bw+ Bz
= Cx+v
Fy.

As usual, we seek to choose the filter F such that R : d +— (Z — Lz) has certain
properties. Since the filter output affects the signal being estimated, this is a closed-
loop estimation problem.

1. Show that a causal linear filter F' satisfying || R||[o,r) < 7 exists if and only if
the Riccati differential equation (7.2.13) has a solution on [0,7]. Show that
all filters are generated by F = Fy(F,,U), in which U is a causal, linear
system such that ||U||jo,7) < v and

[ A+ B,L-QC'C | QC' By —y72QL’
F,= L 0 Ji
—-C I 0

ny <@ 8

2. If (A, C) is detectable, (A, B) has no uncontrollable modes on the imaginary
axis and A+ By L is asymptotically stable, show that there exists an internally-
stabilizing filter F' for the generalized regulator problem defined by

A|[B o] B
P=| —L|[0 0] I
c o 1] o

if and only if the algebraic Riccati equation (7.3.5) has a stabilizing nonneg-
ative definite solution. Give a parametrization of all such filters.

Problem 7.9. (Xie, de Souza and Fu [214]) Consider the signal generator

= (A + HlAE)LU + Bw
= (C+ H:AE)x+ v,
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Figure 7.12: One solution to the frequency weighted estimation problem.

in which the matrices A, B, C, Hy, Hs and E are known, but the stable perturbation
A is unknown with the property ||A|lo < 1. We require an estimate z = Fy of Lx
such that ||R||s < 1, where R maps the disturbance to the estimation error zZ— L.
Set up this configuration as a generalized regulator problem.
(Hint: Set up a generalized regulator problem that includes [ H{ H) ]/u? as
an additional input and Ex as an additional output.)
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The H~ Generalized
Regulator Problem

8.1 Introduction

We now turn to the problem of synthesizing controllers for the H,, generalized reg-
ulator problem posed in Section 4.2.1. In the case of the LQG generalized regulator
problem, it is well known that the synthesis is achieved via a decomposition, or
separation, into an optimal state-feedback control problem and an optimal state
estimation problem. The optimal state-feedback controller is given in terms of
the solution of a Riccati differential equation, which is solved backwards in time
from a terminal condition. This state-feedback controller is also the optimal full-
information controller. The optimal state estimator is the Kalman filter and the
filter gain is given in terms of the solution of a second Riccati differential equation,
which is solved forwards in time from an initial condition. In the infinite-horizon,
time-invariant case, the solutions to the Riccati differential equations are replaced
with the stabilizing solutions to the corresponding algebraic Riccati equations.

Although there are many similarities between the solution of the LQG problem
and the H,, generalized regulator problem, the LQG problem and its Ho, coun-
terpart are also quite different in several respects. The following two facts are the
source of these differences:

e Full-information H., controllers depend on the way in which the exogenous
signal enters the system dynamics—that is, on Bj. In full-information LQG
control, By does not affect the optimal controller, only the optimal cost.

e An H filter that estimates —Fx is —FZ, in which Z depends on F'. In the
Kalman filter situation, the optimal estimate of —Fx is —FZ, in which Z, the

285
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optimal state estimate, does not depend on F'.

A further complication stems from the need to address existence questions, because
the Riccati equations associated with H., control and filtering problems do not
always have solutions, unlike their LQG counterparts.

We will show that all solutions to the H., generalized regulator problem have
the form of an H filter that estimates the full-information H., control law. This
yields necessary and sufficient conditions for the existence of controllers in terms of
two Riccati equations. The second Riccati equation depends on the solution to the
first. Manipulations involving these Riccati equations enable us to show that the
‘Hoo generalized regulator problem has a solution if and only if:

1. the Riccati equation associated with the full-information control problem has
a solution (on some appropriate time interval which may be infinite);

2. the Riccati equation associated with the H., estimation of Cyx has a solution
(on the same interval); and

3. a coupling condition is satisfied.

If solutions exist, there is a LFT parametrizing all controllers. The controller gen-
erator is given in terms of the problem data and the solutions of the two Riccati
equations.

8.1.1 Problem statement
We consider the generalized plant P described by the state-space system

& = Axz+ Biw+ Bau, z(0) =0, (8.1.1)
= Ciz+ Dysu (812)
y = G+ Daw, (8.1.3)

in which w is an [-dimensional exogenous input, u is an m-dimensional control
signal, y is a ¢-dimensional measurement and z is a p-dimensional objective signal.
The state vector  has dimension n. We assume that for all times of interest

1,Dis =1, and Doy Dj =1, (8.1.4)

By assuming that the loop shifting and scaling transformations described in Sec-
tion 4.6 have already been carried out, the simplified objective (8.1.2) and measure-
ment (8.1.3) may be considered instead of the more complicated expressions

z = Cll'+D11’UJ+D12U
y = Chx+ Dayyw + Dosu.
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Figure 8.1: The generalized regulator configuration.

Finite-horizon problem

In the case of a finite horizon, the generalized plant P described by (8.1.1) to (8.1.3)
may be time-varying and we seek a causal, linear controller

u= Ky (8.1.5)
such that the closed-loop system R,,, = Fy(P, K) satisfies

[ Rz

[0,T] <. (816)

Infinite-horizon problem

In the case of an infinite horizon, the generalized plant P described by (8.1.1) to
(8.1.3) is assumed to be time-invariant. We consider the class of causal, linear,
time-invariant and finite-dimensional controllers that internally stabilize P. Any
such controller will be called admissible for P. Our aim is to find an admissible
controller such that the closed-loop system R,.,, = Fy(P, K) satisfies the infinity
norm objective

| Rz loo < - (8.1.7)

The standard assumptions: We will assume that:
1. The pair (A, Bs) is stablizable and the pair (A, Cs) is detectable.

2. The matrices D13 and Doy satisfy (8.1.4).

3.
rank [ 4 —0wa 5122 ] =n+m, for all real w, (8.1.8)
4, .
rank { A-jwl By } =n+gq, for all real w. (8.1.9)
Co Doy
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The assumption that (A, B, Cy) is stabilizable and detectable is necessary and suf-
ficient for the existence of admissible controllers. This is proved in Appendix A (see
Lemma A.4.2). The “full rank on the imaginary axis” assumptions are necessary
for the existence of stabilizing solutions to the Riccati equations that we use to
characterize the solution to the H, generalized regulator problem. Problem 8.14
explores a way in which these assumptions may be removed.

8.2 Finite-horizon results

As has been our practice throughout the synthesis theory chapters, we consider the
finite-horizon case first. The plant (8.1.1) to (8.1.3) is time-varying and we seck a
causal, linear controller u = Ky such that the objective (8.1.6) is satisfied.

Before considering the general case, it is instructive to consider two special cases
which can be solved using only one Riccati equation.

Simple measurement feedback problems

Consider the measurement feedback problem in which
y=Cox +w (8.2.1)
is used instead of (8.1.3). In this case, the observer

— AF+ Byu+ By(y—Co),  #(0) =0, (8.2.2)
= y— CQZC\

S 8)-

perfectly reconstructs the state x and exogenous input w from the measurements
y. Consequently, we may replace the state x in any full-information controller
with Z, generated from y by the observer (8.2.2) and (8.2.3). We conclude that a
measurement feedback controller for this problem exists if and only if the Riccati
equation

X = X A+AX +CC
~ Xoo(BaBy — v 2B1B) X0o,  Xoo(T) =0, (8.2.4)
has a solution on [0,T]. The matrices A and C are given by

A = A-ByD),Cy (8.2.5)
C'C = CI(I—DyyD},)Cn, (8.2.6)

which result from reducing (8.1.2) to the form

-[]
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using the transformation @ = u + D},Ci2. For more details, see Section 5.2.3 and
Problem 6.1. One controller that achieves the objective is u* = —F,, in which

Fy = D1,C1 + B5X .

We obtain all solutions to this special measurement feedback problem by combining
the generator of all full-information controllers with the observer (8.2.2) and (8.2.3).
This yields the LFT parametrization K = Fy(K,,U), in which U is a causal linear
system such that ||U|[jo, ) < v and K, is given by

A—BiCy— ByFy | Bi Bs
K,= —Fo 0 I
7(02 +772B1Xoo) I 0

Since the observer has no effect on the achievable norm, a measurement of the form
(8.2.1) is no worse than full information, in terms of achieving closed-loop norm
objectives.

Another special situation is the case in which

z=Ciz+u (8.2.7)

replaces (8.1.2). This problem is the adjoint of the problem just considered and is
the closed-loop estimation problem discussed in Problem 7.8. A solution exists if
and only if the Riccati equation

Voo = AV +Y, A + BB
— Yoo (CLCy — v 201 C) Ve, Y5 (0) =0, (8.2.8)
has a solution on [0, T]. The matrices A and B are given by
A = A-BD,Cy (8.2.9)
BB = Bi(I - D} D )B;. (8.2.10)

All solutions are generated by the LFT K = Fy(K,,U) in which U is a causal
linear system such that ||U||jo,r] < and K, is given by

[ A= ByC1 — HoC | Hoe  Ba +772YoC
K, —C 0 T ,
—Cy I 0

in which
Hy = BlD’21 + YOOCé.

8.2.1 Two necessary conditions

We now consider the general case in which P is described by (8.1.1) to (8.1.3).
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Measurement feedback and full-information control
Any measurement feedback controller is also a full-information controller, since
(8.1.3) and (8.1.5) imply that
u=[ KC, KDy ] { ; } (8.2.11)
w

The existence of a measurement feedback controller that achieves the objective
(8.1.6) therefore implies the existence of a full-information controller that achieves
(8.1.6). Hence, by our full-information He, control results, the existence of a so-
lution to the Riccati differential equation (8.2.4) is necessary for the existence of a
solution to the measurement feedback problem.

Measurement feedback and filtering

As a dual to the above observations, consider the signal generating system

T, = Az,+ Biw, 2,(0) =0, (8.2.12)
Yo = Coxo+ Daw (8.2.13)

and the filter F' defined by

e

= AZ+ By K (y, + C27)
= le+D12K(yo+Cgli').

83

Then the system mapping w to Cyz, + Z is just Fy(P, K) and we conclude that if
K satisfies (8.1.6) for the signal generator (8.1.1) to (8.1.3), then F' satisfies

IC o + 2113, 10,7y = V2 Iwl3 0.1y < —ellwll3 o,y

for all w € £5]0,T] and some € > 0.! Hence, by invoking our H,, filtering results,
the existence of a solution to the Riccati differential equation (8.2.8) is also necessary
for the existence of a solution to the measurement feedback problem.

The separation principle

Let us now recall the solution to the LQG measurement feedback problem. The fil-
tering problem there was to find an optimal estimate of the optimal full-information
control law. Since this is of the form u = —Fz, this amounts to finding an optimal
state estimate. The Kalman filter combined with the optimal, full-information con-
trol law therefore provides the solution. The control and estimation problems are
completely decoupled. It is not necessary to decide on the noise covariances before
designing the full-information controller, nor is it necessary to decide on the control
objective before designing the Kalman filter.

1x:xo+5:,y:yo+gandz:01xo+2.
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The decoupling of the control and estimation problems in LQG controller syn-
thesis results from the fact that the optimal estimator of —Fx is given by —FZ,
in which 7 is the optimal state estimate, which is independent of F. As we know,
this does not hold for H, filtering, since the state estmate depends on F. For this
reason, the filter cannot be designed independently of the control objective, as the
filter required depends on the control law. This means that although the existence of
solutions to the Riccati equations (8.2.4) and (8.2.8) are necessary conditions, they
are not sufficient conditions for the existence of a solution to the H,, generalized
regulator problem. Nevertheless, the solution to the H,, controller synthesis prob-
lem may be obtained by solving the full-information control problem and finding
an Hoo estimator for the full-information control. This is the separation principle
of H,o control.

8.2.2 Necessary and sufficient conditions

Suppose the Riccati differential equations (8.2.4) and (8.2.8) have solutions on [0, T7.

We know from our full-information control results that the controller v* =
—Fyx, in which Fy = Dj,C; + B}X, achieves the objective (8.1.6). More-
over, any closed-loop system R.,, = F;(P, K) satisfying the objective (8.1.6) is
generated by

u—u*=U(w—w"),

in which w* = y72Bj X, for some causal, linear system U satisfying
1T llo,zy < - (8.2.14)

Thus, in order to determine whether or not a measurement feedback controller
u = Ky satisfies the objective (8.1.6), we evaluate the system U that maps w — w*
to u —u*. Writing the state dynamics (8.1.1) and measurement equation (8.1.3) in
terms of w — w™* instead of w, we obtain

i = (A4+~72B1B| X))z + Bi(w —w*) + Byu
= (02 +’772D2131X00)1‘+D21(’LU7U)*).

From this, we immediately see that the system U that maps w — w* to u — u* is
generated by the LFT

T A+ ’yizBlBiXoo B, B, x
u—u* = Fo 0 I w—w* |,
Yy Cy 4+~ ?DaBiXo Dz 0 u
u = Ky.

The parametrization of all solution to the full-information problem says that the
controller K satisfies the objective (8.1.6) if and only if U satisfies (8.2.14). The
advantage of considering this modified generalized regulator problem is that its
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objective signal u — u* = F,.x + u has precisely the form of the special objective
(8.2.7) considered earlier. Applying these results, we conclude that K exists if and
only the Riccati differential equation
Zoo = A.Zoo+ ZsAL+ BB
— 750 (C5,Co — v 2F! Foo) Z oo, Zs(0) =0,  (8.2.15)

has a solution on [0,7]. In (8.2.15), Cs, and A, are given by

Cy. = Cy+~ 2Dy B X, (8.2.16)
A, = A+~ ?BiB{Xs — B1D},Co,
= A+4~72B,(I — D, Ds1)B} Xo — B1 D}, Cs. (8.2.17)

Furthermore, all solutions are generated by the LFT
K =Fi(K,U), (8.2.18)
in which U is a causal linear system such that
1Ulljo,1) < - (8.2.19)

The generator of all solutions K, is given by the realization

Ap | B B
K, Z|Ca| 0 T |, (8.2.20)
Cra | 1 0
in which
A = A+~ ?B1B X — BaFoo — Bi1Ca,
[ Br1  Byo ] = [ BlD/21 +Zoooéz B2+772Z00Fé.o ]
Ckl _ _Foo
Ckz _CQZ ’

The fact that the (1,2)- and (2, 1)-blocks of K, have causal inverses means that
we capture all causal, linear, measurement feedback controllers if U is allowed to
range over the class of causal, linear systems (without restriction on its norm).

The central controller: Notice that the central controller obtained by setting
U = 0 can be written as

AT + B1w* + Bou + B (y — (Cgi‘\ + Dgl’&}*))
_F. %

@* = 7 2 B|X,Z,

g 8-
I
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which is shown in block diagram form in Figure 8.2. We see that w is generated by
the feedback gain F., acting on a state estimate resulting from an observer. The
observer is driven by the difference between the measured y and the measurement
estimate y* = CoZ + Doyw* that would occur if the exogenous signal were w*.
Recall that w* is the worst exogenous input in £9[0,7] for the full-information
control problem. It is therefore also the worst exogenous input in £2[0,7] for the
measurement feedback problem. The worst-case nature of H., control is therefore
evident in the structure of the controller.

w* — B Ve
- T
Bja > [ Cy (~O—
Yy
Dy,
B, N
w* e
E: —F V2Bl X o

Figure 8.2: The central H, controller.

Reformulation of the conditions

Although this analysis offers a complete solution to the finite-horizon, measurement
feedback problem, we have not made use of Y, the existence of which is necessary
for the existence of a solution to the H,, measurement feedback problem. It must
be that the existence of Y., is necessary for the existence of Z.,, and that the
existence of Z,, is sufficient for the existence of Y. In fact,

Zoo =Yoo (I =7 2 XYoo P = (I =7 2V Xoo) ™ Vo (8.2.21)
We summarize our results in the following theorem.

Theorem 8.2.1 There exists a causal, linear measurement feedback controller for
the time-varying plant defined by (8.1.1) to (8.1.3) that satisfies the objective (8.1.6)
if and only if:

1. the Riccati differential equation (8.2.4) has a solution X on [0,T);
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2. the Riccati differential equation (8.2.8) has a solution Y, on [0,T);
3. p(Xoo(t) Yoo (t)) < % for allt € [0,T].2

If these conditions hold, K is a causal, linear measurement feedback controller sat-
isfying (8.1.6) if and only if K is given by the LFT (8.2.18) for some causal, linear
U satisfying (8.2.19). The generator K, is given by (8.2.20), with Z, given by
(8.2.21).

Proof. We need to prove that Items 2 and 3 are equivalent to the existence of
Zoo.

Suppose Z, exists. Since X, > 0 and Zo, > 0, I + 72X, Z, is nonsingular
for all ¢ € [0,T]. A calculation that is requested in Problem 8.4 shows that Yo, =
Zoo(IT+772X00Z0o0) ! is the solution to the Riccati equation (8.2.8). We also have

P(XooVoo) = p(XooZooI +7* X0 Z00)7Y))
~2 P(XoYoo)
7%+ p(XooYo)

< 72.

Conversely, if Items 2 and 3 are satisfied, then I — v 2X_ Y, is nonsingular and a
calculation shows that Z,, = Yoo (I — 7 ?X0Yao) ! is the solution to (8.2.15). =

Main points of the section

1. If a solution to the H,, generalized regulator problem exists, then
there exist solutions X, and Y., to the Riccati differential equa-
tions associated with the full-information H., control problem and
the Hoo estimation of Cix given y.

2. Any solution of the H,, generalized regulator problem is a H
filter that estimates the full-information control law u* = —F_x
in such a way that

|w—u*|l2,j0,7)

sup T
w—w*eL5[0,7] W —w* |2 0,7]

with w* = vy 2B} X

3. A solution to the H,, generalized regulator problem exists if and
only if X exists, Y exists and p(XoYeo) < 72

4. The central controller is © = —F, 7, in which T comes from an
observer that assumes the exogenous signal is W* = v 2B] X7,
which is an estimate of the worst-case disturbance in £2[0,T]. The

number of states in this controller is equal to the number of states
in the generalized plant description.

2p(-) is the spectral radius: p(Q) = max; |A;(Q)].
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8.3 Infinite-horizon results

We now consider the time-invariant plant (8.1.1) to (8.1.3) and we assume that the
standard assumptions hold. We seek an admissible controller (8.1.5) such that the
closed-loop system R.,, = F;(P, K) satisfies (8.1.7). In the infinite-horizon case,
stability becomes an additional concern.

Internal stability

In this section, we note a fact concerning the internal stability of LFTs that can be
found in Appendix A (see Lemma A.4.1).

Let (Ag,Bgk,Ck,Dk) be a minimal realization of K, and let the natural
realization® of Fy(P, K) be

s | A B
FAPK) = [Tffﬂ%} | (83.1)

(See Lemma 4.1.2 for more details.) Then K is admissible (i.e., internally stabilizes
P) if and only if Apg is asymptotically stable.

8.3.1 A necessary condition

If K is an admissible controller, Apy is asymptotically stable, which implies that
x € L]0, 00) for any w € £5]0,00) and any x(0). Therefore, K [ Cy Do ] is a sta-
bilizing, full-information controller. The existence of a stabilizing, full-information
controller such that ||R,,||co < v implies that there is a solution to the algebraic
Riccati equation

XA+ A Xy — Xoo(BeBy — 77 2B1B}) X oo +C'C =0 (8.3.2)

such that A — (ByBh — v 2B B}) X is asymptotically stable and X, > 0. The
matrices A and C are defined by (8.2.5) and (8.2.6) as before.

Furthermore, all internally-stable closed-loop systems that satisfy (8.1.7) are
generated by

u—u*=U(w—w") (8.3.3)
for some U € Hoo such that |Ulls < 7. In (8.3.3),

u* = —Fyr
Fs = D},C1+ ByXoo
w* = 7 B X .

3The realization obtained by eliminating u and y
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8.3.2 An equivalent problem

If u is generated by the measurement feedback u = Ky, then U in (8.3.3) is
generated by the LFT :
U=FI(GK), (8.3.4)

in which the system G is given by
A+7_2B1B1Xoo | By B

G= Fy 0o I |. (8.3.5)
Co+7v 2Dy BiXeo | D21 0

We now establish that K stabilizes P and || Fy(P, K)||ec < v if and only if K
stabilizes G and || F¢ (G, K)||c < 7.

Lemma 8.3.1 Suppose X > 0 is the stabilizing solution to (8.5.2). The following
are equivalent:

1. K is admissible for P and ||F¢(P, K)|lco < 7;
2. K is admissible for G and ||Fo(G, K)o < 7-

Furthermore, for all A,

rank

A—F'}/*QBlBiXOQ—)\I By }:rank[ A—- )N B :| (836)

Cy + 772D21B1Xoo Doy Cs Dy,

Proof. Let (Ax,Bk,Ck,Dk) be a minimal realization of K, and let the natural
realizations of Fy(P, K) and F;(G, K) be (8.3.1) and

s | A B
7K * | e e

respectively. An examination of these realizations shows that
[ Ak — M Ber |

— [ Apk— A Bpg | [ : BIX. 0 | ) } (8:3.7)
which is a restatement of the fact that P is driven by w and u, while G is driven
by w — w* and u. (Problem 8.5 requests a verification of (8.3.7).)

Suppose Item 1 holds. Since K [ Cs Doy ] is a stabilizing, full-information
controller, we conclude from the parametrization of all full-information controllers
that U = Fy(G,K) € RHoo and | Fi(G, K)o < 7. We now show that the
realization (Agk, Box, Cax) is stabilizable and detectable. By Lemma 4.1.2, any
unobservable mode (Agk,Cck) is a zero of

A+~2BiB\ X — A By
Fs I



8.3 INFINITE-HORIZON RESULTS 297

All such zeros are asymptotically stable, because they are the eigenvalues of A —
ByFoo + 77 2B1 B} X, which are all in the closed-left-half plane, since X, is the
stabilizing solution to (8.3.2). By (8.3.7), any uncontrollable mode of (Agk, Box ) is
an uncontrollable mode of (Apk, Bpk ); these modes are all stable since K stabilizes
P. Thus (Agk,Bok,Cak, Dark) is a stabilizable and detectable realization of the
stable transfer function matrix (G, K). Hence Ag is asymptotically stable, and
we conclude that K is admissible for G.

Suppose Item 2 holds. Then U = F4(G,K) € RHo and |U|ls < 7. By
the parametrization of all stabilizing, full-information controllers, v = —(Fu +

Y 2UB, X)x + Uw is a stabilizing full-information controller, and we conclude
that K stablizes P.
Equation (8.3.6) follows from the identity

A4y BB Xoe ~ M B ] [A-M B I 0
Co+y7?DnBiXee Do | Cy Do Y B X I

8.3.3 Necessary and sufficient conditions

Suppose that Xo, > 0 is the stabilizing solution to (8.3.2). By Lemma 8.3.1, we
may confine our attention to the problem of finding an admissible controller for G
such that

[Fe(G, K)o < 7. (8.3.8)
This is a closed-loop estimation problem—we seek an estimate of the control law
u = —Fyz. By (8.1.9) and (8.3.6), G satisfies the assumptions required for the

solution of this problem (see Problem 7.8). We conclude that an admissible K
satisfying || F¢ (G, K)||c < 7y exists if and only if there is a solution to the algebraic
Riccati equation

A Z oo+ Zoo AL — Zoo(Ch,Coy — Y 2F! Foo) Zoo + BB =0 (8.3.9)
such that A, — Z,(Ch,Ca. — vy 2F/_F,,) is asymptotically stable and Z,, > 0. In

this case, all admissible measurement feedback controllers satisfying (8.3.8), and
hence also (8.1.7), are generated by

K = Fi(Ko,U), U€RHa, U] <7 (8.3.10)
The generator K, is given by
Ar | Bii Bie
K,Z| Cu| O I |, (8.3.11)
Ckg I 0
in which
Ay = A+77B1B{Xs — ByFs — BjaCa:
[ Bkl BkQ ] = [ BID/21 + Zoocéz B2 —|—’}/_2ZOOF<;O ]

) =]
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As in the finite-horizon case, we can rewrite everything in terms of a solution to
the algebraic Riccati equation

AV + Yoo A — Yoo (C5Cy — v 201 C1) Yoo + BB = 0. (8.3.12)

Theorem 8.3.2 Suppose the standard assumptions hold. There exists an admis-
sible K such that the closed-loop system R, = Fo(P, K) satisfies (8.1.7) if and

only if:

1. there is a solution to the algebraic Riccati equation (8.3.2) such that A—
(BaBb — v 2By B}) X is asymptotically stable and Xoo > 0;

2. there is a solution to the algebraic Riccati equation (8.8.12) such that A —
Yoo (C4Cy — y~2C}C1) is asymptotically stable and Yoo > 0;

3. p(XooYao) < 2.

In case these conditions hold, K is an admissible controller satisfying (8.1.7) if and
only if K is given by the LFT (8.8.10). The generator K, is given by (8.3.11) with
Zso given by

Zoo =Yoo I = 72X 0 Yoo) ' = (I =7 Yoo Xoo) W

Proof. We need to show that Items 2 and 3 are equivalent to the existence of a
stabilizing, nonnegative definite Z.

Suppose Zn, exists. Then Yoo = Zoo(I + 72X 7o)~ ! exists, is nonnegative
definite (because X, and Z, are) and a calculation that is requested in Problem 8.2
shows that Yo, satisfies (8.3.12). The same argument as was used in the proof of
the finite-horizon result shows that p(XYoo) < ~2. Tt remains to show that Yo is
the stabilizing solution. This follows from the identity

/_1 — Yw(CéCQ — 7_20101)
= (I +7 %ZucXoo) "(As — Zoo(C.Co. — v °FL F))
X(I+72Z00 Xoo), (8.3.13)

the verification of which is also requested in Problem 8.2.

Conversely, if Items 2 and 3 hold, then Z,, = Yoo (I — 72X Yo ) ! exists, is
nonnegative definite and satisfies (8.3.9). The identity (8.3.13) shows that it is the
stabilizing solution to (8.3.9). [ |

Main points of the section

1. A solution to the H, generalized regulator problem exists if and
only if there exist stabilizing, nonnegative definite solutions X,
and Y, to the algebraic Riccati equations associated with the full-
information H., control problem and the H., estimation of Ciz
given y such that the coupling condition p(X s Yoo ) < 7?2 is satisfied.
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2. Any solution of the H., generalized regulator problem is a H
filter that estimates the full-information control law u* = —F x
in such a way that

u —u*
wp Izl
wowreLs[0,00) [W —w*|l2

with w* = y72B] X .
3. The “central” controller has the same number of states as the gen-
eralized plant description.

8.4 Example

We conclude this chapter with a simple example, which illustrates the use of the
generalized regulator. The system we will consider is the servomechanism illustrated
in Figure 8.3, where the aim is to control the speed of the inertia Js by applying

Mass-Spring System

Dy, 6, D,y, Oy L
GTE (;) 9
L k(0) femsO—o—] 40 I J _.L_. 2

[ 1}

Figure 8.3: Mass-spring system, feedback controller and prefilter.

a controlled torque T to the inertia J;. The control system is fed with a reference
signal O,e ¢ and a speed measurement ©,. The drive motor is modelled by a simple
gain of 40. The inertias J; and Jy are coupled by a flexible shaft K. The damping
coeflicients associated with J; and J are D; and D respectively. Load variations
are modelled as an additive disturbance L to G)g. Numerical values for the problem
data are given Table 8.1 in mks units.

A torque balance on J; gives

T = J10,+ D10, +K(0,—0,)
= él = T/Jl—91D1/J1—(@1—@2)K/J17
while a torque balance on Js yields
K(@l — @2) = J@Q + DQ@Q
= 92 = (@1 —QQ)K/JQ—DQGQ/JQ.
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Ji | 1.0
Jo | 2.0
D; | 0.01
Dy | 0.02
K | 300

Table 8.1: Problem data.

Combining these equations and defining ©, = 01 — ©4 gives

6, —Dy/Jy 0 —-K/J, 0, 40/.J,
05 = 0 —Dy/ )y K/Jo 0, | + 0 e
o, 1 -1 0 o, 0

CH
6 = [0 10]]| 6|,

O.

which is the open-loop model g of the system. The open-loop frequency response
is given in Figure 8.4, and the single shaft resonant frequency is clearly visible at
6.7082 rad/s.

One solution comes from evaluating a stabilizing controller that minimizes the
Ok
L
ing and load disturbance attenuation by keeping |/e||2 small. The mapping is given

by the LFT

transfer function matrix mapping [ } to [ 9@ ] . This will ensure good track-
2

e 10 -1 Ok
O2 = g 1l —g L i,
O2 g 1l —g u

u = k@g

Solving the two Riccati equations associated with this generalized regulator
problem reveals that:

1. The optimum norm is Yo, = 3.8856.

2. The optimal controller is

6.3057  33.3704 | 8.0177
kopt = —16.2572 —31.6275 | —11.3415
4.2992  10.5358 | 3.6283

3.6283s% + 6.8628s + 88.0362

s2 + 25.3218s + 343.0775




8.4 EXAMPLE 301

gain (dB)

-80 Ll Lol Ll L Ll
103 102 101 100 10t 102

frequency (rad/s)

Figure 8.4: Open loop frequency response.

3. The closed-loop poles are —5.4056, —2.6297 £ 78.4329 and —7.3384 4 58.4702.

Notice that the optimal controller has degree two, in contrast to central suboptimal
controllers, which have degree three. We will have more to say about the solution
and properties of optimal controllers in Chapter 11.

The design is completed by introducing the prefilter k(0) = 0.2566. If the steady-
state value of the speed is Osss, then k(O)@gss R~ k:(O)@g, implying that O ~ O,
This follows from the fact that the steady-state torque required to overcome the
inertial damping is low. In the case of no inertial damping, the system introduces
its own integral action, thereby completely eliminating the steady-state error. This
follows because, in this case, the steady-state torque is zero and Oy, = ©,. Figure
8.5 shows the closed-loop step responses of the system—the solid curve is 0, and
the dashed curve is e. It is clear that the feedback system provides a fast and
accurate closed-loop response.

It follows from Figure 8.3 that

O2 — Orer = ((1 + gk) ' gk(0) — 1)O,;.

Figure 8.6 shows a Bode magnitude plot of this transfer function, which indicates
that the closed loop has good low-frequency tracking properties.
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12

amplitude

Figure 8.5: Closed-loop step responses, O, (solid) and e (dashed).

8.5 Notes and References

It has been known for some time that the H, generalized regulator problem could
be reduced to an approximation or “general distance” problem known as the four-
block problem [52, 36, 65]. A solution based on Davis, Kahan and Weinberger [39]
involved a reduction to the classical Nehari extension problem, the solution of which
is given by Adamjan, Arov and Krein [1, 2]. A state-space solution to the Nehari
(and other) approximation problems given by Glover [71] completed this solution
method.

Unfortunately, the cumbersome chain of factorizations required in this method-
ology involves Riccati equations of increasing dimension and the pro